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Fine-grained Background Representation for
Weakly Supervised Semantic Segmentation

Xu Yin, Woobin Im, Dongbo Min, Yuchi Huo, Fei Pan, Sung-Eui Yoon

Abstract—Generating reliable pseudo masks from image-level
labels is challenging in the weakly supervised semantic segmenta-
tion (WSSS) task due to the lack of spatial information. Prevalent
class activation map (CAM)-based solutions are challenged to
discriminate the foreground (FG) objects from the suspicious
background (BG) pixels (a.k.a. co-occurring) and learn the
integral object regions. This paper proposes a simple fine-
grained background representation (FBR) method to discover
and represent diverse BG semantics and address the co-occurring
problems. We abandon using the class prototype or pixel-level
features for BG representation. Instead, we develop a novel
primitive, negative region of interest (NROI), to capture the fine-
grained BG semantic information and conduct the pixel-to-NROI
contrast to distinguish the confusing BG pixels. We also present
an active sampling strategy to mine the FG negatives on-the-
fly, enabling efficient pixel-to-pixel intra-foreground contrastive
learning to activate the entire object region. Thanks to the
simplicity of design and convenience in use, our proposed method
can be seamlessly plugged into various models, yielding new state-
of-the-art results under various WSSS settings across bench-
marks. Leveraging solely image-level (I) labels as supervision,
our method achieves 73.2 mIoU and 45.6 mIoU segmentation
results on Pascal Voc and MS COCO test sets, respectively.
Furthermore, by incorporating saliency maps as an additional
supervision signal (I+S), we attain 74.9 mIoU on Pascal Voc test
set. Concurrently, our FBR approach demonstrates meaningful
performance gains in weakly-supervised instance segmentation
(WSIS) tasks, showcasing its robustness and strong generalization
capabilities across diverse domains.

Index Terms—Contrastive learning, Fine-grained background
representation, Weakly supervised image segmentation.

I. INTRODUCTION

FULLY-supervised semantic segmentation [29], [49] re-
quires a pixel-annotated training set, which is costly

and time-consuming to create. Thus, great efforts have been
put into weakly supervised semantic segmentation to re-
duce the annotation cost by leveraging less expensive yet
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Fig. 1: (a) Input (b) Class activation maps via AMN [25] (c)
Refined class activation maps with our method (on AMN). In
the 1st row (b), class activation maps mistake the lake (co-
occurring background semantic) as the boat; in the 2nd row
(b), the horse is not completely activated.

weakly spatially-informative supervision signals, such as im-
age tags [13], bounding boxes [38], and scribbles [14], [17].
Current studies [23], [25], [26] usually start from generating
class activation maps [6] by training a classification network
to build the seeds and then utilize refinement techniques [1],
[2], for generating reliable pseudo masks, which are finally
used to train the segmentation model [37], [44]. In this
work, we concentrate on the image-level weakly supervised
semantic segmentation, where only the images’ class labels
are given; we aim to enhance the quality of seeds and, thus,
the segmentation results.

First, we illustrate two common problems of class ac-
tivation maps (shown in Fig. 1): co-occurring background
semantics and incomplete object region. The former refers
to the disturbance from the confusing image background
information for the foreground classification [24], [26]. The
background semantic frequently appearing with the target
foreground object carries suspicious information and results
in ambiguous recognition, e.g., boat and lake (in (a)). The
latter problem showcases (in (b)) that class activation maps
prefer highlighting the discriminative semantic region instead
of the entire object part [26]. This issue manifests that the
classifier uses less context-dependent information to explain
its prediction due to the need for an in-depth understanding of
class-level properties. These two issues motivate us to isolate
the confusing background semantics from the classification
process and learn more discriminative foreground features.

In this work, we analyze and conclude that the co-occurring
problem of class activation maps resulted from disregarding
the image background region in the classification training.
However, existing background representation and feature sep-
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TABLE I: We summarize related methods with informative keywords and highlight the differences between them and ours.

Method Publication Venue Keywords
AdvCAM [23] CVPR’21 attribute maps, adversarial attack, image perturbations

ToCo [36] CVPR’23 token contrast, intermediate feature supervision, local-to-global consistency
C2AM [47] CVPR’22 class-agnostic activation map, contrastive learning, foreground-background representations

PPC [10] CVPR’22 prototype learning, pixel-level supervision, cross-view semantic consistency
Ours – negative-region-of-interest, activate negative sampling, foreground-background contrastive learning

aration methods [6], [12] do not consider the foreground-
background semantic discrepancy and thus fail to capture fine-
granulate background semantics. To address these limitations,
we propose a fine-grained background representation (FBR)
method built upon contrastive learning. We recognize that
the image background region contains a vast amount of task-
irrelevant information and lacks descriptive semantics. There-
fore, we model the background independently from the fore-
ground. For every foreground class, we define a learnable pro-
totype that encodes its essential features. In order to represent
the image background, we specifically develop a primitive,
negative-region-of-interest (NROI), capable of capturing the
fruitful and diverse semantics of backgrounds. To address the
co-occurring issue, we implement Fore-to-background contrast
in a pixel-to-NROI manner to decouple the foreground objects
effectively from the confusing background semantics and thus
overcome the problem. Additionally, we tailor an active sam-
pling method for weakly supervised semantic segmentation
that selects negatives based on foreground semantic relation-
ships and conduct intra-foreground contrastive learning. This
way, we learn compacted foreground class features and obtain
completer object regions.

In summary, our main contributions are three-fold:
• We propose a simple FBR method to address the co-

occurring and incomplete object region problem for
weakly supervised semantic segmentation.

• We propose a fine-grained background primitive, dubbed
NROI, to represent image background effectively and
implement the fore-to-background contrastive learning to
enhance class activation maps’ ability to distinguish co-
occurring background cues. Also, we introduce an active
method to sample efficient foreground negatives and
conduct intra-foreground contrastive learning to activate
integral object regions.

• Extensive experiments and evaluations in weakly super-
vised semantic and instance segmentation demonstrate
our FBR approach can be used in different applications
and is generalizable to various baseline architectures.
In particular, our method achieves new state-of-the-art
weakly supervised semantic segmentation performances
on Pascal Voc 2012 and MS COCO 2014 test sets.

II. RELATED WORK

Image-level weakly supervised semantic segmentation. This
task aims to generate reliable pseudo masks from class labels
to guide the segmentation practice. The main trend in this
field is to produce complete object masks with class activation
maps, yielding high-quality pseudo labels.

Current studies [16], [34] usually resort to getting more
object information involved in the classification or using
powerful backbone architectures, e.g., ViT [9], to get more

object regions activated. For example, RIB [22] presents a
novel pooling method to reduce the information bottleneck
during classification and forces classifiers to identify less dis-
criminative regions of target class objects. ToCo [36] proposes
contrasting the patch representations from different layers and
the local-global features of the class token to scale up the
activated region of target class objects.

