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Course Administration
●Make progresses on your chosen topic

● Read papers now, not later!
● Think about pros and cons of each paper
● Think about how we can further improve
● Write down toward the mid-term report, whose 

deadline is Nov-6
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Organization of Report
● Introduction

● State a topic and a problem that you want to 
address

● Give motivations
● Present your main idea (and results)

●Related work
● Identify a few major categories related to the 

topic
● Emphasize benefits over your method
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Organization of Report
●Overview

● State the problem in detail
● Present your idea
● Why your idea address the problem

Your mid-term report should have introduction, 
related work, and overview sections
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Organization of Report
●Main body of the papers

● Describe your idea/solutions in detail
● Implementation & results

● Describe your implementation and results
● If you didn’t implement, please provide a rough 

implementation sketch and the expected 
results

● Conclusion
● Summary your topic, problem, and your idea
● Emphasize results/benefits of your idea
● Lay out future work
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At the Previous Classes
● Studied visibility culling and LOD 

techniques for rasterization and ray tracing
● Reduced the model complexity
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In this Class
●Will study cache-coherent layouts of 

meshes, graphs, hierarchies
● Re-organize the data for efficient geometric 

processing and rendering
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Motivation

1

10

100

1000

Disk
access
speed

RAM
access
speed

CPU
speed

GPU
speed

Accumulated 
growth rate

during 1993 – 2004
(log scale)

Courtesy: Anselmo Lastra, 
http://www.hcibook.com/e3/online/moores-law/

● Lower growth rate of data access speed

1.5X

20X
46X

130X

during 99 - 04



9

Memory Hierarchies and Block-
Based Caches

CPU

Fast memory 
or cache

Slow memory

Block
transfer

Disk

10-2 secAccess time: 10-7 sec10-8 sec
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Cache-Coherent Layouts
● Stores related data closely in the 1D layout

● Cache-Aware
● Optimized for particular cache parameters 

(e.g., block size)

● Cache-Oblivious
● Minimizes data access time without any 

knowledge of cache parameters
● Directly applicable to various hardware and 

memory hierarchies
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82 million triangles
Irregular distribution of geometry

CAD Model –
Double Eagle Tanker Model
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Isosurface and Scanned Models

Isosurface
100M triangles

St. Matthew
372M triangles
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Main Approaches
● Propose novel and practical cache-coherent 

metrics [Yoon et al. SIG 05, Yoon et al. VIS 
06, Yoon et al. Euro 06]
● Derive metrics given block-based caches
● Propose efficient cache-coherent layout 

constructions
● Apply to different applications
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Cache-Coherent Metrics
●Measure the expected number of cache 

misses of a layout given block-based 
caches
● Should correlate well with the observed 

number of cache misses

● Cache-aware metrics
● Measure cache-coherence given known cache 

parameters (e.g., block size)
● Cache-oblivious metrics

● Consider all possible cache parameters



15

Run-time Captured Video – View-Dependent 
Rendering of St. Matthew Model
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Related Work
● Computation reordering
●Data layout optimization
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Computational Reordering
● Cache-aware [Coleman and McKinley 95, 

Vitter 01, Sen et al. 02]
● Cache-oblivious [Frigo et al. 99, Arge et al. 

04]
● Streaming computations [Isenburg et al. 

05, 06]

Focus on specific problems such as 
sorting and linear algebra computations
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Data Layout Optimization
●Rendering sequences (e.g., triangle strips)

● [Deering 95, Hoppe 99, Bogomjakov and 
Gotsman 02]

● Processing sequences
● [Isenburg and Gumhold 03, Isenburg and 

Lindstrom 05]

Assume that access pattern
globally follows the layout order!
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Data Layout Optimization
●Graph and matrix layout

● A survey [Diaz et al. 02]
● Minimum linear arrangement (MLA)
● Bandwidth, etc.

Does not necessarily produce 
good layouts for block-based caches



20

Data Layout Optimization
● Space-filling curves

● [Sagan 94, Pascucci and Frank 01, Lindstrom 
and Pascucci 01, Gopi and Eppstein 04]

Assume geometric regularity!
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Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results



22

Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results
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nc

General Framework of Layout 
Computation

na

nb nd
Input directed 
graph, G (N, A)

Layout algorithm, φ

1D layout, φ(N)

……..na nd nc nb

Cache-coherent 
metric
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nc

Two-Level I/O Model [Aggarwal 
and Vitter 88]

na

nb nd
Input directed 

graph

Cache 

M cache blocks, 
whose size is B

1D layout with 
block size = 3

……..na nd nc nb

na nd nc nb
Layout algorithm, φ



25

Graph Representation
●Directed graph, G = (N, A)

