Hashing Techniques

윤성의 <mark>(Sung-Eui Yoon)</mark> Professor KAIST

http://sgvr.kaist.ac.kr

Class Objectives

- Understand the basic hashing techniques based on hyperplanes
 - Unsupervised approach
- Supervised approach using deep learning

• At the last class:

- Discussed re-ranking methods: spatial verification and query expansion
- Talked about inverted index

Review of Basic Image Search

Finding visually similar images

Image Descriptor

High dimensional point

(BoW, GIST, Color Histogram, etc.)

 $dist \downarrow sim \uparrow$

Image Descriptor

High dimensional point Nearest neighbor search (NNS) in high dimensional space

Challenge

	BoW	CNN
Dimensions	1000+	4000+
1 image	4 KB+	16 KB+
1B images	4 TB+	16 TB+

$$\frac{144 \text{ GB memory}}{1 \text{ billion images}} \approx \frac{128 \text{ bits}}{1 \text{ image}}$$

Binary Code

Binary Code

- * Benefits
 - Compression
 - Very fast distance computation (Hamming Distance, XOR)

Hyper-Plane based Binary Coding

Hyper-Plane based Binary Coding

KΛ

Distance between Two Points

- Measured by bit differences, known as Hamming distance
- Efficiently computed by XOR bit operations

$$d_{hd}(b_i, b_j) =$$

$$|b_i\oplus b_j|$$

Good and Bad Hyper-Planes

Previous work focused on how to determine good hyper-planes

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Spherical Hashing [Heo et al., CVPR 12]

Spherical Hashing [Heo et al., CVPR 12]

Hyper-Sphere vs Hyper-Plane

Average of maximum distances within a partition: - Hyper-spheres gives tighter bound!

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Good Binary Coding [Yeiss 2008, He 2011]

1. Balanced partitioning

Intuition of Hyper-Sphere Setting

1. Balance

2. Independence

Hyper-Sphere Setting Process

- 1. Balance
- by controlling radius for $n(S) = \frac{N}{2}$

Iteratively repeat step 1, 2 until convergence.

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Max Distance and Common '1'

Max Distance and Common '1'

Max Distance and Common '1'

Average of maximum distances between two partitions: decreases as number of common '1'

Spherical Hamming Distance (SHD)

$$d_{shd}(b_i, b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}$$

SHD: Hamming Distance divided by the number of common '1's.

Results

384 dimensional 75 million GIST descriptors

Results of Image Retrieval

Collaborated with Adobe

- 11M images
- Use deep neural nets for image representations
- Spend only 35 ms for a single CPU thread

Supervised Hashing

- Utilize image labels
 - Conducted by using deep learning

Supervised hashing for image retrieval via image representation learning, AAA 14

• First step: approximate hash codes

- S (similarity matrix, i.e., 1 when two images i & j have same label)
- H (Hamming embedding, binary codes): dot products between two similar codes gives 1
- Minimize the reconstruction error between S and similarity between codes

Supervised hashing for image retrieval via image representation learning, AAA 14

- Second step: learning image features and hash functions
 - Use Alexnet by utilizing approximate target hash codes and optionally class labels
 - Once the network is trained, it is used for test images

Class Objectives were:

- Understand the basic hashing techniques based on hyperplanes
 - Unsupervised approach
- Supervised approach using deep learning
- Codes are available

http://sglab.kaist.ac.kr/software.htm

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - Write questions three times
- Go over recent papers on image search, and submit their summary before Tue. class

Next Time...

• CNN based image search techniques

Fig