Despite the advanced results achieved by these methods,
some confusing background semantics are inevitably activated
when expanding the object region, introducing noise pixels
around semantic boundaries. In this work, we explicitly model
the image foreground and background semantics and imple-
ment the fore-to-background and intra-foreground contrastive
learning to suppress the effect of ambiguous background
information, thus learning accurate object regions.
Contrastive learning. The goal of this approach is to learn a
similarity function in common feature space to pull views of
similar data (positive) closer while pushing views of dissimilar
ones (negative) apart. This way, we label each pixel based on
the similarity measure and activate accurate object regions.

For instance, C2AM [47] proposes the fore-background con-
trastive learning to generate the class-agnostic class activation
maps. PPC [10] employs a prototype, namely the typical class
features, to serve as the positive to perform the contrastive
learning; besides, PPC adopts the “hardness” computation
in [40] to draw hard negatives.

Nevertheless, most solutions [10], [31], [42] treat the image
background equally as the foreground classes and optimize
them jointly, ignoring the fact that the background content
covers diverse object semantics. This nature makes the image
background difficult to represent with a learnable prototype or
features, resulting in inferior optimization effects.

By contrast, we model the image background with the
proposed novel primitive, negative-region-of-interst, to denote
its complex semantics and perform the fore-to-background
contrastive learning. This way, we decouple the relationship
between diverse background semantics and the foreground
classes, addressing the co-occurring problem. Besides, we
present an active sampling strategy to select the negative
samples of foreground classes on the fly. Therefore, we
accurately discriminate the intra-foreground relationships and
learn integral object regions.
Technical comparison with related works:: Table I compares
our method with the aforementioned studies. We summarize
each study with three keywords to introduce their main nov-
elties and methodologies. To compare, our main contributions
rely on the proposed negative-region-of-interest for diverse
background semantic representation and the effective active
sample method to facilitate the learning of foreground class
prototypes. In Sec. IV, we conduct extensive experiments to
verify the effectiveness of our method and demonstrate its
benefits from different perspectives.
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III. METHODOLOGY

In this part, we first clarify an underlying motivation of
fine-grained background representation in weakly supervised
semantic segmentation (WSSS). Next, we tailor the class
activation maps (CAM)-based contrastive learning and pro-
pose optimizing the fore-to-background (FB) and the intra-
foreground (IF) relationships.

A. Motivation

In the image-level WSSS, we are given a training set D,
with data tuple (x,Y) ∈ D, where each image x is associated
with a class label Y = (y1, y2, ..., yC); yc = 1 denotes the
presence of the foreground (FG) class c (1 ≤ c ≤ C) in x
and 0 otherwise. While in the semantic segmentation task, we
aim to learn a discriminative model (parameterized by neural
networks) to approximate the conditional distribution p(y|x),
where y ∈ R(C+1)×H×W (H × W denotes the spatial size)
is the ground-truth semantic label that contains C FG classes
and a background (BG) class.

Existing WSSS solutions [1], [2], [8], [13] utilize CAM
(denoted with ŷ ∈ R(C+1)×H×W ) to approximate p(y|x) by
learning a reliable semantic feature f ∈ RL×H×W (L denotes
the feature dimension) with the classification loss Lcls:

Lcls = − 1

C

C∑
c=1

[yc log σ(ŝc) + (1− yc) log(1− σ(ŝc))], (1)

where σ is softmax function and ŝc is the classification score.
We define CAM as a function that projects each pixel i’s
feature fi with the parameter θ (the weights of the classifier)
to the semantic label space ŷi ∈ RC+1:

CAM(fi, θ) = ŷi, (2)

where ŷi is then normalized to a categorical distribution.
It is worth noting that Lcls essentially learns p(yc|xi), i.e.,

the probability of the pixel xi being assigned to the FG
semantic space, excluding the BG. In the CAM generation
step, we argue that the entire BG region is treated as a
virtual class that is ignored, resulting in fi being vulnerable to
the BG semantics, particularly co-occurring ones, and hence
leading to classification ambiguity. This observation indicates
the necessity of BG-oriented modeling. Also, with informative
BG representations, we can further decouple the semantic
correlation between the target objects [6], [26] and their nearby
BG to better approximate the true p(yi|xi).

Our work is the first attempt to address the aforementioned
limitations of CAMs by the fine-grained BG representation.
Unlike existing approaches [6], [31], [33] either using pixel
features or prototypes to give an abstract BG representation,
our key novelty resides in explicitly modeling the image BG
with a novel fine-grained primitive and performing FB contrast
to eliminate the BG confusion (Sec. IV-B). Besides, we design
an active negative sampling method to implement effective IF
contrast, thus learning the compacted FG features to activate
the complete object masks. We enhance CAMs and obtain
more reliable seeds by optimizing these two relationships.

B. Our Method

1) Contrastive learning setup for WSSS: To begin with, we
follow the pipeline in [19] to generate the seed H ∈ RH×W ,
except replacing the Global Average Pooling (GAP) layer with
the Thresholded Average Pooling (TAP) layer [4], which aver-
ages only the above-threshold pixels in the semantic feature f
(introduced and ablated in the Supplementary). Additionally,
we add a nonlinear projection head [7], [31], φfg , encoding f
into a D-dimensional representation, Zfg ∈ RD×H×W , with
the same spatial resolution as H (shown in Fig. 2).
FG prototype assignment: According to the spatial location,
we assign H’s FG label information to the pixels in Zfg .
Following the setting in [10], [15], for each FG class c in
the batch, we choose the top N pixels with the high CAM
scores and compute its prototype, pc, as the weighted average
of the pixel-level representation.

pc =

∑
i∈πc

ŷc,iZfg,i∑
i∈πc

ŷc,i
, (3)

where ŷc ∈ RH×W denotes class c’s activation map, and πc

is the spatial coordinate set of the top N pixels in ŷc.
Query computation: We build the query set, Zq

c , for each
appeared c in the batch. Rather than querying all FG pixels,
we consider CAM score as the certainty measure to determine
Zq
c adaptively, enabling the contrastive loss focus on uncertain

(below the threshold β, set to 0.4) pixels in H:

Zq
c = 1[H = c] · 1[ŷc < β]Zfg. (4)

Prototype-based Contrastive Learning (PCL): The standard
contrastive loss [7], [27] functions by encouraging the query
q ∈ Zq

c to be similar to its positive keys and dissimilar to
the negative key zn ∈ Zn. In this work, we employ the
estimated FG prototypes pc ∈ P as the positives and express
the contrastive loss Lpcl with:

Lpcl = PCL(P,Zq, Zn)

=
∑
pc∈P

∑
q∈Zq

c

− log
e(q·pc/τ)

e(q·pc/τ) +
∑

zn e(q·zn/τ)
,

(5)

where P = {pc}Cc=1 and Zq = {Zq
c }Cc=1 are the collections of

prototypes and queries, τ and ‘·’ denote the temperature and
dot product. We instantiate Zn from BG and FG regions and
follow the function form in Eq. 5 to respectively optimize
the FB and IF contrastive relationships; loss functions are
expressed in Eq. 7 and Eq. 9.