● Represent access patterns between nodes

●Nodes, N
● Data element 
● (e.g., mesh vertex or mesh triangle)

●Directed arcs, A
● Connects two nodes if they are accessed 

sequentially

nc

na

nb nd
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Weights of Nodes and Arcs
● Indicate probabilities that each element 

will be accessed

● Computed in an equilibrium status during 
infinite random walks
● Assume that applications infinitely access the 

data according to the input graph
● Correspond to eigen-values of the probability 

transition matrix
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Problem Statement

● Vertex layout of G = (N, A)
● One-to-one mapping of vertices to indices 

in the 1D layout

● Compute a     that minimizes the 
expected number of cache misses

ϕ

|}|, ... ,1{ N→N:ϕ

nc

na

nb nd

nc

na

nb nd
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Cache-Coherence of a Layout 
given Block-Based Caches
● Expected number of cache misses of a 

layout
● Probability accessing a node from another 

node by traversing an arc
● Conditional probability that we will have a 

cache miss given the above access pattern

nc

na

nb nd
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Specialization to Meshes
● Expected number of cache misses of a 

layout
● Probability accessing a node from another 

node by traversing an arc
● Conditional probability that we will have a 

cache miss given the above access pattern

nc

na

nb nd

nc

na

nb nd

An input mesh Implicitly 
derived graph

= constant

1. Two opposite directed 
arcs

2. Uniform distribution to 
access adjacent nodes 
given a node
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Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results
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Four Different Cases

Cache-aware case
single cache block,

M=1

Cache-oblivious case
single cache block,

M=1

Cache-aware case
multiple cache blocks,

M>1

Cache-oblivious case
multiple cache blocks,

M>1
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Cache-Aware: Single Cache 
Block, M=1

nc

na

nb nd
Input directed 

graph

1D layout with 
block size = 3

……..na nd nc nb

Cache, whose 
block size is B 

Straddling arcs
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Cache-Aware: Multiple Cache 
Blocks, M>1

nc

na

nb nd
Input directed 

graph

1D layout with 
block boundary

……..na nd nc nb

Straddling arcs
Cache
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Final Cache-Aware Metric
● Counts the number of straddling arcs of 

the layout given a block size B

∑
∈

−
Aji

BB jiS
A ),(

|))()((|
||

1 ϕϕ

)(iBϕ : block index containing the node, i

)(xS : Unit step function, 1  if x > 0
0  otherwise.

where 
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High Accuracy of Cache-Aware 
Metric

Linear 
correlation

[-1, 1]

Observed number of cache misses

With 5 cache 
blocks

With 25 cache 
blocks

Cache-aware 
metric 0.97 0.97

Tested layouts: 
Z-curve, Hilbert curve, H-order, 
minimum linear arrangement layout, 
βΩ-layout, geometric CO layout,
(bi or uni) row-by-row, 
(bi or uni) diagnoal layouts

Z-curve on a uniform grid

Tested block size = 4KB
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Cache-Aware Layouts

●Optimized with cache-aware metric given a 
block size B
● Computed from the graph partitioning

nc

na

nb nd

Input directed 
graph

1D layout with 
block size = 3

……..na nd nc nb

Straddling arcs
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Four Different Cases

Cache-aware case
single cache block,

M=1

Cache-oblivious case
single cache block,

M=1

Cache-aware case
multiple cache blocks,

M>1

Cache-oblivious case
multiple cache blocks,

M>1
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Cache-Oblivious: Single Cache 
Block, M=1

Cache

Does not assume a particular block size:
Then, what are good representatives

for block sizes?
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Two Possible Block Size 
Progressions
● Arithmetic progression

● 1, 2, 3, 4, …

●Geometric progression
● 20 , 21 , 22 , 23 , …
● Well reflects current caching architectures
● E.g., L1: 32B, L2: 64B, Page: 4KB, etc.
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Probability that an Arc is a 
Straddling Arc

……..na nd nc nb

Is an arc straddling
given a block size?

