SUNG-EUI YOON, KAIST

RENDERING

FREELY AVAILABLE ON THE INTERNET



Copyright © 2018 Sung-eui Yoon, KAIST
FREELY AVAILABLE ON THE INTERNET
http://sglab.kaist.ac.kr/~sungeui/render

First printing, July 2018


http://sglab.kaist.ac.kr/~sungeui/render

3
Transformation

Many components of rasterization techniques rely upon different
types of transformation. In this chapter, we discuss those transforma-
tion techniques.

3.1 Viewport Transformation

In this section, we explain the viewport transformation based on an
example. Fig. 3.1 show different spaces that we are going to explain.

Suppose that you have an arbitrary function, f(x,y), as a function
of 2 D point (x,y); e.g., f((x,y)) = x> + y%. Now suppose that
you want to visualize the function in your computer screen with a
particular color encoding method, e.g., heat map that assigns hot and
cold colors depending on values of f(x,y).

This function is defined in a continuous space, say x and y can
be any real values. In computer graphics, we use a term of world to
denote a model or scene that we would like to visualize or render. In
this case, the function f(x, y) is our world. Our goal is to visualize
this function so that we can understand this function better. In many
cases, the world is too large and thus we cannot visualize the whole
world in a single image. As a result, we commonly introduce a
camera to see a particular region of the world.

Unfortunately, our screen is not in the continuous space and has
only a limited number of pixels, which is represented by a screen
resolution. Our graphics application can use the whole screen space
or some part of it. Let us call that area as a screen space. Fig. 3.2
show common conventions of the screen space. Finally, we visualize
a part of the world seen through the camera into a part of our screen
space, which is commonly known as a viewport; note that we can
have multiple viewports in our screen.

Suppose a position, xy, in the world that we are now seeing in the
camera. In the end, we need to compute its corresponding position,
X5, in our screen space of the viewport. If we know x;, we can draw
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the color of the world position x;, at x;. The question is how to
compute x; from xy, i.e., the mapping from the world space to the
viewport or screen space.

Normalized device coordinate (NDC). While world and screen
spaces are two fundamental spaces, we also utilize NDC. NDC

is a canonical space, whose both X and Y values are in a range of
[—1,1]. NDC serves as an intermediate space that is transformed to
the screen space, which is hardware-dependent space. As a result,
given the world potion x, we first need to compute a position in
the NDC space, x;, followed by mapping to x;. We will also see
various benefits of using NDC later, which include simplicity and
thus efficiency of various rasterization operations.

Mapping from the world space to NDC. Suppose that the part

of the world that we can see through a camera is represented by
[w.l, w.r] X [w.b, w.t], where w.l and w.r are the visible range along
X-axis and w.b and w.t define the visible range in Y-axis, while the

Figure 3.1: This shows a map-
ping from a viewable region
in the world through a camera
to the viewport in our screen
space pass through the interme-
diate space, normalized device
coordinate (NDC).

Figure 3.2: This shows two
different conventions of screen
coordinate spaces.
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Figure 3.3: Mapping between
the world space and NDC.
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NDC space is represented by [—1,1] x [1,1].
Since the relative ratio of x;, and x, is same in each space, we have
the following relationship:
xp— (1) _ Xo — (w.l)
1—(-1) w.r —w.l’

where A = B = *M

T =1+ This equation indicates that
given the information, we can compute the NDC coordinate with
one multiplication and one summation. Similarly, we can derive the
mapping equation from x, to xs.

An issue of this approach is that there are too many pixels and
thus evaluating such simple equations requires computational time.
Since most graphics applications require interactive or real-time
performance, we need to think about efficient way of handling these
operations early in the history of computer graphics. Furthermore,
it turns out that such mapping and similar transformations are
very common operations in many graphics applications. The most
common way of handling them in an efficient and elegant way is to
adopt linear algebra and use matrix operations.

3.1.1  Common Questions

Can glBegin () with GL_POLYGON support concave polygons?
According to its API description, GL_POLYGON works only with
convex polygons. But, what may happen with concave polygons?
Since it is not part of the specification of OpenGL, each vendor can
have their own handling method for that kind of unspecified cases. If
you are interested, you can try it out and let us know.