2) Fore-to-background (FB) Contrast: In Sec. III-A, we
conclude that the conditional BG distribution p(ŷC+1|x) can
not be optimized by Lcls, and hence f has weak BG descrip-
tion ability. Besides, image BG, unlike FG, does not have
specific semantics and contains massive task-unrelated infor-
mation; a single prototype, like Eq. 3, is incapable of covering
its high variance (discussed in Sec. IV-C). Driven by these
two concerns, we propose a fine-grained primitive, termed
negative regions of interest (NROI), to comprehensively model
the image BG that has a mixture of diverse semantics.
NROI for BG representation: Unlike existing approaches [7],
[33], [47] that represent the FG and the BG semantics in a
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Fig. 2: Architecture overview. A standard feature encoder trained with the classification loss Lcls (with TAP [4]) takes an
input image x and generates the seed H. We consider that image BG has a different semantic granularity from FG and add
two projection heads, φfg and φbg , model BG independently from FG to capture diverse BG information, and optimize two
contrastive relationships: (1) fore-to-background and (2) intra-foreground. (1) enhances the semantic features f in representing
BG semantics with the proposed fine-grained primitive, namely NROIs. We compute FG prototypes and store NROIs in a
memory bank. Besides, the auxiliary BG segmentation loss Lseg is introduced. In (2), we present an active sampling strategy
built upon the semantic graph to draw the FG negatives. The contrastive losses Lbg

pcl for (1) and Lfg
pcl for (2) pull the query

closer to its prototype but push far from the FG and the BG negative keys, respectively.

common space, we model the image BG independently to
distinguish it from the FG well. Formally, we add another
projection head, φbg (shown in Fig. 2), parallel with φfg ,
to look for the reliable BG representation from a different
mapping: φbg : f → Zbg, Zbg ∈ RD×H×W .

A naive brute-force method (Fig. 3 (a)) is to use all BG
features in Zbg to perform the optimization, i.e., pixel-to-pixel
contrast, which would be time-consuming and computationally
expensive. Also, the large-scale variation and high-complexity
nature of the intra-BG region in training set D challenge us
to develop an efficient representation method to denote its
content. To this end, assuming that the image BG composes
multiple semantics, we explore discovering fine-grained se-
mantics and effectively denote them using NROI. Specifically,
a group of K NROIs {zkbg}Kk=1 is used for BG description,
where k is the NROI indices with respect to the input x.

We perform online clustering [51] for NROI determination.
We get the BG features (with the spatial information in H)
from the masked Zbg and map them to K clusters with K-
means. Intuitively, clustering [27], [51] imposes an inductive
bias [51] that image BG consists of multiple semantics, and
it thereby enables the model to discover the discriminative
pixel groups, i.e., semantics. Hence, the NROIs {zkbg}Kk=1 of
each image, defined as the cluster centroids, are the typical
representations of the BG semantics (in Fig. 3 (b)).
BG memory bank: We construct a queue-based memory
bank [3], Zn

bg , to store NROIs, and set it as fixed storage for
spatial and computational efficiency. As shown in Fig. 2, the
bank is updated at each training step with the extracted NROIs,
and then we use the BG negative keys randomly sampled from
Zn
bg to contrast against FG queries.

Auxiliary BG segmentation. Unlike prior studies [7], [42],
FBR adopts two projection heads to perform the contrastive
learning, which brings a risk of a homogeneous representation
between Zfg and Zbg . To avoid this trivial case, we formulate a

learning objective to the BG representation Zbg , distinguishing
it from Zfg and enhancing its BG discrimination ability.
Specifically, we introduce binary segmentation as an auxiliary
task, empirically considering pixels in H with a low-summed
FG activation value [2] (smaller than 0.05) as the pseudo BG
labels (termed M ), and feed Zbg (after batch normalization)
into the BG predictor, φseg:

Lseg = BCE(φseg(Zbg),M), (6)

where BCE is a binary cross entropy loss.
Pixel-to-NROI contrast: With the query sets (Eq. 4) and the
BG memory bank, we give the FB contrastive loss as:

Lbg
pcl = PCL(P,Zq, Zn

bg). (7)

This pixel-to-NROI contrast maximizes the agreement be-
tween the queries and their belonging prototype while min-
imizing the agreement with the BG semantic, i.e., NROIs.

3) Intra-foreground (IF) contrastive learning: This part
presents an active negative sampling method to select FG
negative keys and conduct effective IF contrast.
Active negative sampling: We first define the query class
c’s full negative set, znc , which contains all FG pixels that do
not belong to c: i,e., znc = 1[(H ≠ c) ∩ (H ≠ C + 1)]Zfg .
However, contrasting the query against all samples in znc is
computationally costly. Moreover, contrastive learning may be
ineffective or even degenerate an overall performance due to
the implausible label information of the seed H.

Inspired by the recent semi-supervised semantic segmenta-
tion study [31], we propose actively drawing negatives from
znc and optimizing only with the selected samples to overcome
the above limitations. For each batch, we compute a graph
G ∈ RC×C , where nodes and edges stand for the occurring
classes and their relative semantic relations:

G[i, j] = Sim(pi, pj),where i, j ≤ C, and i ̸= j. (8)
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(a) brute-force contrast (b) NROI-based contrast (ours)

Fig. 3: Conceptual illustration of negative-region-of-interest
(NROI) for the FB contrast. The brute-force strategy (a) ex-
haustively compares FG queries (the red cropped part) with all
BG pixels (triangles), which requires expensive computational
resources and is susceptible to implausible labels. By contrast
(b), we propose recognizing the fine-grained BG semantic,
i.e., NROI. This example’s NROIs (marked with different
colors) contain the washing machine, closet, etc. In training,
we implement FB contrastive learning by comparing queries
(the red rectangle) against NROIs.

Here, Sim is the cosine similarity. Unlike [31], we exclude
the BG class from the graph and use the semantic distance
between FG prototypes, rather than between the mean features,
to measure the pair-wise relationship G[i, j].

