CS686: Paper presentation 2

GraphDistNet: A Graph-based Collision-distance Estimator

 for Gradient-based Trajectory Optimization
Yeeun Lim (임예은)

Motivation

- Collision detection
- Geometric Algorithm
ex) GJK algorithm time and space consuming
- Data-driven Algorithm
ex) configuration-based, point cloud - based scalability issuses

Motivation

GraphDistNet

: Graph neural networks-based collision distance estimator for trajectory optimization

- Estimated distance
- Calculating collision gradient

KAIST

Background

- Trajectory optimization

Collision free

Background

- Graph Neural Network

$$
\begin{aligned}
G & =(\mathcal{V}, \mathcal{E}, \mathcal{X}) \\
& + \text { edge features } \mathbf{x}_{i j}=h_{\theta}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
\end{aligned}
$$

Aggregation method
: message passing

1) Each node v_{i} computes a message ϕ
2) Each node aggregates the messages \square using sum or average operations
3) Each node updates the node feature γ using aggregated message and current

$$
\mathbf{x}_{i}^{(k+1)}=\gamma\left(\mathbf{x}_{i}^{(k)}, \square_{j:(i, j) \in \mathcal{E}} \phi\left(\mathbf{x}_{i}^{(k)}, \mathbf{x}_{j}^{(k)}, \mathbf{x}_{i j}^{(k)}\right)\right)
$$

Method

GraphDistNet

: Graph neural networks-based collision distance estimator for trajectory optimization

Method : GraphDistNet

1. Initial Graph Construction

2. Graph Update via Attention-based Message Passing
3. Collision-distance and gradient Estimation

Method

1. Initial Graph Construction

Randomly select j_{c}
j_{c} : informative node

Method

2. Graph Update via Attention-based Message Passing

(b) Sampling-based bipartite graph

Local edge Relative edge

Update graph: $\boldsymbol{G}_{\boldsymbol{u}}^{(\mathbf{1})}, \boldsymbol{G}_{\boldsymbol{u}}^{(\mathbf{2})}, \boldsymbol{G}_{\boldsymbol{u}}^{(\mathbf{3})} \ldots \boldsymbol{G}_{\boldsymbol{u}}^{(\boldsymbol{k})}$
$\mathbf{x}_{i}^{(k+1)}=\sum_{j \in \mathcal{N}_{r o}(i) \cup\{i\}} h_{\boldsymbol{\theta}_{k}}^{(k)}\left(\mathbf{x}_{i j, l o c}^{(k)}, \mathbf{x}_{i j_{c}, r e l}^{(k)}\right)$
$h_{\theta_{k}}^{(k)}:$ MLP-based encoder

* Node feature x_{i} : cartesian coordinate.
* Edge feature $\quad \mathbf{x}_{i j}^{(k)}= \begin{cases}\left(\mathbf{x}_{j}^{(0)}-\mathbf{x}_{i}^{(0)}\right) & \text { if } k=0, \\ \left(\mathbf{x}_{j}^{(0)}-\mathbf{x}_{i}^{(0)} \| \mathbf{x}_{j}^{(k)}-\mathbf{x}_{i}^{(k)}\right) & \text { otherwise, }\end{cases}$

Method

After each convolution, $\boldsymbol{G}_{u}^{(\mathbf{1})}, \boldsymbol{G}_{u}^{(\mathbf{2})}, \boldsymbol{G}_{u}^{(\mathbf{3})} \ldots$.
Reselect most informative j_{c} by introducing attention-based selection method.

Attention score

Vector of trainable parameter in attention mechanism

Attention weights

$$
\begin{aligned}
\alpha_{i_{r}}^{(k)} & =\frac{\exp \left(\mathbf{a}^{(k) T} \mathbf{x}_{i_{r}}^{(k)}\right)}{\sum_{j_{r}} \exp \left(\mathbf{a}^{(k) T} \mathbf{x}_{j_{r}}^{(k)}\right)} \\
\alpha_{i_{o}}^{(k)} & =\frac{\exp \left(\mathbf{a}^{(k) T} \mathbf{x}_{i_{o}}^{(k)}\right)}{\sum_{j_{o}} \exp \left(\mathbf{a}^{(k) T} \mathbf{x}_{j_{o}}^{(k)}\right)}
\end{aligned}
$$

Method

3. Collision-distance and gradient Estimation

Attention weighted feature

$$
\begin{gathered}
\mathbf{y}_{r}^{(k)}=f_{L R}\left(\sum_{i_{r}} \alpha_{i_{r}} \mathbf{x}_{i_{r}}^{(k)}\right) \in \mathbb{R}^{d_{h}}, \\
\mathbf{y}_{o}^{(k)}=f_{L R}\left(\sum_{i_{o}} \alpha_{i_{o}} \mathbf{x}_{i_{o}}^{(k)}\right) \in \mathbb{R}^{d_{h}}, \\
\text { Leacky-ReLU }
\end{gathered}
$$

$$
\hat{d}=\operatorname{MLP}(\underbrace{\int_{i=1}^{d_{h}} \max _{k} \mathbf{y}_{r}^{k}(i)}_{\mathbf{y}_{f, r}} \underbrace{\int_{i=1}^{d_{h}} \max _{k} \mathbf{y}_{o}^{k}(i)}_{\mathbf{y}_{f, o}}),
$$

Evaluation

- We can use this as ...