Computed as a  probability 
as a function of arc length, l

Arc length, l, = 2
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Two Cache-Oblivious Metrics
● Arithmetic cache-oblivious metric,

● Geometric cache-oblivious metric,

∑
∈Aji

ijA l
),(

||
1      

∑
∈Aji

ijA l
),(

||
1 )log( ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∏

∈

     log
||

1

),(

A

Aji
ijl

Arc length of arc (i, j)

Geometric mean 
of arc lengths

)(ϕaCOM

)(ϕgCOM

MLA metric,
Arithmetic mean
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Validation for Cache-Oblivious 
(CO) Metrics

●Geometric cache-oblivious metric
● Practical and useful

Geometric 
CO layout

Arithmetic 
CO layout

97% of tested 
block sizes

The number of 
cache misses

when M = 1
(log scale)

73% of tested 
power-of-two block sizes
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Correlations between Metrics and 
Observed Number of Cache Misses

Linear correlation
[-1, 1]

Observed number of cache misses

With 1 cache 
block

With 5 cache 
blocks

Geometric CO metric 0.98 0.81

Arithmetic CO metric -0.19 -0.32

Tested block size = 4KB

Tested with 10 different layouts on a uniform grid
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Cache-Oblivious Layouts

●Geometric cache-oblivious metric
● Very efficient
● Can be used in different layout optimization 

methods
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Layout Computation with Geometric 
Cache-Oblivious Metric

●Multi-level construction method
● Partition an input mesh into k different sets
● Layout partitions based on our metric

…

1. Partition 2. Lay out

•Generalized layout method 
for unstructured meshes 



46

Evaluating Existing Layouts

●No known tight bound
● Compare against the 

best layout we can 
construct
● Employ an efficient 

sampling method

Is it close 
to 

the optimal 
layout?

An existing layout, φ

Use it

Build a new one
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Outline
● Computation models
● Cache-aware and cache-oblivious metrics
●Results
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Layout Computation Time
● Process 70 million vertices per hour

● Takes 2.6 hours to lay out St. Matthew model 
(372 million triangles)

● 2.4GHz of Pentium 4 PC with 1 GB main 
memory
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Our Layout of Bunny ModelComputed layout
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Applications
● Isosurface extraction
● View-dependent rendering
● Collision detection
●Ray tracing
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Iso-Surface Extraction

●Uses contour tree [van Kreveld et al. 97]
● Runtime is dominated by the traversal of iso-

surface
● Layout graph

● Use an input tetrahedral mesh

Spx model
(140K vertices)
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High Correlation with Number of 
Cache Misses

Linear 
correlation

[-1, 1]

Observed number 
of cache misses

With 1 cache 
block

With 10K cache 
blocks

Geometric CO 
metric 0.99 0.98

Tested block size = 4KB

Tested with 8 different layouts: 
our geometric CO, our cache-aware, breadth-first (and 

depth-first) layouts, spectral [Juvan and Mohar 92], 
cache-oblivious mesh [Yoon et al. 05], Z-curve [Sagan 

94], X-axis sorted layouts
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High Correlation with Runtime 
Performance

Linear 
correlation

[-1, 1]

First iso-surface 
extraction time

Second iso-surface 
extraction time

Geometric CO 
metric 0.94 0.94

Disk I/O time is 
major bottleneck

Memory access time 
is major bottleneck
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Comparison with Other Layouts

0 0.5 1 1.5 2 2.5

Cache-aware layout

Geometric CO layout

Z-curve

COML 

Depth-first layout

Spectral layout

Breadth-first layout

X-axis layout

The first iso-surface extraction time 
(sec)

8% - 77% 
improvement and 

very close to 
the cache-aware 

performance
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Isocontour Extraction – Puget 
Sound Model, 134M Triangles

Isocontour
z(x,y) = 500m
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Comparison – First
Extraction of Z(x,y) = 500m

0

5

10

15

20

25

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

Relative 
Performance

over
Z-axis sorted

layout

Nearly optimized for particular isocontour

2

21

13

1

Disk access time is bottleneck
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Comparison – Second Extraction of 
Z(x,y) = 500m

Relative 
Performance

over
Z-axis sorted

layout
2

21

13

0
50

100
150
200
250
300
350
400

Cache-
oblivious

layout

Z-axis
sorted

Y-axis
sorted

Spectral
layout

379

212

10.8

Memory and L1/L2 cache access times are bottleneck
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View-Dependent Rendering
● Layout vertices and triangles of CHPM 

[Yoon et al. VIS 04]
● Reduce misses of GPU vertex cache
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View-Dependent Rendering

Models # of 
Tri. Our layout Simplification layout

St. Matthew 372M 106 M/s 23 M/s

Isosurface 100M 90 M/s 20 M/s

Double Eagle 
Tanker 82M 47 M/s 22 M/s

4.5X

2.1X

Peak performance: 145 M tri / s on 
GeForce 6800 Ultra
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Comparison with Other Rendering 
Sequences

