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At the Previous Class
● Studied LOD techniques for rasterization
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Goal
● Perform an interactive ray tracing of 

massive models
● Handles various kinds of polygonal meshes 

(e.g., scanned data and CAD)

St. Matthew
372M triangles

Double eagle tanker
82M triangles Forest model (32M)
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Recent Advances for Interactive 
Ray Tracing
●Hardware improvements

● Exponential growth of computation power
● Multi-core architectures

● Algorithmic improvements
● Efficient ray coherence techniques [Wald et al. 

01, Reshetov et al. 05]
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Ray Coherence Techniques
●Models with large primitives

● Group rays and test intersections between the 
group and a bounding box

Viewpoint

Image plane
Large

triangles

Ray beams
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Hierarchical Acceleration Data 
Structures
● kd-trees for interactive ray tracing [Wald 

04]
● Simplicity and efficiency
● Used for efficient object culling

kd-node
Axis-aligned 
bounding box
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Ray Tracing of Massive Models
● Logarithmic asymptotic behavior

● Very useful for dealing with massive models
● Due to the hierarchical data structures
● Observed only in in-core cases
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Performance of Ray Tracing with 
Different Model Complexity
●Measured with 2GB main memory

Memory
thrashing!

Render time
(log scale)

Model complexity (M tri) - log scale

Working set 
size 2GB
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Low Growth Rate of 
Data Access Time
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Inefficient Memory Accesses and 
Temporal Aliasing
● St. Matthew (256M triangles)

● Around 100M visible triangles

● 1K by 1K image resolution
● 1M primary rays
● Hundreds of triangle per pixel
● Each triangle likely in different

area of memory

Viewpoint

Image plane
Small 

triangles

Rays per each pixel



11

Example of Aliasing

Due to the under-
sampling
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LOD-based Ray Tracing
● Propose an LOD (level-of-detail)-based ray 

tracing of massive models
● R-LOD, a novel LOD representation for Ray 

tracing
● Efficient LOD error metric for primary and 

secondary rays
● Integrate ray and cache coherent techniques
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Performance of Ray Tracing with 
Different Model Complexity
●Measured with 2GB main memory

Memory
thrashing!

Render time
(log scale)

Model complexity (M tri) - log scale

Working set 
size 2GB
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Performance of LOD-based Ray 
Tracing
●Measured with 2GB main memory

Model complexity (M tri) - log scale

Achieved up to three order of magnitude speedup!

Render time
(log scale)

Working set 
size
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Real-time Captured Video – St. 
Matthew Model

512 by 512 and 2x2 super-sampling, 
4 pixels of LOD error in image space
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Related Work
● Interactive ray tracing
● LOD and out-of-core techniques
● LOD-based ray tracing
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Interactive Ray Tracing
●Ray coherences 

● [Heckbert and Hanrahan 84, Wald et al. 01, 
Reshetov et al. 05]

● Parallel computing
● [Parker et al. 99, DeMarle et al. 04, Dietrich et 

al. 05]
●Hardware acceleration

● [Purcell et al. 02, Schmittler et al. 04, Woop et 
al. 05]

● Large dataset
● [Pharr et al. 97, Wald et al. 04]
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LOD and Out-of-Core Techniques
●Widely researched

● LOD book [Luebke et al. 02] 
● Out-core algorithm course [Chiang et al. 03]

● LOD algorithms combined with out-of-core 
techniques
● Points clouds [Rusinkiewicz and Levoy 00]
● Regular meshes [Hwa et al. 04, Losasso and 

Hoppe 04]
● General meshes [Lindstrom 03, Cignoni et al. 