For each query class c, we turn its relationships in
G against negative classes into a distribution by softmax:

exp(G[c,i])∑
j≤C,j ̸=c exp(G[c,j]) . We sample keys of each negative class

i from znc based on the distribution. Intuitively, this step per-
forms a non-uniform sampling on znc , drawing more samples
from the classes that are semantically similar to c, while
drawing fewer from dissimilar ones. It enables the classifier
to learn compacted FG features and an accurate decision
boundary by improving the discrimination ability regarding
the confusing, negative classes.
Pixel-to-prototype contrast: Similar to Eq. 7, we formulate
the IF contrastive loss as:

Lfg
pcl = PCL(P,Zq, Zn

fg), (9)

where Zn
fg = {znc }Cc=1. This pixel-to-prototype contrast learns

compacted FG features by pulling the queries close to their
prototype and pushing different classes far away.

C. Overall objective

As illustrated in Fig. 2, our FBR method can be integrated
into existing WSSS solutions to obtain better seeds. We
add two projection heads φfg and φbg after the encoder,
mapping the semantic feature f into two high-dimensional
representations Zfg and Zbg , and then implement the FB and
the IF contrastive learning. The overall loss is expressed:

L = Lcls + Lpcl + Lseg, (10)

where Lpcl = λ1 ·Lbg
pcl+λ2 ·Lfg

pcl, jointly optimizing these two
constrative relationships using corresponding loss weights λ1

and λ2. Note that φfg and φbg are only applied during training
and discarded in the inference phase.

IV. EXPERIMENTS

We first ablate FBR to test its effectiveness and apply it to
existing models to get state-of-the-art (SOTA) results.

A. Setup

Datasets & evaluation metrics. We experiment on two
benchmarks, Pascal Voc 2012 [11] and MS COCO 2014 [30].
The former contains 20 object classes, with 10,582 images for
training, 1,449 images for validation, and 1,456 for testing.
MS COCO 2014 has 80 labeled classes, 80,781 training and
40,321 validation images. We evaluate the generated pseudo
labels and the segmentation results with their ground-truth seg-
mentation labels. Both experiments are evaluated with mean
intersection over union (mIoU). Besides, we further explore
the effectiveness of our method on weakly supervised instance
segmentation [28], [38] (WSIS, with box-level annotations).
We conduct experiments on MS COCO 2017 dataset, which
has 115K images for training and 5K evaluation images. Dur-
ing inference, we report AP, AP50, AP75 (averaged precision
over different IoU thresholds) for the instance segmentation
performance evaluation.
Implementation details. We set PPC [10] as the baseline
and perform ablation experiments on the proposed FB and
IF contrastive learning to test their effectiveness and compare
them with peer studies. Next, we add the full method to
various WSSS models [10], [25], [43] and experiment on the
aforementioned datasets to show our FBR’s generality and
superiority. In training, we set the cluster number K to 8.
We implement the projection head φfg and φbg with a 1× 1
convolutional layer followed by ReLU and set D to 128. We
return 256 negative keys for every query and set τ in Eq. 7
and Eq. 9 to 0.5 and 0.1. For semantic segmentation practice,
we adopt DeepLab-v2-ResNet101 [5] as the backbone. In box-
level WSIS, we deploy FBR on BoxInst [38], set the feature
dimensionality D to 64, and keep other hyperparameters un-
changed. To reduce the computational overhead, all images are
resized to have their shorter side in the range [480, 640] during
training. More details are reported in the Supplementary.

B. Overall results

In this section, we compare the proposed FBR method with
existing WSSS studies regarding the accuracy of generated
pseudo labels and yielding semantic segmentation results.
Besides, we extend FBR to WSIS tasks to show its benefits.
Results of pseudo labels: In this part, we evaluate the
quality of the pseudo-segmentation masks. We add FBR on
three representative baselines, PPC [10] that use saliency
map (I+S) in training, SEAM [43] and AMN [25] (I) that
do not use, to manifest our approach’s generality. Note that
SEAM and PPC require cross-view inputs, while AMN does
not. Table II reports the comparison performance. In Seed
results, FBR achieves 7.2%/1.7%/0.7% mIoU improvements
on SEAM/PPC/AMN. These gains are almost maintained after
employing CRF (Conditional Random Field), IRN [1], or
PSA [2] to refine the seeds and obtain the pseudo segmentation
labels (Mask). Overall, our method achieves SOTA perfor-
mance on Pascal Voc 2012 train set, surpassing the best-known
WSSS study by 1.8% mIoU (75.9% vs. 74.1%).

Fig. 4 compares the qualitative results of CAMs. Note that
FBR greatly helps the baselines activate more object regions
(the dog and cat example on AMN [25] column) and enhances
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Input AMN AMN w/ ours PPC PPC w/ ours Ground Truth

Fig. 4: Example results of CAMs on Pascal Voc 2012 train set. From left to right: input images, results of AMN, results of
AMN w/ ours, results of PPC, results of PPC w/ ours and the ground truth. The red boxes highlight the refined details.

(a)

(b)

(c)

Fig. 5: Qualitative semantic segmentation results. The left figures are results from Pascal Voc 2012 val set, and the right ones
are from MS COCO 2014 val set. (a) Input images, (b) Ours, (c) Ground truth.

their background discrimination ability and thus learns more
accurate object boundaries (see the dog example on PPC).
Results of semantic segmentation. We conduct semantic
segmentation practices with DeepLabV2-ResNet101 [5] and
follow the training settings of existing implementations 1

2. Table III reports the mIoU results on Pascal Voc 2012
validation set and the test set, and compares our FBR method
with recent WSSS studies. Training under the same setting,
we improve SEAM and AMN by 3.6% and 1.7% mIoU on
the test set of Pascal Voc, yielding the SOTA performance in
the image-level (I) setting (72.4%→ 73.2% mIoU 3).

Besides, PPC [10] equipped with our FBR method achieves
74.2% mIoU and 74.9% mIoU 4 on Pascal Voc 2012 Val
and test sets, exceeding all (I+S) WSSS studies. Moreover,
FBR achieves 45.6% mIoU on MS COCO 2014 val set
(Table IV), obtaining the SOTA result. Fig. 5 presents example
segmentation results on both benchmarks.

1https://github.com/YudeWang/deeplabv3plus-pytorch.git
2https://github.com/kazuto1011/deeplab-pytorch.git
3http://host.robots.ox.ac.uk:8080/anonymous/30LARO.html
4http://host.robots.ox.ac.uk:8080/anonymous/BHSCOK.html

TABLE II: mIoU (%) comparison of the seeds, seeds w/
CRF, and pseudo masks (Mask) on Pascal Voc 2012 train
set. Throughout the paper, bolded and underlined represent
the SOTA and the second-best SOTA results, respectively.

