GraphDistNet: A Graph-based Collision-distance Estimator for Gradient-based Trajectory Optimization

Yeeun Lim (임예은)

Motivation

- **Collision detection**
 - Geometric Algorithm

ex) GJK algorithm

time and space consuming

2

Data-driven Algorithm
 ex) configuration-based, point cloud - based
 scalability issuses

Motivation

GraphDistNet

: Graph neural networks-based collision distance estimator for trajectory optimization

- Estimated distance
- Calculating collision gradient

Background

Trajectory optimization

Background

Graph Neural Network

 $G = (\mathcal{V}, \mathcal{E}, \mathcal{X})$ + edge features $\mathbf{x}_{ij} = h_{\theta}(\mathbf{x}_i, \mathbf{x}_j)$

Aggregation method

- : message passing
- 1) Each node v_i computes a message ϕ
- 2) Each node aggregates the messages using sum or average operations
- 3) Each node updates the node feature γ using aggregated message and current

$$\mathbf{x}_{i}^{(k+1)} = \gamma \left(\mathbf{x}_{i}^{(k)}, \underset{j:(i,j) \in \mathcal{E}}{\Box} \phi \left(\mathbf{x}_{i}^{(k)}, \mathbf{x}_{j}^{(k)}, \mathbf{x}_{ij}^{(k)} \right) \right)$$

 γ, ϕ : MLPs

GraphDistNet

: Graph neural networks-based collision distance estimator for trajectory optimization

Method : GraphDistNet

1. Initial Graph Construction

2. Graph Update via Attention-based Message Passing

3. Collision-distance and gradient Estimation

1. Initial Graph Construction

(a) Fully-connected bipartite graph

(b) Sampling-based bipartite graph jc,o G_r G_o **j**c,r G

Randomly select *j*_c

 j_c : informative node

2. Graph Update via Attention-based Message Passing

Update graph :
$$G_u^{(1)}$$
, $G_u^{(2)}$, $G_u^{(3)}$ $G_u^{(k)}$

$$\begin{split} \hat{h}_{i}^{(k+1)} &= \sum_{j \in \mathcal{N}_{ro}(i) \cup \{i\}} h_{\boldsymbol{\theta}_{k}}^{(k)} \left(\mathbf{x}_{ij,loc}^{(k)}, \mathbf{x}_{ij_{c},rel}^{(k)} \right) \\ & & & \\ &$$

* Node feature x_i : cartesian coordinate.

* Edge feature
$$\mathbf{x}_{ij}^{(k)} = \begin{cases} \left(\mathbf{x}_j^{(0)} - \mathbf{x}_i^{(0)}\right) & \text{if } k = 0, \\ \left(\mathbf{x}_j^{(0)} - \mathbf{x}_i^{(0)} \parallel \mathbf{x}_j^{(k)} - \mathbf{x}_i^{(k)}\right) & \text{otherwise}, \end{cases}$$

After each convolution,

$$G_{u}^{(1)}, G_{u}^{(2)}, G_{u}^{(3)}$$
....

Reselect most informative j_c by introducing **attention-based** selection method.

Attention score

$$\mathbf{a}^{(k)T}\mathbf{x}^{(k)}_i$$

Vector of trainable parameter in attention mechanism

Attention weights

$$\alpha_{i_r}^{(k)} = \frac{\exp(\mathbf{a}^{(k)T}\mathbf{x}_{i_r}^{(k)})}{\sum_{j_r} \exp(\mathbf{a}^{(k)T}\mathbf{x}_{j_r}^{(k)})}$$
$$\alpha_{i_o}^{(k)} = \frac{\exp(\mathbf{a}^{(k)T}\mathbf{x}_{i_o}^{(k)})}{\sum_{j_o} \exp(\mathbf{a}^{(k)T}\mathbf{x}_{j_o}^{(k)})}$$

(1)

3. Collision-distance and gradient Estimation

Attention weighted feature

$$\mathbf{y}_{r}^{(k)} = f_{LR}\left(\sum_{i_{r}} \alpha_{i_{r}} \mathbf{x}_{i_{r}}^{(k)}\right) \in \mathbb{R}^{d_{h}}, \qquad \hat{d} = MLP\left(\underbrace{\prod_{i=1}^{a_{h}} \max_{k} \mathbf{y}_{r}^{k}(i)}_{\mathbf{y}_{f,r}} \| \underbrace{\prod_{i=1}^{a_{h}} \max_{k} \mathbf{y}_{o}^{k}(i)}_{\mathbf{y}_{f,o}}\right)$$
$$\mathbf{y}_{o}^{(k)} = f_{LR}\left(\sum_{i_{o}} \alpha_{i_{o}} \mathbf{x}_{i_{o}}^{(k)}\right) \in \mathbb{R}^{d_{h}}, \qquad \text{Leacky-ReLU}$$

1

1

- We can use this as ...
- Binary Collision Checker

Is collision? = $\begin{cases} \text{True} & \text{if } \hat{d} \leq d_{margin}, \\ \text{False} & \text{otherwise}, \end{cases}$

- Collision-gradient estimator

 $\partial GraphDistNet(\boldsymbol{\theta})/\partial \boldsymbol{\theta}$

-> Gradient-based trajectory optimization

environments.

