CS686: Configuration Space II

Sung-Eui Yoon (윤성의)

Course URL: <u>http://sgvr.kaist.ac.kr/~sungeui/MPA</u>

Class Objectives (Ch. 3)

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

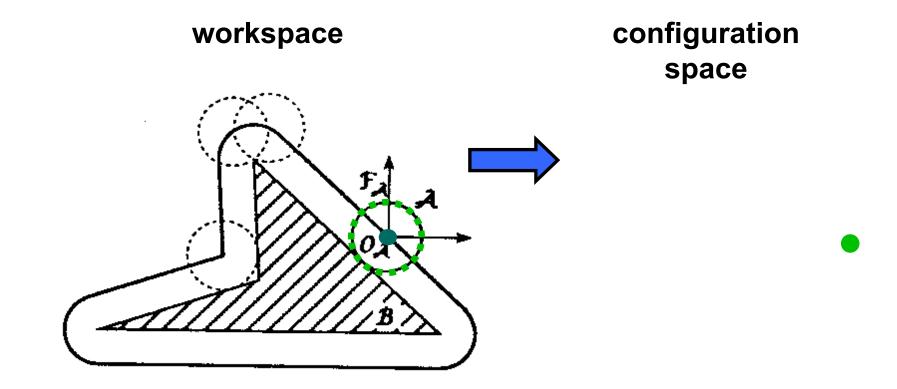
• Last time:

 Degrees-of-freedom (DoFs) of C-space w/ holonomic, non-holonomic and dynamic constraints

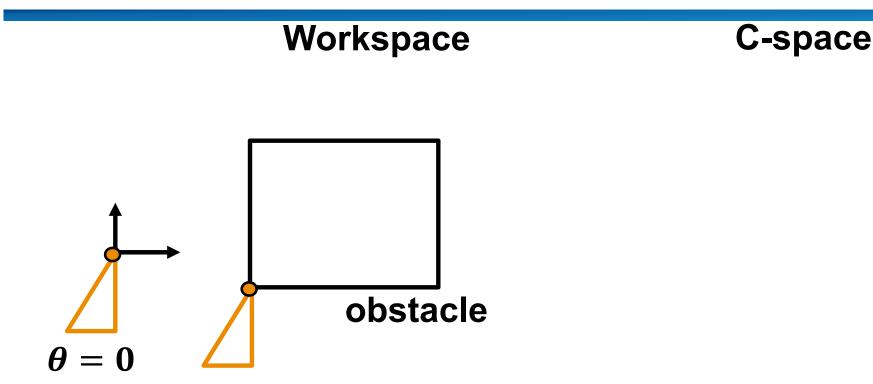
Obstacles in the Configuration Space

- A configuration q is collision-free, or free, if a moving object placed at q does not intersect any obstacles in the workspace
- The free space *F* is the set of free configurations
- A configuration space obstacle (C-obstacle) is the set of configurations where the moving object collides with workspace obstacles