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

8 16 32 64
Vertex cache size

Cache 
miss ratio 
(misses 

per 
triangle)

Our layout

Universal rendering sequences
[Bogomjakov and Gotsman 2002]
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Comparison with Other Rendering 
Sequences

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

8 16 32 64
Vertex cache size

Cache 
miss ratio 
(misses 

per 
triangle) 

Our layout

[Hoppe 99]
Optimized for 16 vertex cache size

with FIFO replacement

Optimized for no particular cache size
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Performance during View-Dependent 
Rendering

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9

100% 75% 50% 25% 10%
Resolution

 Cache miss 
ratio 

(given cache 
size 32) Our layout

[Hoppe 99]

Optimized for various resolutions

Optimized for full resolution
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Cache Miss Ratio on Bunny 
Model

GPU vertex 
cache miss 

ratio

Vertex cache size

Hoppe [Hoppe 99]Theoretical 
lower bound

[Bar-Yehuda and 
Gotsman 96]

Universal rendering seq. 
[Bogomjakov and Gotsman 02]

Geometric
CO layout



64

Cache Miss Ratio on Power Plant 
Model

GPU vertex 
cache miss 

ratio

Vertex cache size

Z-curve

Hoppe’s rendering
seq. [Hoppe 99]

Theoretical 
lower bound

[Bar-Yehuda and 
Gotsman 96]

COML 
[Yoon et al. 05]

Geometric
CO layout



65

Collision Detection
●Use oriented bounding box (OBB) 

[Gottschalk et al.  96]
● Breadth-first tree traversal

●Use an input graph representing well the 
runtime access pattern on the hierarchy
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Collision Detection – Robot and 
Power Plant Models

20k triangles                        1M triangles
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Collision Detection –
Performance Comparison I

0

200

400

600

800

1000

1200

COLBVH VEB BFL COML DFLOur 
cache-

oblivious 
layout

van 
Emde 
Boas 
layout

Breadth-
first 

layout

Cache-
oblivious 

mesh layout

Depth-
first 

layout

Different layouts

Working set size 
(KB)

Collision time (ms/100)

41% ~ 500% performance improvement
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0

500

1000

1500

2000

2500

COLBVH VEB BFL COML DFL

Collision Detection –
Performance Comparison II

Our 
layout

van 
Emde 
Boas 
layout

Breadth-
first 

layout

Cache-
oblivious 

mesh 
layout

Depth-
first 

layout

Different layouts

35% ~ 2600% performance improvement

Collision time (ms/100)

Working set size 
(KB)
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Cache-Oblivious Layout  vs 
Cache-Aware Layout
● Cache-aware layouts

● Take advantage of block size information 
(4KB)

●Minor performance degradation
● 8% compared to cache-aware layouts
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Ray Tracing
●Use kd-tree [Wald 04]

● Depth-first tree traversal
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Ray Tracing – Lucy Model
28 million triangles              Pentium IV with 1GB
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0
200
400
600
800

1000
1200

COLBVH VEB BFL DFL

Ray Tracing – Performance 
Comparison

Our 
layout

van Emde 
Boas layout

Breadth-first 
layout

Depth-first 
layout

Different layouts

77% ~ 180% performance improvement

Working set size (MB)

Render time (sec)
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Advantages

●General 
● Applicable to all kinds of polygonal 

models
● Works well for various applications

● Cache-oblivious
● Can have benefit from CPU/GPU cache to 

memory and disk

●Robust performance improvement
●No modification of runtime application

● Only layout computation
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OpenCCL: Cache-Coherent Layouts 
of Graphs and Meshes

● Source codes for computing a cache-
coherent layout 
● Easy to use
● Google “Cache Coherent Layouts”

CLayoutGraph Graph (NumVertex);
0

1 2

Graph.AddEdge (0, 1);
Graph.AddEdge (0, 2);
Graph.AddEdge (1, 2);

int Order [NumVertex];
Graph.ComputeOrdering (Order);
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Summary
●Novel cache-aware and cache-oblivious 

metrics to evaluate layouts
● Derived metrics based on two-level I/O model
● Improved the performance of applications 

without modifying codes
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Ongoing and Future Work
●Derive a lower bound on our geometric 

cache-oblivious metric
● Employ mesh compression to further 

reduce disk I/O accesses
● Investigate efficient layout method for 

deforming/dynamic models
● Apply to non-graphics applications

● e.g., shortest path or other graph computations
● Apply to other representations such as R-

tree
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At the Next Class
●Will discuss data compression
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