Method Seed +CRF Mask
Refine with PSA [2]:
SEAM CVPR ’20 [43] 55.4 56.8 63.6
Ours (SEAM-based) 62.6+7.2 65.3+8.5 69.9+6.3

RIB NeurIPS ’21 [22] 56.5 62.9 68.6
EPS CVPR ’21 [26] 69.4 71.4 71.6
RCA CVPR ’22 [52] - - 74.1
PPC CVPR ’22 [10] 70.5 73.3 73.3
Ours (PPC-based) 72.2+1.7 75.5+2.2 75.9+2.6

Refine with IRN [1]:
MCT CVPR ’22 [48] 61.7 - 69.1

CLIMS CVPR ’22 [46] 56.6 - 70.5
W-OoD CVPR ’22 [24] 59.1 65.5 72.1
AMN CVPR ’22 [25] 62.2 - 72.2
ACR CVPR ’23 [20] 60.9 65.9 72.3

BECO CVPR ’23 [34] - 73.0
Ours (AMN-based) 62.9+0.7 - 73.1+0.1



7

Fig. 6: Qualitative instance segmentation results on MS COCO 2017 val set. Note that example pairs are from BoxInst [38]
(left images) and ours (BoxInst w/ FBR, right images); we see that FBR substantially fines the mask predictions.

TABLE III: Segmentation results (mIoU %) comparisons with
other SOTA studies on Pascal Voc 2012 validation (Val.) and
test (Test) set. The supervisions (Sup.) used in the training
include the image-level labels (I) and salience maps (S).

Method Sup. Backbone Val. Test
SEAM CVPR ’20 [43] I ResNet38 64.5 65.7
ReCAM CVPR ’22 [8] I ResNet101 68.4 68.2

SIPE CVPR ’22 [6] I ResNet101 68.8 69.7
W-OoD CVPR ’22 [24] I ResNet38 70.7 70.1
AMN CVPR ’22 [25] I ResNet101 70.7 70.6

VIT-PCM ECCV ’22 [35] I ResNet101 70.3 70.9
SBCE ECCV ’22 [45] I ResNet101 70.0 71.3
AEFT ECCV ’22 [50] I ResNet38 70.9 71.7
BECO CVPR ’23 [34] I ResNet38 72.1 71.8
ToCo CVPR ’23 [36] I VIT-B [9] 71.1 72.2
ACR CVPR ’23 [20] I ResNet38 72.4 72.4

Ours (SEAM-based) I ResNet38 68.9 69.3
Ours (AMN-based) I ResNet101 71.8 73.2
MCT CVPR ’22 [48] I+S ResNet38 71.9 71.6
L2G CVPR ’22 [16] I+S ResNet101 72.1 71.7

ReCAM CVPR ’22 [8] I+S ResNet101 71.8 72.2
RCA CVPR ’22 [52] I+S ResNet38 72.2 72.8
SBCE ECCV ’22 [45] I+S ResNet101 71.8 73.4
PPC CVPR ’22 [10] I+S ResNet101 72.6 73.6
Ours (PPC-based) I+S ResNet101 74.2 74.9

TABLE IV: Semantic segmentation (mIoU %) comparisons
with other WSSS studies on COCO 2014 validation set.

Method Sup. Backbone Val.
SIPE CVPR ’22 [6] I ResNet38 43.6

RIB NeurIPS ’21 [22] I+S ResNet101 43.8
L2G CVPR ’22 [16] I+S ResNet101 44.2
AMN CVPR ’22 [25] I ResNet101 44.7
AEFT ECCV ’22 [50] I ResNet38 44.8
ReCAM CVPR ’22 [8] I ResNet101 45.0

VIT-PCM ECCV ’22 [35] I ViT-B/16 [9] 45.0
BECO CVPR ’23 [34] I ResNet101 45.1
ACR CVPR ’23 [20] I ResNet38 45.3

Ours (AMN-based) I ResNet101 45.6
TABLE V: Instance segmentation comparisons (AP %) with
other WSIS studies (box-level) on COCO 2017 validation set.

Method Backbone AP AP50 AP75

DiscoBox [21] ICCV ’21 ResNet50 30.2 52.1 30.7
Box2Mask-C [28] ECCV ’22 ResNet101 33.5 56.9 34.2

BoxInst [38] CVPR ’21 ResNet50 30.9 53.3 31.2
BoxInst [38] CVPR ’21 ResNet101 32.1 55.3 32.4
Ours (BoxInst-based) ResNet50 32.9 56.6 33.4
Ours (BoxInst-based) ResNet101 34.1 57.7 34.9

TABLE VI: Ablation study (on PPC [10]) in terms of seed
generation on Pascal Voc 2012 train set. † denotes excluding
the background in the training. ‡ denotes adopting the auxil-
iary background segmentation on †. FB: fore-to-background
contrast. IF: intra-foreground contrast.

Baseline FB IF mIoU(%)
✓ 73.3
✓† 73.6+(0.3)

✓† ✓ 74.7+(1.4)

✓‡ ✓ 75.0+(1.7)

✓ ✓ 73.9+(0.6)

✓‡ ✓ ✓ 75.5+(2.2)

FG-bird

BG-bird

FG-train

BG-train

(a) PPC (b) Ours

Fig. 7: Background-foreground feature visualization via t-
SNE [39]. (a) foreground features are confused with back-
ground information (the cropped regions). (b) FB contrast
learns compacted background features by fine-grained recog-
nition and well separates background and foreground features.

Results of instance segmentation. In Table V, we test
FBR on BoxInst [38] and report weakly supervised instance
segmentation results on MS COCO 2017. Training under the
same settings, FBR improves the baseline model by 2.0% AP
no matter the backbone models, surpassing Box2Mask [28] by
0.6% (33.5%→34.1%). Fig. 6 shows the example results.

TABLE VII: NROI evaluation. Left: w/o and w/ φbg mean
that background features to obtain NROIs are from Zfg and
Zbg , respectively. Right: Strategy comparison. Ours: pixel-to-
NROI. Brute-force: pixel-to-pixel.

Method mIoU(%)
w/o φbg 74.0
w/ φbg 74.7

Method mIoU(%)
pixel-to-pixel 74.5
pixel-to-NROI 75.0

C. Ablation Study

Below we test the effectiveness of each component and
design. All results are the averages over five runs.
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(a) PPC (b) Ours

FG-bird

BG-bird

FG-train

BG-train

Fig. 8: UMAP [41] visualization for background-foreground
feature comparison.

(a) Ground Truth (b) PPC (c) PPC + 𝐿pcl
𝑏𝑔

Fig. 9: Effect of FB contrast (i.e., Lbg
pcl) on PPC [10].