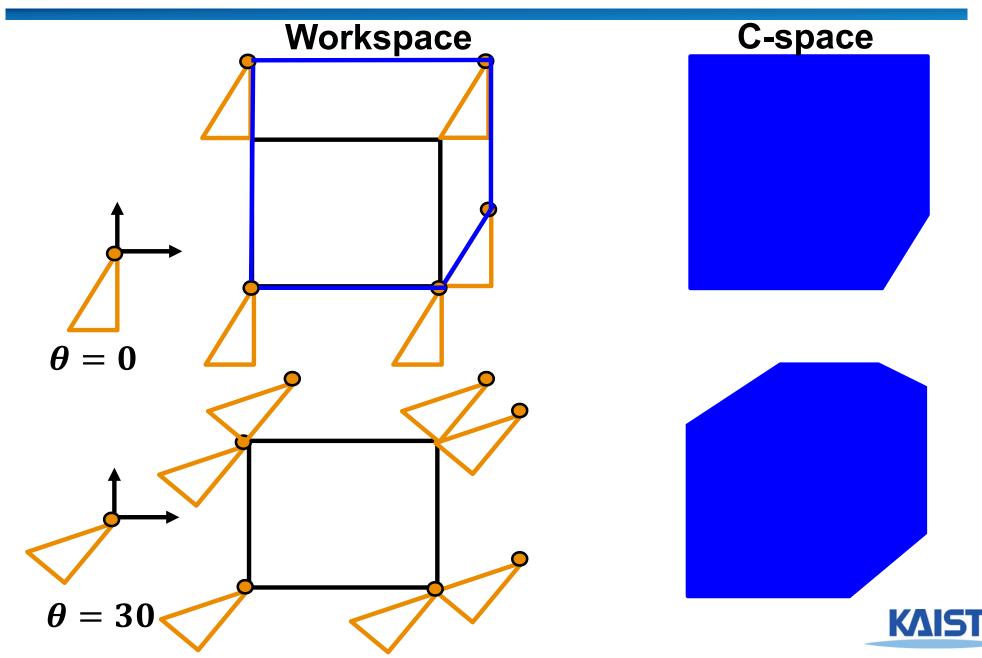
Disc in 2-D Workspace



Polygonal Robot Translating & Rotating in 2-D Workspace

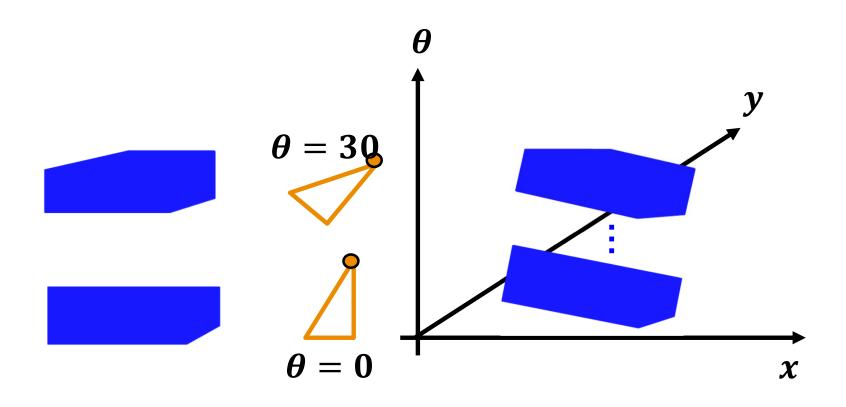


Polygonal Robot Translating & Rotating in 2-D Workspace



7

Polygonal Robot Translating & Rotating in 2-D Workspace



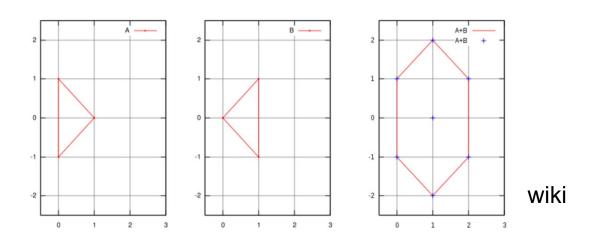
3D C-space

C-Obstacle Construction

- Input:
 - Polygonal moving object translating in 2-D workspace
 - Polygonal obstacles
- Output:
 - Configuration space obstacles represented as polygons

Minkowski Sum

The Minkowski sum of two sets P and Q, denoted by P⊕Q, is defined as P ⊕ Q = { p+q | p ∈ P, q∈Q }

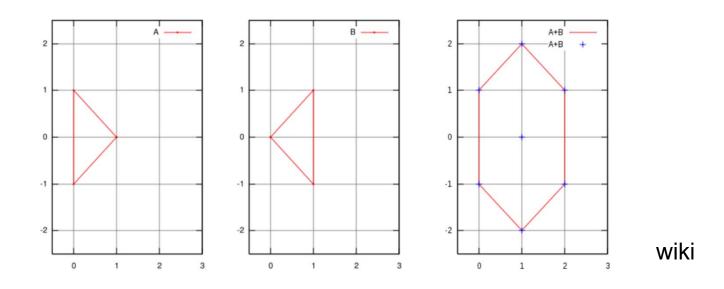


Similarly, the Minkowski difference is defined as

$$P \ominus Q = \{ p - q \mid p \in P, q \in Q \}$$
$$= P \oplus -Q$$

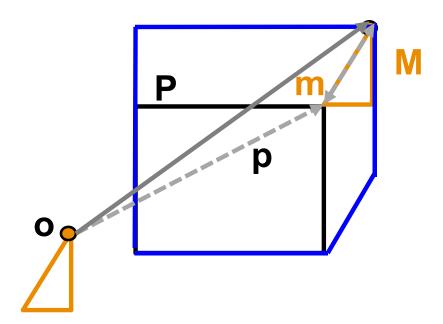
Minkowski Sum of Convex Polygons

- - The vertices of P ⊕ Q are the "sums" of vertices of P and Q.