In the case of rendering circles, shown as an example in the lecture
note, we render them by using lines. Is there a direct primitive

that supports the circle? OpenGL has a limited functionality that
supports continuous mathematical representations including circles,
since a few model representations (e.g., triangles) have been widely
used and it is hard to support all the possible representations. How-
ever, OpenGL keeps changing and it may support many continuous
functions in a near future. At this point of time, we need to discretize
continuous functions with triangles or other simple primitives and
render them.

We use the NDC between the world space and the screen space.
Isn’t it inefficient? Also, don’t we lose some precision during this
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process? There is certainly some overhead by introducing the NDC.
However, it is very minor compared to its benefits in terms of simpli-
fying various algorithms employed throughout the rendering process.
Yes. We can lose more precision during the conversion process due
to float operations. However, it may be very small and may not cause
significant problems for rendering purposes. Nonetheless, the trans-
formation is based on analytic equations, not pixels, and thus can be
easily recovered to the original information.

OpenGL is designed for cross-platform. But, I think that it means
that we cannot use assembly programming for higher optimiza-
tions. Yes. You're right. We cannot use assembly languages for such
optimizations. However, programmers for graphics drivers for each
graphics vendor definitely use an assembly language and attempt to
achieve the best performance. High-level programmers like us rely
on such drivers and optimize programs with OpenGL API available
to us.

Multi-threading with OpenGL: Since OpenGL has been designed
very long time ago and has many different threads, it requires some
cares to use multiple threads for OpenGL. There are many articles in
internet about how to use multiple threads with OpenGL. I recom-
mend you to go over them, if you are interested in this topic.

Why do we use a viewport? The viewport space doesn’t need to be
the whole window space. Given a window space, we can decompose
it into multiple sub-spaces and use sub-spaces for different purposes.
An example of using multiple viewports is shown in Fig. 3.4.

3.2 2D Transformation

In this section, we discuss how to represent various two dimensional
transformation in the matrix form. We first discuss translation and
rotation.

2D translation has the following forms:

x' = x+ty, (3.1)
Y =y+ty, (3-2)

where (x,y) is translated as an amount of (ty, t,) into (x’,y"). They
are also represented by a matrix form:

HRHEH|
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Figure 3.4: This figure shows
multiple viewports, each of
which shows an arbitrary

3D view in addition to top,
front, and side views. The
image is excerpt from screen-
shots.en.sftcdn.ne.

Given the 2D translation, its inverse function that undoes the transla-
tion is:

!/

x=x —t, (3.4)
y=y —ty (35)
Also, its identity that does not change anything is:

x' =x+0, (3.6)
y =y+0. (37)

Let us now consider 2D rotations. Rotating a point (x,y) as an
amount of # in the counter-clock wise is:

x| |cosf —sinf| |x
y'|  |sinf cosé | |y

where Ry is the rotation matrix. Its inverse and identity are defined

=Ry

x] , (3.8)
Yy

as the following:

0 sinf
R-1_ cos ’ '
l— sinf cosf 59

Ryg—o = [(1) (1)] . (3.10)
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Suppose that you want to rotate an object by 30 degrees, followed
by rotating it again with 6o degrees. We intuitively know that rotat-
ing 9o degrees in a single time gives the same effect of rotating 30
degrees and 60 degrees again.V Formally, one can prove the follow-
ing equation:

R92R91 = R91+92' (3'11)

3.2.1  Euclidean Transformation

In this subsection, we would like to discuss a particular class of
transformation, Euclidean transformation. The Euclidean transfor-
mation preserves all the distances between any pairs of points. Its
example includes translation, rotation, and reflection. Since the shape
of objects under this transformation is preserved, the Euclidean
transformation is also known as rigid transformation.

This rigid transformation is one of most common transformation
that we use for various game and movie applications. For example,
camera rotation and panning are implemented by the rigid transfor-
mation.

Mathematically, the Euclidean transformation is represented by:

T(x) = Rx+t, (3-12)

where R and ¢ are rotation matrix and 2D translation vector.