- Binary Collision Checker

Is collision $?= \begin{cases}\text { True } & \text { if } \hat{d} \leq d_{\text {margin }}, \\ \text { False } & \text { otherwise },\end{cases}$

- Collision-gradient estimator
$\partial G r a p h D i s t N e t(\boldsymbol{\theta}) / \partial \boldsymbol{\theta}$
-> Gradient-based trajectory optimization

Evaluation

- environments.

- 2-DOF \& 7-DOF
- Fixed Obstacles \& Random Obstacles
- Shape of obstacle
- Baselines.
- DiffCo
- ClearanceNet
- FCL use as ground truth

Random Obstacles
(b)
(d)
(e)

MAE : mean absolute error

Evaluation

AUC : area under the ROC

(receiver operating characteristic)

ACD: cosine distances of
 estimated gradient fields.

Env.	Method	Distance Regression \& Classification			Gradient Est. ACD
		Elapsed Time (s)	MAE with p-value	AUC	
Fig. 5 (a)	FCL	1.0653	-	-	-
	DiffCo	0.0048	N/A	1.0000	0.3575
	ClearanceNet	0.0009	0.0082	1.0000	0.0255
	GraphDistNet	0.0115	$0.0031\}^{6 \times 10^{-20}}$	1.0000	0.0054
Fig. 5 (b)	FCL	1.1822	-	-	-
	DiffCo (w/o active learning)	0.0054	N/A	0.5031	1.0270
	DiffCo (w/ active learning)	2058.2	N/A	0.9948	0.4221
	ClearanceNet	0.0009	$0.1732\}$	0.9986	0.2853
	GraphDistNet	0.0115	$\mathbf{0 . 0 3 9 0}\} 2 \times 10^{-12}$	0.9999	0.1748
Fig. 5 (c)	FCL	3.1573	-	-	-
	DiffCo	0.0740	N/A	0.9843	0.3202
	ClearanceNet	0.0012	0.2360 \} ${ }^{-60}$	0.9111	0.5933
	GraphDistNet	0.0574	$0.0253\}{ }^{6 \times 10^{-60}}$	0.9990	0.1458
Fig. 5 (d)	FCL	4.4467	-	-	-
	DiffCo (w/o active learning)	0.0742	N/A	0.5239	0.9450
	DiffCo (w/ active learning)	75129.5	N/A	0.9798	0.3968
	ClearanceNet*	0.0012	$0.7725\}_{1 \times 10^{-10}}$	0.5691	0.9491
	GraphDistNet	0.0546	$0.1614\} 1 \times 10^{-10}$	0.9842	0.4152
Fig. 5 (e)	FCL	6.8432	-	-	-
	DiffCo (w/o active learning)	0.0350	N/A	0.5200	0.9612
	DiffCo (w/ active learning)	0 (Failure: Out of Memory)			
	ClearanceNet*	0.0011	$0.7479\}$	0.8882	0.9767
	GraphDistNet	0.1251	$0.2446\}^{3 \times 10^{-}}$	0.9925	0.8421

Evaluation

- Gradient fields in 2-DoF

Evaluation

- Trajectory Optimization

	Env.	Collision Checker	Avg. Elapsed Time (s)	Avg. Path Cost	Success Rate (\%)
Simple env	Fig. 5	DiffCo	0.9304	$\mathbf{2 3 . 7 6 5 7}$	0.95
	(b)	ClearanceNet	1.7300	24.9018	$\mathbf{1 . 0}$
GraphDistNet	1.9522	24.4297	$\mathbf{1 . 0}$		
Complex env	Fig. 5	DiffCo	28.8247	99.0850	$\mathbf{0 . 9 5}$
	(d)	ClearanceNet	10.9816	72.3153	0.4
		GraphDistNet	16.2682	65.0297	0.9
	Fig. 1	Diffo	0.6364	3.9×10^{5}	0.4
		GraphDistNet	1.9603	5.5×10^{5}	0.3
			3.2982	9.0×10^{5}	$\mathbf{0 . 7}$

Evaluation

- Demonstration

Conclusion

- Contribution
- graph-based collision-distance estimation network, that precisely regresses the collision distance between objects.
- accurate gradients and batch computation, improving trajectory optimization
- robust to various to various environmental changes and unseen environments

Q\&A

- Thank you for listening ©

Quiz

Q1. List the sequence of GraphDistNet

a) Graph updating via message passing
b) Graph construction with j_{0}
c) Distance regression

Q2. Which is NOT possible with GraphDistNet?

a) estimating collision distance
b) generating trajectory
c) calculating gradient of distance