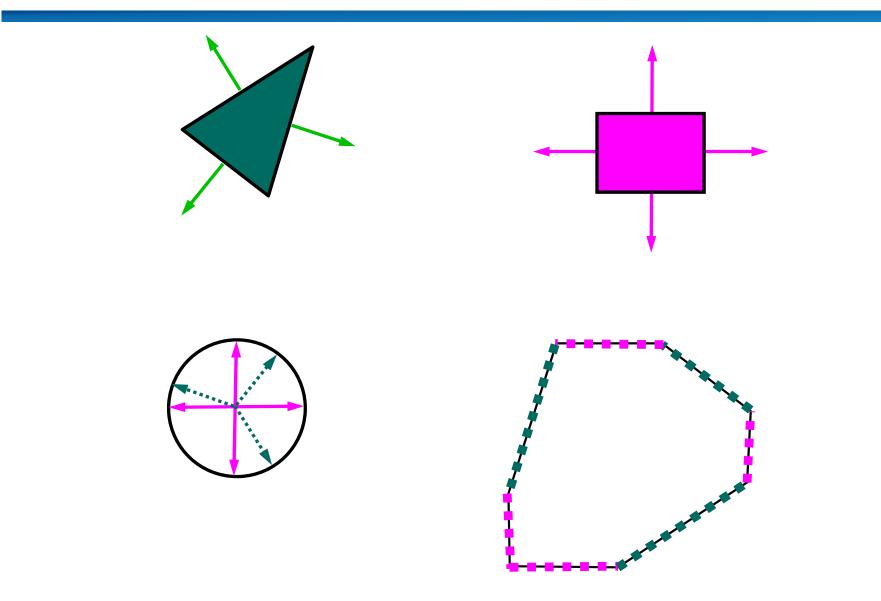


Observation

- Suppose *P* is an obstacle in the workspace and *M* is a moving object
- Then the C-obstacle is $P \ominus M$



Computing C-obstacles



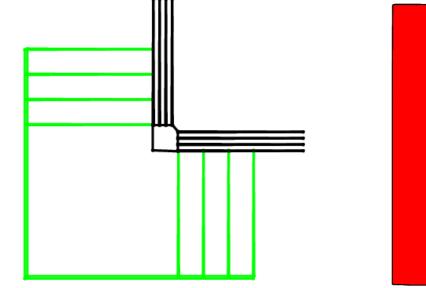
Computational efficiency

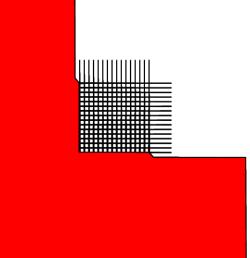
- Running time O(n+m)
- Space O(n+m)
- Non-convex obstacles
 - Decompose into convex polygons (*e.g.,* triangles or trapezoids), compute the Minkowski sums, and take the union
 - Complexity of Minkowksi sum $O(n^2m^2)$
- 3-D workspace
 - Convex case: O(nm)
 - Non-convex case: $O(n^3m^3)$

