#### Selective Restructuring of Bounding Volume Hierarchies for Dynamic Models

### Sung-Eui Yoon

# KAIST (Korea Advanced Institute of Science and Technology)



### **At Previous Class**

 Studied multi-resolutions, culling, cachecoherent layout techniques

What is one of major problems of these techniques?



#### **Motivations**

- Dynamic scenes are widely used
  Movies, VR applications, and games
- Complex and large dynamic scenes
  - E.g, high-resolution explosion, tears, and fractures



# An Example of Exploding Dragon (252K triangles)





# **Ray Tracing Dynamic Scenes**

- Acceleration hierarchy construction
  - e.g., kd-trees, bounding volume hierarchies, grids, etc
- Hierarchy traversal
  - Perform ray-triangle intersection tests
- Key issue
  - Update the hierarchy as triangles deform



#### **Bounding Volume Hierarchies** (BVH) based Ray Tracing

- Employed early in [Whitted 80]
  - kd-trees and grids became popular for static models in 90's
- Recently get renewed interest in ray tracing dynamic scenes [Wald et al. 07, Lauterbach et al. 07, Larsson et al. 03]
  - Simple, but efficient BVH update method is available
  - Can have better performance



## **BVHs**

#### Object partitioning hierarchies

- Uses axis-aligned bounding boxes
- Considers surface-area heuristic (SAH) [Goldsmith and Salmon 87]







## **Two BVH Update Methods**





## **Our Goal**

#### • Existing BVH update methods

- Work at particular classes of dynamic scenes
- Design a robust BVH update method
  - Works well with wide classes of dynamic scenes
  - Improves the performance of ray tracing



## **Our Contributions**

- Proposes a novel algorithm to selectively restructure BVHs [Yoon et al., EGSR 07]
  - Selective restructuring operations
  - Two probabilistic metrics: culling efficiency and restructuring benefit



# Example of Exploding Dragon Model





### Runtime Captured Video – BART Model (65K triangles)

Compared with the BV refitting method



Enabled primary & shadow rays

Single thread



#### **Probabilistic BVH Metrics** for Ray Tracing

#### • Culling efficiency

- Quantifies the quality of any sub-BVHs
- Measures the expected # of intersection tests for a ray
- Restructuring benefit
  - Predicts the performance improvement
  - Measures improved culling efficiency when restructuring sub-BVHs



# **Culling Efficiency Metric**

- Measure the expected # of intersection tests for a ray
  - Measured in a view-independent manner
  - Recursively computed with child nodes considering SAH [Goldsmith and Salmon 87]



#### Validation of Culling Efficiency Metric



A good metric measuring the quality of BVHs



# **Restructuring Benefit Metric**

- Predicts improved culling efficiency when restructuring sub-BVHs
  - Should not perform actual restructuring
- Restructure the sub-BVHs
  - Only if the restructuring benefit is bigger than the restructuring cost



## **Major Observation**

- Restructuring two nodes with BV overlaps can improve the culling efficiency
  - Assumes that restructuring operation will remove all the BV overlaps



#### Selective Restructuring Operations



## Validation of Restructuring Benefit Metric

- Compare the expected values against the observed values
  - 80% of the observed values are 25% off from the expected values





## **Overall Framework**

- At a new frame
  - Refits BVs with deformed triangles
  - Performs our selective restructuring algorithm
  - Runs BVH-based ray tracing



# **Detecting BV Overlaps**

- Brute-force method
  - Requires O(m<sup>2</sup>) where m is # of BVs
- Hierarchical traversal and culling
  - Inspired by efficient collision detection methods





#### **Overview of Selective Restructuring Algorithm**

- Hierarchical refinement phase
- Restructuring phase



#### **Overview of Selective Restructuring Algorithm**

- Hierarchical refinement phase
  - Detects nodes with BV overlaps during hierarchy traversal
- Restructuring phase





#### **Overview of Selective Restructuring Algorithm**

- Hierarchical refinement phase
- Restructuring phase
  - Restructure node pairs with higher benefits in a greedy manner



# **Evaluating Our Algorithm**

- Implement BVH-based ray tracer [Lauterbach et al. 06]
  - Tests with four dynamic scenes having different characteristics



## **Dynamic Scenes**

#### • Cloth simulation (92K)

#### **Cloth Simulation**

- 92 K triangles - 94 frames





## **Dynamic Scenes**

#### N-body simulation (146K)



- 146 K triangles
- 150 frames







### **Dynamic Scenes**

#### Exploding dragon (252K)





## **Prior Works**

- BV Refitting [Wald et al. 07, Bergen 97]
- Complete re-construction from scratch
- Other two hybrid methods
  - Based on a simple heuristic
  - RT-Deform [Lauterbach et al. 06]
  - LM method [Larsson and Akenine-Möller 06]



# **Performance Improvement Ratio**

|                     | Complete<br>re-construction | Refitting<br>only |
|---------------------|-----------------------------|-------------------|
| Exploding<br>dragon | 8.5                         | 11                |
| N-body simulation   | 1.8                         | > 80              |
| BART                | 1.1                         | 28                |
| Cloth<br>simulation | 4.7                         | 0.96              |



# Image Shots from Cloth Simulation

#### **Initial frame**





# **Performance Improvement Ratio**

#### Robust performance improvement across our benchmarks

|                     | Complete | Refitting | RT-<br>Deform | LM<br>method |
|---------------------|----------|-----------|---------------|--------------|
|                     | const.   | Uniy      |               |              |
| Exploding<br>dragon | 8.5      | 11        | 1.65          | 2.16         |
| N-body simulation   | 1.8      | > 80      | 1.25          | 1.36         |
| BART                | 1.1      | 28        | 2.5           | 1.11         |
| Cloth<br>simulation | 4.7      | 0.96      | 1.03          | 1.29         |



## Conclusions

- Novel algorithm to selectively restructure BVHs
  - Based on selective restructuring operations and two BVH metrics

## - Dynamic scenes are available



#### **At Next Class**

Will study collision detection

