Style Normalization and Restitution for Generalizable Person Re-identification (CVPR 2020) Xin et al.

Presenter : Dongjun Kim

Contents

- 1. Review
- 2. Introduction & Motivation
- 3. Method
- 4. Experiments
- 5. Conclusion

Review

Universal Perturbation Attack against Image Retrieval

- Aim : Build UAP(Universal Adversarial Perturbations) specific to image retrieval task
- Mainly used List-wise Loss and Pair-wise Loss to perturb Triplet loss and entire ranking list

Introduction & Motivation

Introduction & Motivation

- Fully-supervised person re-identification (ReID) methods usually suffer from poor generalization capability
- The images are captured by different cameras under different environments
- Presents large discrepancy in terms of illumination, hue, contrast, saturation, quality

Introduction & Motivation

Introduction & Motivation

For generalizable ReID framework which achieves,

- Generalization capability
- Discrimination capability
- \rightarrow **Disentangle** the identity-relevant features and identity-irrelevant features

Introduction & Motivation

Introduction & Motivation

- Use **style normalization** to alleviate style variations
- This results in the loss of some discriminative information
- Propose to further restitute such information

- SNR can be used as a plug-and-play module and added after each convolution block
- Use ResNet-50 as backbone

Style Normalization and Restitution (SNR)

- Instance normalization performs style normalization, but inevitably removes some discriminative information

- IN reduces style discrepancy and boosts generalization capability
- Define **residual feature** *R* as difference between the *original input feature and the style normalized feature*
- With given R, disentangle it into identity-relevant feature (+) and identity-irrelevant feature (-)

- With learned channel attention vector $\mathbf{a} = [a_1, a_2, \cdots, a_c] \in \mathbb{R}^c$
- Final output feature is obtained with adding identity-relevant feature to the style normalized feature

- After restituting the identity-relevant feature(+) to the normalized feature, the feature becomes more discriminative
- On the other, identity-irrelevant feature (-) should become less discriminative
- Dual causality loss helps to do it

Style Normalization and Restitution (SNR)

- Consists of clarification loss(+) and destruction loss(-) $\mathcal{L}_{SNR}^+ + \mathcal{L}_{SNR}^-$
- Calculate the distances between samples on a spatially average pooled feature
- Anchor, Positive, Negative

$$\begin{aligned} \mathcal{L}_{SNR}^{+} &= Softplus(d(\widetilde{\mathbf{f}}_{a}^{+}, \widetilde{\mathbf{f}}_{p}^{+}) - d(\widetilde{\mathbf{f}}_{a}, \widetilde{\mathbf{f}}_{p})) \\ &+ Softplus(d(\widetilde{\mathbf{f}}_{a}, \widetilde{\mathbf{f}}_{n}) - d(\widetilde{\mathbf{f}}_{a}^{+}, \widetilde{\mathbf{f}}_{n}^{+})) \end{aligned}$$

$$\begin{split} \mathcal{L}_{SNR}^{-} &= Softplus(d(\widetilde{\mathbf{f}}_{a},\widetilde{\mathbf{f}}_{p}) - d(\widetilde{\mathbf{f}}_{a}^{-},\widetilde{\mathbf{f}}_{p}^{-})) \\ &+ Softplus(d(\widetilde{\mathbf{f}}_{a}^{-},\widetilde{\mathbf{f}}_{n}^{-}) - d(\widetilde{\mathbf{f}}_{a},\widetilde{\mathbf{f}}_{n})). \end{split}$$

Clarification

$$Softplus(\cdot) = ln(1 + exp(\cdot))$$

Destruction

Experiments

Source	Method	Target: Market1501		Target: Duke		Target: PRID		Target: GRID		Target: VIPeR		Target: iLIDs	
		mAP	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	Rank-1
	Baseline	82.8	93.2	19.8	35.3	13.7	6.0	25.8	16.0	37.6	28.5	61.5	53.3
	Baseline-A-IN	75.3	89.8	24.1	42.7	33.9	21.0	35.6	27.2	38.1	29.1	64.2	55.0
	Baseline-IBN	81.1	92.2	21.5	39.2	19.1	12.0	27.5	19.2	32.1	23.4	58.3	48.3
Market1501 (M)	Baseline-A-SN	83.2	93.9	20.1	38.0	35.4	25.0	29.0	22.0	32.2	23.4	53.4	53.4 43.3 64.0 54.2
	Baseline-IN	79.5	90.9	25.1	44.9	35.0	25.0	35.7	27.8	35.1	27.5	64.0	
	Baseline-SNR (Ours)	84.7	94.4	33.6	55.1	42.2	30.0	36.7	29.0	42.3	32.3	65.6	56.7
	Baseline	21.8	48.3	71.2	83.4	15.7	11.0	14.5	8.8	37.0	26.9	68.3	58.3
	Baseline-A-IN	26.5	56.0	64.5	78.9	38.6	29.0	19.6	13.6	35.1	27.2	67.4	56.7
	Baseline-IBN	24.6	52.5	69.5	81.4	27.4	19.0	19.9	12.0	32.8	23.4	63.5	61.7
Duke (D)	Baseline-A-SN	25.3	55.0	73.0	85.9	41.4	32.0	18.8	12.8	31.3	24.1	64.8	63.3
	Baseline-IN	27.2	58.5	68.9	80.4	40.5	27.0	20.3	13.2	34.6	26.3	70.6	65.0
	Baseline-SNR (Ours)	33.9	66.7	72.9	84.4	45.4	35.0	35.3	26.0	41.2	32.6	79.3	68.7
M + D + CUHK03	Baseline	72.4	88.7	70.1	83.8	39.0	28.0	29.6	20.8	52.1	41.5	89.0	85.0
+ MSMT17	Baseline-SNR (Ours)	82.3	93.4	73.2	85.5	60.0	49.0	41.3	30.4	65.0	55.1	91.9	87.0

Experiments

Ablation

	M	$\rightarrow D$	$D \longrightarrow M$		
Method	mAP	Rank-1	mAP	Rank-1	
Baseline	19.8	35.3	21.8	48.3	
SNR w/o \mathcal{L}_{SNR}	26.1	45.0	29.2	57.4	
SNR w/o \mathcal{L}_{SNR}^+	28.8	48.9	30.2	59.8	
SNR w/o \mathcal{L}_{SNR}^{-}	28.0	48.1	30.3	59.1	
SNR	33.6	55.1	33.9	66.7	

	M-	$\rightarrow D$	$D \longrightarrow M$			
Method	mAP	Rank-1	mAP	Rank-1		
Baseline	19.8	35.3	21.8	48.3		
stage-1	23.7	42.8	27.6	57.7		
stage-2	24.0	44.4	28.6	58.8		
stage-3	26.4	46.3	29.5	60.7		
stage-4	26.2	45.8	29.4	59.7		
stages-all	33.6	55.1	33.9	66.7		

(c) Disentanglement designs in SNF	2.
------------------------------------	----

	M-	→D	$D \longrightarrow M$			
Method	mAP	Rank-1	mAP	Rank-1		
Baseline	<u>19.8</u>	35.3	21.8	48.3		
SNRconv	29.7	51.1	29.4	61.7		
$SNR_{q(\cdot)^2}$	31.2	52.9	31.0	63.8		
SNR	33.6	55.1	33.9	66.7		

Experiments

Visualizations

Conclusion

Conclusion

- Propose a generalizable person ReID framework to enable
- SNR module exploit the Instance Normalization that filters out the interference from style variations, and restitute the identity relevant features that are discarded by IN
- To disentangle the identity-relevant and –irrelevant features, they further design a dual causality loss constraint

Thank you !