Overall ablation result. In Table VI, we ablate the FB
and the IF contrastive learning in sequence. For the baseline
PPC [10] that estimates a general background prototype to
proceed with contrastive learning, the 2nd row (excluding
background) shows 0.3% mIoU gap (73.3%→73.6%). This
confirms our assumption that a single prototype is incapable
of describing the image background and may even nega-
tively influence foreground classes. The proposed FB and IF
contrastive learning contribute 1.4% mIoU (73.3%→74.7%)
and 0.6% mIoU improvements (73.3%→73.9%). Besides, the
auxiliary segmentation loss Lseg facilitates better FB and
brings an extra 0.3% mIoU gain (74.7%→75.0%). Overall,
our FBR approach improves the baseline by 2.2% mIoU.
Effect of NROI. We ablate the design and method, and
analyze the improvement source to assess the effect:

• Projection head φbg: Unlike existing studies implement-
ing contrastive learning [7], [42] in a common space,
we consider the semantic discrepancy between the image
foreground and background, i.e., the background has finer
semantic granularities. We argue that one representation
space is insufficient to generate two different primitives,

TABLE VIII: Ablations of the clustering (Clusters) and mem-
ory bank (Memo.). Left: We compare mIoUs on Pascal Voc
train set when setting K (the number of clusters) with different
values. Right: we evaluate the effect of memory bank size.

Clusters mIoU (%)

K=4 74.6
K=6 74.8
K=8 75.0

K=16 74.6

Memo. mIoU (%)

3× 104 74.5
5× 104 75.0
8× 104 74.9
105 74.6

(A) Category-level feature visualization via t-SNE. 

(1) PPC (2) Ours

(1) PPC (2) Ours

(B) Category-level feature visualization via UMAP. 

Fig. 10: Visualization of semantic features via (A) t-SNE and
(B) UMAP. Left: PPC [26]. Right: PPC w/ Lfg

pcl.
RGB K=4 K=6 K=8

Fig. 11: Example results of cluster maps and NROIs. We visu-
alize the clusters and NROIs in different cases. From left to
right: RGB images and cluster maps (when K=4/6/8). In each
cluster, we use the pixel closest (measured with the square
distance computed along the feature channel) to the centroid
as NROI (marked with the star); the white cropped area is the
foreground. The yellow boxes highlight the semantics that are
newly recognized with the increasing K.

i.e., NROI and foreground prototype. φbg maps the back-
ground semantics to an independent space from the fore-
ground classes, enabling expressive projection and better
semantic representation. In Table VII (Left), we compare
the single-head design, namely using one projection head
φfg to represent both foreground and background, with
ours; the 0.7% mIoU gain (74.0% →74.7%) verifies the
benefit of our design.

• Contrast strategy: We compare our pixel-to-NROI con-
trast with the brute-force strategy (Fig. 3 (a)) that puts
all background features of Zbg into the memory bank
to compute Lbg

pcl, a.k.a. pixel-to-pixel. To make a fair
comparison, we set the bank size to 100K (causing longer
sampling time) in the brute-force case, yet set ours to
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Fig. 12: Contour evaluation of seeds on Pascal Voc 2012 train
set. The figures show how F-measure and Trimap mIoU results
vary with the pixel width of the ground-truth boundary region.

50K. In Table VII (Right), ours outperforms the pixel-
to-pixel contrast by 0.5% mIoU, showing NROI’s benefits
against the common pixel feature-based representation.

• Source of performance gain: The improvements ob-
tained through NROIs mainly stem from the fine-grained
background semantic recognition. In Fig. 7 and Fig. 8,
we respectively employ t-SNE [39] and UMAP [41]
for background-foreground feature analysis. Detailly, we
compare features of PPC [10] (from its fproj) before
and after using FB contrast. Although the projected
manifolds by these two methods have different shapes
due to the difference in dimension reduction technique,
we get consistent findings: in (a) of both figures, the
scatted background features result in the spurious seman-
tic correlation; foreground features are contaminated with
confusing intra- and inter-image background information,
e.g., the overlapped part in the boxes. In contrast, (b)
adopts NROIs to capture the fine-grained background
semantics and begets a structured background feature
space. Furthermore, contrastive optimization suppresses
the suspicious background cues and distinguishes them
from the foreground, effectively avoiding confusion. Ad-
ditionally, we select three representatives of co-occurring
background semantics (sky, lake, and railroad) and com-
pare CAMs in Fig. 9. FB contrast resists background
disturbances and obtains more reliable results.

Hyperparameter discussion. In this part, we discuss the
effect of NROI’s hyperparameters:

• Number of clusters: In Table VIII (Left), we ablate the
cluster number K and report the seed accuracy. Intu-
itively, increasing K will return finer-grain background
semantics, but make NROIs less meaningful and increase
the computational cost. Based on the comparison result,
we set K = 8 throughout the paper. Besides, we visualize
the clustering maps and NROIs in Fig. 11. We see that
clustering groups the image background and fine-grained
semantics are identified with the increasing K. For in-
stance, the “TV cabinet” and the “table” (the 1st row) and
the “book” and “floor” (the 2nd row). As for the extracted
NROIs, i.e., the cluster centroids, indicating the most
typical representation of the individual semantic group,
usually located in the object-central region, capturing
meaningful background semantics, with which we can
model background content explicitly.

TABLE IX: Effects of loss weight λ1 and λ2 on mIoU (%)
results of the seeds, seeds w/ CRF, and pseudo masks (Mask)
on Pascal Voc 2012 train set. λ1 and λ2 are used to balance
the Lbg

pcl and Lfg
pcl in Lpcl (Eq. 10), respectively.

λ1 λ2 Seed +CRF Mask

0.05
0.01 71.3 74.0 74.7
0.05 71.6 74.8 75.1
0.10 72.1 74.8 75.4

0.10
0.01 72.2 75.5 75.9
0.05 71.7 74.7 75.3
0.10 71.7 74.7 75.2

0.20
0.01 71.5 74.2 74.9
0.05 70.9 73.7 74.4
0.10 70.8 73.5 74.1

TABLE X: Negative sampling method comparison [10], [40]
(mIoU (%)) in terms of seeds (Seed) and seeds with CRF
(+CRF) on Pascal Voc 2012 train set.

Method Seed +CRF
PPC (hard, original) 70.5 73.3
PPC (active, ours) 71.1+0.6 73.9+0.6

• Size of memory bank: In Table VIII (Right), we inves-
tigate the effect of the memory bank size. The larger
bank can store more NROIs yet also indicates a longer
sampling time. Therefore, we set the bank size to 50K,
200K for Pascal Voc 2012 and MS COCO 2014.

• Loss weights: In Table IX, we conduct ablation studies on
the loss weights λ1 and λ2 to evaluate the effects of the
two components of the contrastive loss Lpcl (in Eq. 10):
Lbg
pcl and Lfg

pcl. A higher value of λ1 suggests that Lpcl

would focus more on the fore-to-background relationship,
and vice versa. Our results indicate that FBR performs
best when λ1 and λ2 reach 0.10 and 0.01, respectively.
Besides, the comparison results exhibit that our FBR
method is more sensitive to λ1 than λ2, showing the
importance of fore-to-background contrastive learning.