While this is a commonly used mathematical representation,
this representation has a few drawback for graphics applications.
Typically, we have to perform a series of rotation and translation
transformation for performing the viewport transformation, camera
operations, and other transformation applied to objects. As a result, it

can take high memory and time overheads to apply them at runtime.

Furthermore, there is cases that we need to compute a invert oper-
ation from a coordinate from the screen space to the corresponding
one in the world space. Given the series of rotation and translation
operations, the inverting operation can require multiple steps.

As an elegant and efficient approach to these issues, the homo-
geneous coordinate has been introduced and explained in the next
section.

3.2.2  Homogeneous Coordinate

Homogeneous coordinates are originally introduced for projective
geometry, but are widely adopted for computer graphics, to represent
the Euclidean transformation in a single matrix.

Suppose a 2D point, (x,y) in the 2D Euclidean space. For the
homogeneous coordinates, we introduce an additional coordinate,

Homogeneous coordinates provides
various benefits for transformation and
are thus commonly used in graphics.
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and (x, y) in the 2D Euclidean space corresponds to (x,y,1) in

the 3D homogeneous coordinates. In fact, (zx,zy,z),z # 0 also
corresponds to (x,y) by dividing the third coordinate z to the first
and second coordinates, to compute the corresponding 2D Euclidean
coordinate.

Intuitively speaking, (zx,zy, z) represents a line in the 3D homo-
geneous coordinate space. Nonetheless, any points in the line maps
to a single point (x, y) in the 2D Euclidean space. As a result, it can
describe a projection of a ray passing through a pin hole to a point.

Let us now describe its practical benefits for our problem. Before
we describe the Euclidean transformation (Eq. 3.12) and its problems.
By using the 3D homogeneous coordinate, the Euclidean transforma-
tion is represented by:

x! cosf —sinf t,| |x
y'| = |sinf cos® t,| |y]- (3.13)
1 0 0 1 1

Note that the translation amount ¢, and ¢, are multiplied with the
homogeneous coordinate, which is one. As a result, the translation is
incorporated within the transformation matrix that also encodes the
rotation part simultaneously.

One of benefits of using the homogeneous coordinates is to sup-
port the translation and rotation in a single matrix. This property
addresses problems of the Euclidean transformation (Sec. 3.2.1).
Specifically, even though there are many transformations, we can
represent each transformation in a single matrix and thus their mul-
tiplication is also represented in a single matrix. Furthermore, its
inversion can be efficiently performed. Thanks to these properties
resulting in a higher performance, the homogeneous coordinates
have been widely adopted.

Revisit to mapping from the world space to NDC. We discussed
viewport mapping, one of which operation transforms world space
coordinates to those in NDC space (Sec. 3.1). Since this transfor-
mation uses multiplication, followed by the additions, it can be
represented by homogeneous coordinates and thus in a single matrix:

rtw.l
x! w.r—w.l (2) _% x
2 - w.t+w.
vy = 0 wi—w.b  w.i-w.D vl (3-14)
1 0 0 1 1

Nonetheless, the matrix is not exactly in the Euclidean trans-
formation, since it involves scaling. This is covered in the affine
transformation in the next section.
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3.2.3 Affine Transformation

We discussed the Euclidean transformation that is a combination
of rotation and translation in Sec. 3.2.1. We now study on an affine
transformation, which covers wider transformation than the Eu-
clidean transformation.

In the 2D case, the affine transformation has the following matrix
representation:

~

a1 412 413 X
a1 axp ax| |y|- (3.15)

~

REE
I

The affine transformation preserves parallel lines under the transfor-
mation, but does not necessarily preserve angles of lines. The affine
transformation covers a combination of rotation, translation, shearing,
reflection, scaling, etc. The transformation is also called projective
transformation, since it also supports projection, which is discussed
in Sec. 4.2.

OpenGL functions. Various transformation functions (e.g., gl Translate(-))
available at early versions of OpenGL (e.g., version 2) are deprecated
in recent versions. Nonetheless, it is informative to see its usage with
corresponding matrix transformations, which are adopted in the
recent OpenGL.