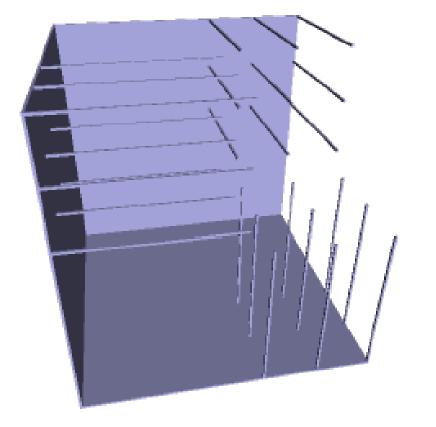
Worst case example

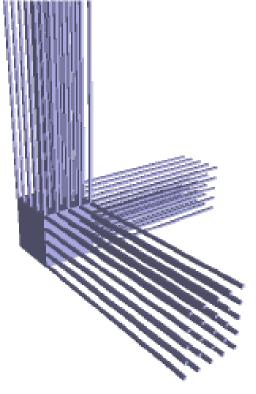
• $O(n^2m^2)$ complexity

2D example Agarwal et al. 02



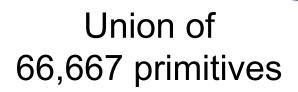


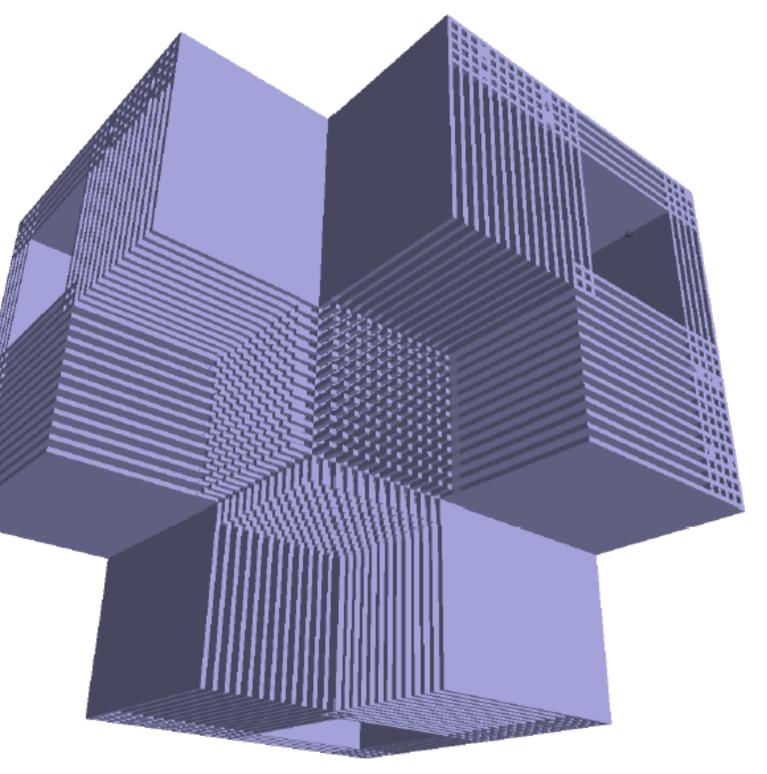




1,134 tris

444 tris



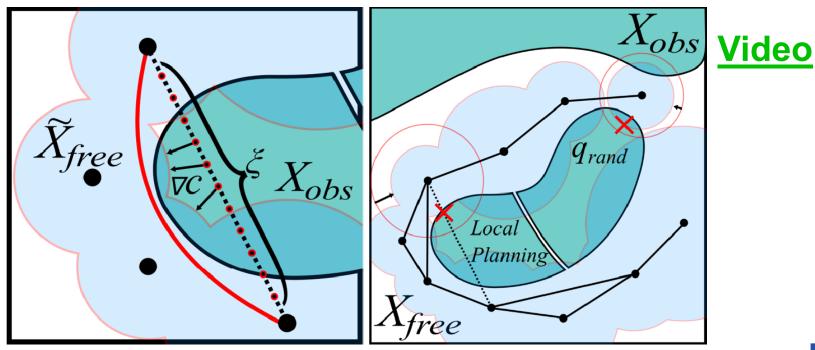


Main Message

- Computing the free or obstacle space in an accurate way is an expensive and nontrivial problem
- Lead to many sampling based methods
 - Locally utilize many geometric concepts developed for designing complete planners

Approximation of Configuration Free Space

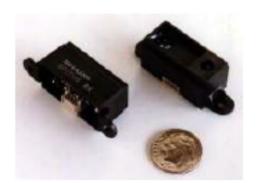
- Dancing PRM* : Simultaneous Planning of Sampling and Optimization with Configuration Free Space Approximation
 - Approximate C-Space and perform planning
 - Improve the quality in an iterative manner



Sensors!

Robots' link to the external world...

Sensors, sensors, sensors! and tracking what is sensed: world models



IR rangefinder

sonar rangefinder

CMU cam with onboard processing

odometry...