Effect of active sampling. In this part, we evaluate our active
method and analyze its effectiveness:

• Active sampling vs. hard sampling: We compare the
active method against the hard sampling [10], [40] that se-
lects negative keys based on the “hardness” computation.
In Table X, after replacing the hard sampling (adopted in
PPC) with ours, the baseline is improved by 0.6% mIoU.
Besides, we additionally experiment with both sampling

TABLE XI: Evaluate the sampling methods under different
query settings. The hard sampling experiments are imple-
mented with PPC [10]. naive query: all pixels are queries.
hard query: half hard queries and half random queries [10],
[40]. adaptive query: select queries based on Eq. 4.

Method Seed +CRF
baseline (EPS [26]) 69.5 71.4

+hard sampling (naive query) 70.4 73.2
+hard sampling (hard query) 70.5 73.3

+hard sampling (adaptive query) 70.5+(1.0) 73.4+(2.0)

+active sampling (naive query) 70.8 73.5
+active sampling (hard query) 71.0 73.7

+active sampling (adaptive query) 71.1+(1.6) 73.9+(2.5)
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methods on EPS and report extensive comparison results
(in Table XI) under different query settings: naive query,
hard query, and adaptive query. We observe that the active
method consistently improves the baseline and always
outperforms the hard sampling method, showing its ro-
bustness. Particularly, when proceeding with IF contrast
(i.e., Lfg

pcl) with the adaptive query setting (in Eq. 4), our
method improves EPS by 1.6% mIoU on seed and 2.5%
mIoU on masks (against the maximum 1.0%/2.0% mIoU
↑ achieved by the hard sampling method [10]). More
importantly, our active sampling draws the negatives on
the fly, without the hardness calculation and the sorting,
resulting in a lower computation cost.

• Activate complete object regions: Considering that back-
ground is present in nearly every image and the inac-
curacies in seed results, our active approach excludes
the background class during negative sampling. This al-
lows us to concentrate on optimizing relationships within
the foreground and thus learn more discriminative class
features. When combined with IF contrast, we prevent
interference from suspicious background pixel features
(false positives) in the sampling, particularly those in the
transition area between the foreground and background.
This way, we learn more accurate object contours. In
Fig. 10, we visualize the foreground feature space via t-
SNE [39] and UMAP [41]. After the sampling method re-
placement, the cropped class features become more com-
pacted, e.g., “car” and “chair”. This observation presents
our IF contrast’s effectiveness in learning discriminative
FG features. Besides, we employ F-measure [32] and
Trimap [5], [49] to evaluate the object contour quality
of the generated seeds. Given a pixel width, both metrics
assess the alignment degree between the prediction and
its ground truth within a narrow band region from the true
semantic boundary. In Fig. 12, our obtained performance
gain on PPC [10] mainly in the region near the object
contour (pixel width ≤ 10), indicating our IF contrast’s
effects in learning complete object regions.

Compared with existing approaches [10], [31], FBR does
not require cross-view inputs and incurs no inference overhead.
Our results (Table VI & Fig. 7) verify that the major improve-
ments come from the proposed NROI-based FB contrastive
learning, significantly improving CAMs’ ability in background
discrimination and thus avoiding classification ambiguity. Our
FBR has high versatility (across different baselines) thanks
to its simplicity in design and modularized techniques; the
advanced segmentation results manifest FBR’s usefulness.

Limitations. Despite achieving SOTA results in various WSSS
tasks, our approach encounters challenges in two cases: 1)
when the image background is visually too similar to the
foreground classes and 2) when the foreground classes have
irregular object contours. As shown in Fig. 13, the background
buildings are misclassified as a part of “train” in (a) upon
confusing appearances. Besides, our method can not accurately
predict the boundary of “potted plants” (b) due to their
complex shapes. A plausible explanation for these failures is
that our method focuses on correcting low-confidence regions

(a) (b)

Ours Ground Truth Ours Ground Truth

Fig. 13: Failure cases. We provide CAMs of (a) “train” and (b)
“potted plants” and compare our FBR with the ground truth.

in CAMs, while these challenging regions already exhibit
high activation scores during the classification process and are
thus ignored. This problem can be mitigated with a powerful
backbone, e.g., ViT, to obtain more precise seed predictions.
Future works. An intriguing direction is to integrate our
approach with foundation models like SAM [18]. Leveraging
SAM’s object mask predictions, our FBR could accurately la-
bel the background/foreground semantics, generating pseudo-
labels with high-quality object contours. These pseudo-labels,
enriched with precise boundary information, could benefit
segmentation practices in other domains, such as medical or
remote sense images. However, an adaptive clustering method
would be required to accurately determine the number of
background semantics, which we leave for future development.

V. CONCLUSION

This paper proposed a simple fine-grained background rep-
resentation method, FBR, to address the co-occurring back-
ground problem and learn integral object masks in weakly su-
pervised semantic segmentation (WSSS). Our method designs
a new background primitive and an active sampling method
to perform the fore-to-background and intra-foreground con-
trastive learning. Extensive experiments on Pascal Voc and MS
COCO demonstrated the good merits of FBR in generating
pseudo masks, achieving new state-of-art performances in
WSSS, and also benefiting the instance-level segmentation.

APPENDIX

This appendix reports the details of the experiment setting
and implementation and provides additional ablation studies
and qualitative results.

Classification 

Model
Seeds

Pesudo-

Masks

Segmentation 

Model

FBR

① Pseudo label generation

② Segmentation Training

Class 

Labels

Image

Refinement

Fig. 14: Overall training pipeline. Our contribution (FBR
method) is to improve the classification model to enhance
CAMs and generate more precise seed predictions.

A. Experiment details

Overall training pipeline. As shown in Fig. 14, we first
employ our FBR method on the classification model to en-
hance the seed predictions by addressing the co-occurring
background problem and learning integral object regions. After
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refining [1] the seeds to obtain the pseudo masks, we utilize
them to train the segmentation model and get the final results.
Seed generation. We follow the original configurations re-
ported in PPC [10], SEAM [43], and AMN [25] for our
baseline experiments. Based on the ablation results in Table
XIII, we set the loss weights of the background pixel-wise
cross-entropy loss (Lbg

pcl), foreground pixel-wise cross-entropy
loss (Lfg

pcl), and segmentation loss (Lseg) to 0.1, 0.01, and 0.01,
respectively, for PPC and SEAM. For AMN, we set these loss
weights to 0.1, 0.05, and 0.01. When applying our FBR to PPC
and SEAM, we employ a learning rate (lr) of 0.01 and a batch
size of 9, optimized using the PolyOptimizer. For experiments
on AMN, we adopt a lr of 5e-6, a batch size of 1, and utilize
the Adam optimizer. Furthermore, when experimenting on the
MS COCO and Pascal VOC datasets, we set the feature bank
size to 200 K and 50 K, respectively.
Semantic segmentation. For the segmentation practice, we
strictly follow the settings of the baselines. Training images
are randomly scaled in the range of [0.5, 0.75, 1.0, 1.25, 1.5]
and cropped to 321× 321 for Pascal Voc 2012, 481× 481 for
MS COCO 2014. We adopted the SGD optimizer (lr=0.01)
and set the batch size to 10 (16 for MS COCO 2014). The
number of training steps is 30K (100K for COCO).
Instance segmentation. We follow the training settings of
BoxInst [38], except resizing the shorter side of images in
[480,640]. In training, we set the batch size to 16 and use the
SGD optimizer (with learning rate = 0.01).