The following code snippet shows a display function of rendering
a rectangle with a rotation matrix.

void display (void)

{
/I we assume the current transformation matrix to be the identify matrix.
glClear(GL_COLOR_BUFFER_BIT); // initialize the color buffer.

glPushMatrix(); // store the current matrix, the identify matrix, in the matrix stack
glRotatef(spin, 0.0, 0.0, 1.0); // create a rotation matrix, M,.

glColor3f(1.0, 1.0, 1.0);

glRectf(—25.0, —25.0, 25.0, 25.0); // create geometry, say, v.

glPopMatrix(); // go back to the initial identify matrix.

glFinish (); // send all OpenGL commands to GPU and finish once they are done.

glutSwapBuffers();

The actual rasterization done in GPU occurs once glFinish() is
called. Before rasterizing the rectangle, we perform the specified
transformation, which is to compute v, where v/ = M,v. We then
rasterize the rectangles with transformed geometry, v'.



3.2.4 Common Questions

Is there any benefit of using column-major ordering for the matrix
over row-major ordering? Not much. Some people prefers to use
column-major, while others like to use row-major. Somehow, people
who designed OpenGL may prefer column-major ordering.

3.3 Affine Frame

In this chapter, we started with viewport transformation, followed
by 2D transformation. Overall, an underlying question along these
discussions is this: suppose that we have two different frames and
we know coordinates of a point in a frame. What is the coordinates
of the point in the different frame? For example, the viewport trans-
formation is an answer to this question with the world and viewport
frames.

We use a set of linearly independent basis vectors to uniquely
define a vector. Suppose that V;, V5, V3 are to be three such basis
vectors represented in a column-wise vector. We can then define a
vector, }?, with three different coordinates, ¢, cp, c3, as the following:

3 ‘a1
X = Z C; _’i = |:‘71 ‘72 ‘73:| C| = Ve, (316)
i=1 c3

where V is a 3 by 3 matrix, whose columns corresponds to the basis
vectors.

Now let’s consider how we can represent a point, p, in the 3D
space. Unfortunately, the point cannot be represented in the same
manner as we used for defining a vector in above. To define a point
in the space, we need an anchor, i.e., origin, of the coordinate sys-
tem. This makes the main difference between points and vectors.
Specifically, points are absolute locations, while vectors are relative

quantity.
A point, p, is defined with respect to the absolute origin, o, as the
following:
€1
. . S = = = ] |C2
p=o+) ¢Vi= [V1 Vo V3 0 . (3.17)
i=1 €3
1

Simply speaking, we can define a point by using 4 by 4 matrix
V, Vo Vs 0|, whose each column includes three basis vectors
and the origin. As a result, this matrix is also called a affine frame; in
this chapter, we will just use a frame for simplicity.
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o (a,b)

Figure 3.5: What is the coordi-
nate of the point against the
blue frame?

Figure 3.6: The affine frame
consisting of three basis vectors
and the origin.
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We can also define a vector with the frame as the following:

€1
3
X = Zci i = [Vl Vz ‘73 0 2 . (318)
i=1 €3
0

Interestingly, the fourth coordinate for any vector with the frame has
o, since the vector is not based on the origin.

Defining points and vectors with the frame has various benefits.
Here are some of them:

1. Consistent model. Various operations between points and vectors
reflects our intuition. For example, subtracting two points yields
a vector and adding a vector to a point produces a point. These
operations are consistent with respect to our representations with

the frame: - -
ay bl C1
as bz (85)
_ = . 1
o5 by c (3.19)
| 1] | 1] 1 0|
[a1] [0y ] 1]
a v c
242 =7 (3.20)
as 03 Cc3
| 1] 1 0| | 1]

2. Homogeneous coordinate. We introduced the homogeneous
coordinate to represent the rotation and translation in a single
matrix (Sec. 3.2.2). Such homogeneous coordinates are actually
defined in the affine frame, and the fourth coordinate indicates
whether it represents points or vectors depending on its values.

3. Affine combinations. Adding one point to another point does not
make sense. Nonetheless, there is a special case that makes sense.
Suppose that we add two points with weights of a1 and &,, where
the sum of those weights to be one, i.e., a1 4+ ap. We then have the
following equation:

a by 1
b
o 72 + ap 2| = | . (3.21)
a3 b3 c3
1 1 1

Intuitively speaking, this affine combination results in a linear
interpolation between those two points. This idea can be also
extended to any number of points. One example with three points
includes the barycentric coordinate (Sec. 10.2).