04, Yoon et al. 04, Gobbetti and Marton 05]

Not clear whether LOD techniques 
for rasterization is applicable to ray tracing
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LOD-based Ray Tracing
●Ray differentials [Igehy 99]

● Subdivision meshes [Christensen et al. 03, Stoll 
et al. 06]

● Point clouds [Wand and Straβer 03]

Viewpoint
Image plane

Ray beam for one pixel

Footprint size
of ray
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Outline
●R-LODs for ray tracing
●Results
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Outline
●R-LODs for ray tracing
●Results
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R-LOD Representation
● Tightly integrated with kd-nodes

● A plane, material attributes, and surface 
deviation

Plane

Normal

kd-node

Valid extent 
of the planeIntersection

No
intersection

Rays
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Properties of R-LODs
● Compact and efficient LOD representation

● Add only 4 bytes to (8 bytes) kd-node

●Drastic simplification
● Useful for performance improvement

● Error-controllable LOD rendering
● Error is measured in a screen-space in terms of 

pixels-of-error (PoE)
● Provides interactive rendering framework
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Two Main Design Criteria for 
LOD Metric
● Controllability of visual errors
● Efficiency

● Performed per ray (not per object)
● More than tens of million times evaluation
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Visual Artifacts
● Visibility difference
● Illumination difference
● Path difference for secondary rays

Surface deviation
Projected area

Curvature 
difference

View direction

Image plane

Ray with original mesh

Ray with LODs

Original mesh

LODs
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R-LOD Error Metric
● Consider two factors

● Projected screen-space area of a kd-node
● Surface deviation
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Conservative Projection Method
●Measures the screen-space area affected by 

using an R-LOD

Viewpoint

Image plane

PoE error bound

B {
R

dmin

C (B) dmin >   R
?

LOD metric: 

One ray beam

kd-node
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R-LODs with Different PoE 
Values

PoE:   Original            1.85                       5                    10        

(512x512, no anti-aliasing)
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LOD Metric for Secondary Rays
● Applicable to any linear transformation

● Shadow
● Planar reflection

●Not applicable to non-linear transformation
● Refraction
● Uses more general, but expensive ray 

differentials [Igehy 99]
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C0 Discontinuity between R-LODs

● Possible solutions
● Posing dependencies [Lindstrom 03, Hwa et al. 

04, Yoon et al. 04, Cignoni et al. 05]
● Implicit surfaces [Wald and Seidel 05]

Ray
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Expansion of R-LODs

● Expansion of the extent of the plane
● Inspired by hole-free point clouds rendering 

[Kalaiah and Varshney 03]
● A function of the surface deviation (20% of the 

surface deviation) 

Ray
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Impact of Expansions of R-LODs

Original model

Before 
expansion

After 
expansion

PoE = 5 
at 512 by 512

Hole



33

R-LOD Construction
● Principal component analysis (PCA)

● Compute the covariance matrix for the plane of 
R-LODs

●Hierarchical PCA computation
● Has linear time complexity
● Accesses the original data only one time with 

virtually no memory overhead

Normal (= Eigenvector)
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Hierarchical PCA Computation 
with Linear Time Complexity

where       ,         are x, y coordinates of kth points
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Utilizing Coherence
●Ray coherence

● Using LOD improve the utilization of SIMD 
traversal/intersection

● Cache coherence
● Use cache-oblivious layouts of bounding 

volume hierarchies [Yoon and Manocha 06]
● 10% ~ 60% performance improvement
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Outline
●R-LODs for ray tracing
●Results
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Implementation
●Uses common optimized kd-tree 

construction methods
● Based on surface-area heuristic [MacDonald 

and Booth 90, Havran 00]

●Out-of-core computation
● Decompose an input model into a set of 

clusters [Yoon et al. 04]
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Impact of R-LODs

PoE = 0
(No LOD) PoE = 2.5

# of intersected
nodes per ray

Render time

Working set
size

10X speedup
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Real-time Captured Video – St. 
Matthew Model

512 x 512, 2 x 2 anti-aliasing, PoE = 4
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Pros and Cons
● Limitations

● Does not handle advanced materials such as 
BRDF

● No guarantee there is no holes

● Advantages
● Simplicity
● Interactivity
● Efficiency
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Conclusion
● LOD-based ray tracing method

● R-LOD representation
● Efficient LOD error metric
● Hierarchical LOD construction method with a 

linear time complexity
● Reduce the working set size
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Ongoing and Future Work
● Investigate an efficient use of implicit 

surfaces
● Allow approximate visibility 
● Extend to global illumination
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At the Next Class
●Will discuss cache-coherent layouts
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