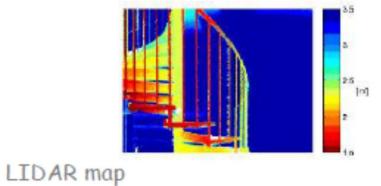
gyro

16-735, Howie Choset with slides from G.D. Hager and Z. Dodds

Laser Ranging

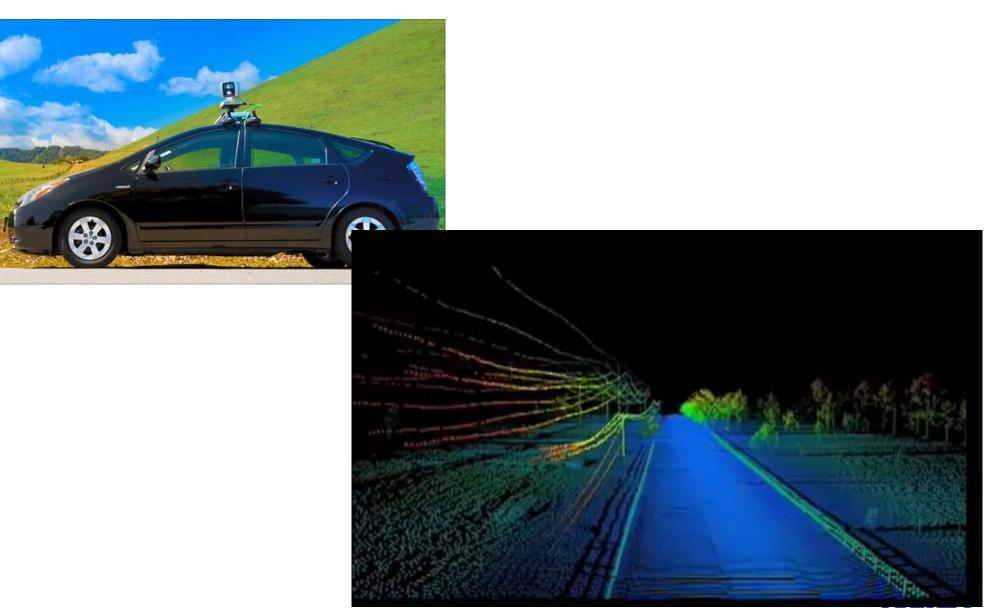
Sick Laser

LIDAR



16-735, Howie Chose With slides from G.D. Hager and Z. Dodds

Velodyne



Kinect and Xtion

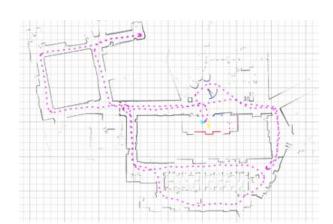
Kinect resolution

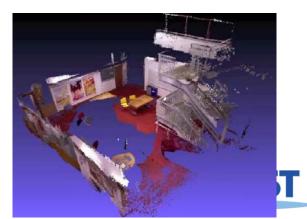
- 640×480 pixels @ 30 Hz (RGB camera)
- 640×480 pixels @ 30 Hz (IR depth-finding camera)

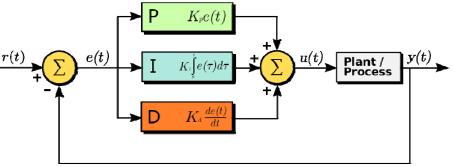
Whole Picture

Sensor

- Point clouds as obstacle map
- SLAM (Simultaneous Localization and Mapping)
- Path/motion planner
- Control
 - Compute force controls given a computed path



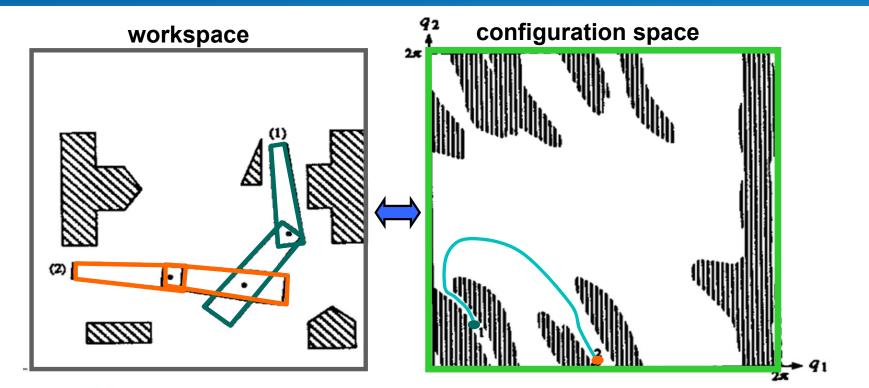




Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Paths in the configuration space



• A path in C is a continuous curve connecting two configurations q and q':

 $\tau: s \in [0,1] \to \tau(s) \in C$

such that $\tau(0) = q$ and $\tau(1) = q'$.