- 2-DOF & 7-DOF
- Fixed Obstacles & Random Obstacles
- Shape of obstacle

- Baselines.
 - DiffCo
 - ClearanceNet
- FCL use as ground truth

• Estimation performance

MAE : mean absolute error

AUC : area under the ROC

(receiver operating characteristic)

ACD : cosine distances of estimated gradient fields.

Fixed Obstacles Random Obstacles (a) (b) 10 YO -5 -105 0 10 (e) X Obstacles Robot

KAIS

Env.	Method	Distance	Gradient Est.				
		Elapsed Time (s)	MAE with <i>p</i> -value	AUC	ACD		
Fig. 5 (a)	FCL	1.0653	-	-	-		
	DiffCo	0.0048	N/A	1.0000	0.3575		
	ClearanceNet	0.0009	0.0082	1.0000	0.0255		
	GraphDistNet	0.0115	$\begin{array}{c} 0.0082 \\ 0.0031 \end{array} \Big _{6 \times 10^{-20}}$	1.0000	0.0054		
Fig. 5 (b)	FCL	1.1822	-	-	-		
	DiffCo (w/o active learning)	0.0054	N/A	0.5031	1.0270		
	DiffCo (w/ active learning)	2058.2	N/A	0.9948	0.4221		
	ClearanceNet	0.0009	0.1732	0.9986	0.2853		
	GraphDistNet	0.0115	$\begin{array}{c} 0.1732 \\ 0.0390 \end{array} \Big\}^{2 \times 10^{-12}}$	0.9999	0.1748		
Fig. 5 (c)	FCL	3.1573	-	-	-		
	DiffCo	0.0740	N/A	0.9843	0.3202		
	ClearanceNet	0.0012	0.2360	0.9111	0.5933		
	GraphDistNet	0.0574	0.2300 0.0253 $\{6 \times 10^{-60}\}$	0.9990	0.1458		
Fig. 5 (d)	FCL	4.4467	-	-	-		
	DiffCo (w/o active learning)	0.0742	N/A	0.5239	0.9450		
	DiffCo (w/ active learning)	75129.5	N/A	0.9798	0.3968		
	ClearanceNet*	0.0012	0.7725] 10	0.5691	0.9491		
	GraphDistNet	0.0546	$\begin{array}{c} 0.1725 \\ \textbf{0.1614} \end{array} \Big\}_{1 \times 10^{-10}}$	0.9842	0.4152		
Fig. 5 (e)	FCL	6.8432	-	-	-		
	DiffCo (w/o active learning)	0.0350	N/A	0.5200	0.9612		
	DiffCo (w/ active learning)	(Failure: Out of Memory)					
	ClearanceNet*	0.0011	0.7479	0.8882	0.9767		
	GraphDistNet	0.1251	0.1419 0.2446 3×10^{-2}	0.9925	0.8421		

Gradient fields in 2-DoF

Trajectory Optimization

	Env.	Collision Checker	Avg. Elapsed Time (s)	Avg. Path Cost	Success Rate (%)
Simple env	Fig. 5 (b)	DiffCo ClearanceNet GraphDistNet	0.9304 1.7300 1.9522	23.7657 24.9018 24.4297	0.95 1.0 1.0
Complex env	Fig. 5 (d)	DiffCo ClearanceNet GraphDistNet	28.8247 10.9816 16.2682	99.0850 72.3153 65.0297	0.95 0.4 0.9
	Fig. 1	DiffCo ClearanceNet GraphDistNet	0.6364 1.9603 3.2982	3.9×10^{5} 5.5×10^{5} 9.0×10^{5}	0.4 0.3 0.7

Demonstration

Conclusion

Contribution

- graph-based collision-distance estimation network,
 that precisely regresses the collision distance between objects.
- accurate gradients and batch computation, improving trajectory optimization

 robust to various to various environmental changes and unseen environments

Q & A

• Thank you for listening ©

Quiz

Q1. List the sequence of GraphDistNet

- a) Graph updating via message passing
- b) Graph construction with j_0
- c) Distance regression

Q2. Which is NOT possible with GraphDistNet?

- a) estimating collision distance
- b) generating trajectory
- c) calculating gradient of distance