B. Additional ablation analysis

Computational overhead & Complexity. Utilizing PPC [10]
as the baseline model, we conduct a comprehensive analysis
to evaluate the computational efficiency of our FBR approach.

Based on PPC, FBR slightly increases the training hours
(4.8 h → 6.4 h) and model size (102.9 M → 103.9 M). The
increased computation cost comes from the added background
projection head φbg and the classifiers φseg . Notably, our
method does not affect the inference speed of the baseline
since all involved modules are removed at the test time.

TABLE XII: We compare the computational cost of PPC [10]
and our method regarding the parameter size (million, M),
training time (hours, h), inference speed (second / per image),
and GPU memory footprint (GB).

Method Param. Train. time Infer. speed Memory
PPC [10] 102.9 M 4.8 h 1.86 s 14.9 GB

Ours 103.9 M 6.4 h 1.86 s 16.5 GB

Auxiliary BG segmentation. To obtain effective background
negative samples, we define a learning objective for Zbg , i.e.,
the background segmentation, requiring Zbg to discriminate
the background region and learn more representative features.

We consider pixels with a summed CAM score (on fore-
ground classes) smaller than 0.05 as the background to conduct
the auxiliary segmentation training. We add a loss weight α
before the background segmentation loss Lseg in Eq. 10, and
ablate α (test on Pascal Voc 2012 train set) in Table XIII. We
observe that our method performs best when setting α = 0.01.

TABLE XIII: Additional ablation experiments of the back-
ground segmentation. α is the loss weight of Lseg in Eq. 10.

α 0 0.01 0.025 0.05
mIoU 75.2 75.5 74.9 74.1

Effects of TAP. Proposed in [4], TAP only aggregates above-
threshold pixels in the semantic feature f to compute the
classification score. We express TAP as follows:

stapc =

L∑
i=1

θc,i

∑
j∈Ω 1[fi,j > α]fi,j∑

j∈Ω 1[fi,j > α]
, (11)

where α is the threshold (set to 0.1) and Ω is the coordinate
set of RH×W . TAP has been proven to be better at filtering
out over-activated BG regions [4] than GAP, thus generating
more accurate seeds. In our work, TAP brings more accuracy
improvements than GAP (74.7% v.s 75.0%) when assembling
our FBR method on PPC [10].

C. Additional Experimental Results

Category-level Evaluation Table XIV shows category-level
mIoU evaluation in terms of the pseudo masks. We observe
that FBR significantly enhances baseline models’ ability to
distinguish classes that have complicated shapes, like “bird”,
“dog”, and “dining table (dt.).” Also, we report the segmen-
tation results in Table XV after training the segmentation
network with the pseudo masks and observe considerable
performance improvements on the baselines.

(a) Input (b) CAM (c) Ours (d) GT

Fig. 15: Example CAM results (solve co-occurring BG). Left
to Right: (a) input image, (b) CAM results generated by AMN,
(c) CAM results from AMN W/ ours, and (d) the ground truth.

(a) Input (b) CAM (c) Ours (d) GT

Fig. 16: Example results (activating more object regions).
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TABLE XIV: (Pseudo Masks) Category-level mIoU comparison on Pascal Voc 2012 train set. Highlights are classes in which
we achieve up to 2.5% mIoU improvements.

Method mIoU bgr aero bicy bird boat bottle bus car cat chair cow dt. dog horse motor pers. pott sheep sofa train tv.
AMN 72.2 90.2 75.3 40.1 77.4 67.9 73.4 85.6 78.9 80.7 36.5 86.1 65.8 78.7 83.4 81.0 74.4 62.4 89.4 62.8 65.3 63.1
+ours 73.1 90.8 74.4 45.1 84.9 69.9 71.7 84.4 79.3 87.1 37.2 85.6 61.6 84.5 81.0 79.2 73.8 63.9 89.8 63.5 66.3 60.2
PPC 73.3 91.2 86.6 44.6 82.8 80.9 73.1 84.0 81.4 88.9 31.2 83.7 52.7 85.6 86.9 81.7 80.5 54.2 85.9 52.5 77.6 53.8

+ours 75.9 92.4 86.4 47.7 85.0 83.1 75.1 85.0 85.5 91.6 39.7 88.3 50.6 91.6 90.7 83.6 81.1 63.2 90.0 48.5 83.9 51.7

TABLE XV: (Semantic Segmentation) Category-level mIoU comparison on Pascal Voc 2012 test set. Highlights are classes in
which we achieve up to 3.0% mIoU improvements. The reported AMN performance is from the ImageNet pre-trained model.

Method mIoU bgr aero bicy bird boat bottle bus car cat chair cow dt. dog horse motor pers. pott sheep sofa train tv.
AMN 69.6 90.7 82.8 32.4 84.8 59.4 70.0 86.7 83.0 86.9 30.1 79.2 56.6 83.0 81.9 78.3 72.7 52.9 81.4 59.8 53.1 56.4
+ours 73.2 91.3 82.9 35.3 90.5 59.1 70.1 90.1 84.0 91.2 36.5 85.9 66.3 88.8 87.3 79.1 77.2 63.6 86.1 59.7 53.4 58.4
PPC 73.6 92.1 92.3 40.6 89.8 65.4 69.9 91.5 83.6 90.9 31.4 86.2 48.2 85.1 89.8 81.9 80.2 59.6 87.7 52.9 80.3 46.4

+ours 74.9 92.2 92.6 40.7 86.4 63.6 70.1 92.1 84.2 91.3 36.1 88.2 51.6 89.3 89.9 83.2 78.1 72.7 90.1 55.1 79.3 45.3

Fig. 17: Example results of instance segmentation.

Quantitative results Fig. 15 and Fig. 17 provide more CAM
results to show FBR’s effectiveness. In Fig. 15, we see that
FBR effectively helps the baselines distinguish the target FG
object from the confusing BG semantics. In Fig. 17, we notice
that the baseline (with FBR) learns more class features, thus
activating more integral object regions.
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