Constraints on paths

• A trajectory is a path parameterized by time:

 $\tau: t \in [0,T] \to \tau(t) \in C$

Constraints

- Finite length
- Bounded curvature
- Smoothness
- Minimum length
- Minimum time
- Minimum energy

• •••

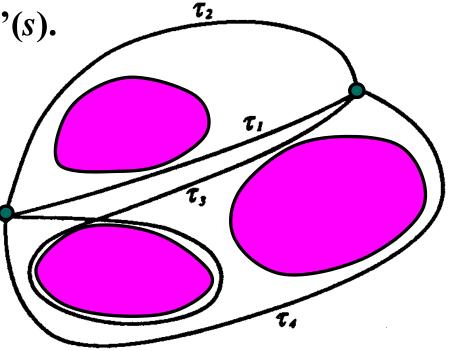
Homotopic Paths

 Two paths τ and τ' (that map from U to V) with the same endpoints are homotopic if one can be continuously deformed into the other:

 $h: U \times [0,1] \rightarrow V$

with
$$h(s,0) = \tau(s)$$
 and $h(s,1) = \tau'(s)$.

 A homotopic class of paths contains all paths that are homotopic to one another



Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Metric in Configuration Space

• A metric or distance function d in a configuration space C is a function

 $d:(q,q') \in C^2 \rightarrow d(q,q') \ge 0$ such that

- d(q, q') = 0 if and only if q = q',
- d(q, q') = d(q', q),
- $d(q,q') \le d(q,q'') + d(q'',q')$.

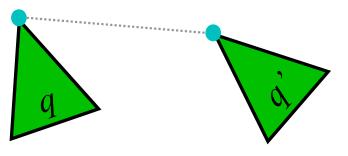
Identity Symmetry

Triangle inequality

Example

- Robot A and a point x on A
- x(q): position of x in the workspace when A is at configuration q
- A distance *d* in *C* is defined by $d(q, q') = \max_{x \in A} ||x(q) - x(q')||,$

where ||x - y|| denotes the Euclidean distance between points x and y in the workspace.



L_p Metrics

$$d(x, x') = \left(\sum_{i=1}^{n} |x_i - x'_i|^p\right)^{\frac{1}{p}}$$

- L₂: Euclidean metric
- L₁: Manhattan metric
- L_{∞} : Max (| $x_i x'_i$ |)

Examples in R² x S¹

• Consider R² x S¹

•
$$q = (x, y, \theta), q' = (x', y', \theta')$$
 with $\theta, \theta' \in [0, 2\pi)$

•
$$\alpha = \min \{ | \theta - \theta' |, 2\pi - | \theta - \theta' | \}$$

•
$$d(q, q') = \operatorname{sqrt}((x-x')^2 + (y-y')^2 + \alpha^2))$$

θ

 $\bar{\Omega}$

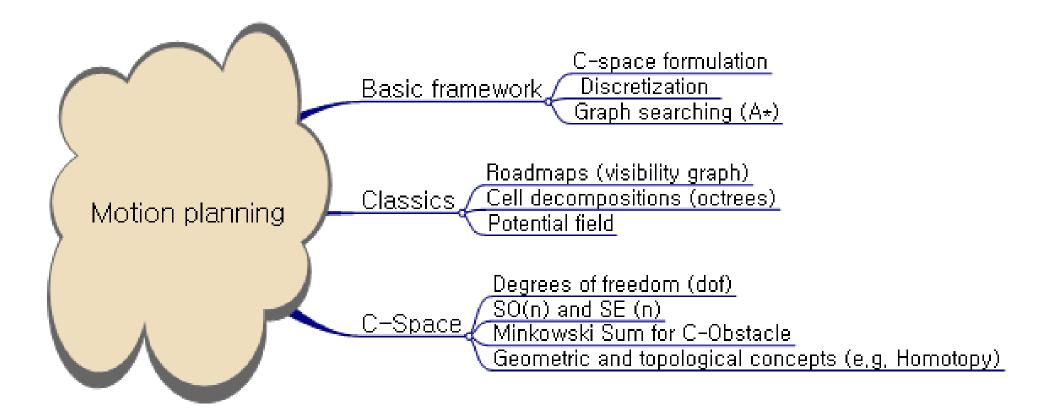
θ

Class Objectives were:

Configuration space

- Definitions and examples
- Obstacles
- Paths
- Metrics

Summary



Collision detection and distance computation

Homework

- Submit summaries of 2 ICRA/IROS/RSS/CoRL/TRO/IJRR papers
- Go over the next lecture slides
- Come up with two questions before the mid-term exam