3.4 Local and Global Frames

We would like to conclude this section by discussing local and global
frames, followed by revisiting the viewport transformation in these
frames.

Suppose that you have a point, p, defined in the affine frame, W,
with a coordinate of ¢; i.e., p = Wc. We now want to translate the
point with T and then rotate it with R. The transformed point, p’,
is defined as the following and can be interpreted in two different

directions:
p’ =WRTc
=W(RTc) = Wc' // use the global frame (3.22)
=(WRC)c = W'c // use a local frame. (3-23)

The second equation is derived by changing the coordinate given
the global frame W. The third equation is derived by modifying
the frame itself into a new local frame, say W/, while maintaining
the coordinate. These two different interpretation can be useful for
understanding different transformations.

Let us remind you that we started with this chapter by discussing
the viewport transformation. Let’s apply local and global frames to
the viewport transformation. During the viewport transformation,
the point does not move. Instead, we want to compute a coordinate
in the viewport space, V, from that in the world space, W. In other
words, we can represent them as the following:

p=Wc=Vc, (324)

where the relationship between the world and viewport spaces is
represented by V = WS.

In this case, the coordinate ¢’ in the viewport space is computed as
the following:

p=Wc=VSle=vV(sl)=vc. (3.25)

This approach, considering coordinates with different frames, can
be very useful for considering complex transformation. We will use
this approach for explaining 3D rotation transformations in the next
section.

3.5 3D Modeling Transformation

To create a scene consisting of multiple objects, i.e., models, we
need to place those models in a particular place in the world. This
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/I

Figure 3.7: Global (left) and
local (right) frames of the same
transformation.
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operation is modeling transformation that commonly consists of
translation and rotation.
3D translation is extended straightforwardly from the 2D transla-

tion:
1 0 0 ¢ty
d = 0 101 c. (3.26)
00 1 #
0 0 0 1

The rotation in the 3D space along the canonical axis is easily
extended from the 2D case. For example, the rotation along the X axis
is computed as the following:

1 0 0 0
N 0 cosf® sinf O
Ry = .
X 0 —sinf cosf O (3-27)
0 0 0 1

The 3D rotation against an arbitrary vector requires additional
treatments. Nonetheless, the affine frame we studied in Sec. 3.2.3
simplifies this process and we thus discuss this approach here in this
section.

Suppose that we would like to rotate a vector, ¥, given a rotation
axis vector, 4. When the rotation axis aligns with one of canonical
X, Y, or Z axis, we can easily extend the 2D rotation matrix to 3D
rotation matrix. Unfortunately, the rotation axis may not be aligned
with those canonical axes, complicating the derivation of the rotation
matrix. We now approach this problem in the perspective of the
affine frame. The vector ¥ can be considered to be defined in the
frame of three basis vectors consisting of 4, the red one, and two
other orthogonal vectors, the black and green vectors in the figure.

Let’s first compute the black vector X | , which is orthogonal to 4,
and the plane spanned by these two vectors contains the rotation
vector X. We can decompose two coordinates, s and ¢, of ¥ in the
plane defined by @ and ¥, respectively. To compute such coordinates,
we can apply the dot product. s and t, and ¥, are then computed by
canceling the coordinate of 4, as follows:

s=X-4,
X =X—sd,
=% 7.

The green vector b that is orthogonal to both 7 and ¥, is computed
by the cross product between @ and ¥ ; i.e., b = x X, .

So far, we have computed three basis vectors of a local affine frame
that can define the vector X. Specifically, the vector ¥ is defined as the

Figure 3.8: Geomtry for 3D
rotation.



following:

i % b o} ) (3.28)

O +~ O

0

where ¢ is a virtual origin of our local affine frame. The rotation in
the amount of 6 along the rotation axis 4 is transformed to the rota-
tion along the X axis in the local affine frame. As a result, coordinates
of the rotated vector are computed as the following;:

0| Ry (3-29)

QY
=U
—
S
O O + O»n

Quaternion is an popular alternative for the 3D rotation, and many
tutorials are available for the topic.
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