Reducing Domain Gap by Reducing Style Bias (CVPR 2021) Nam et al.

Presenter : Dongjun Kim

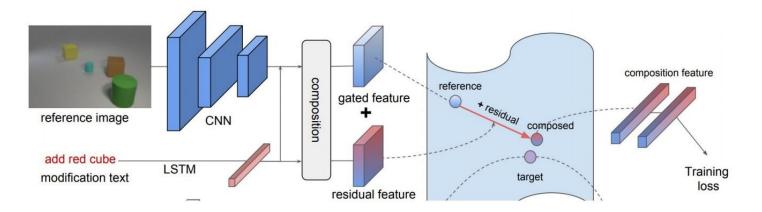
Contents

- 1. Review
- 2. Introduction & Motivation
- 3. Method
- 4. Experiments
- 5. Conclusion

Review

Composing Text and Image for Image Retrieval

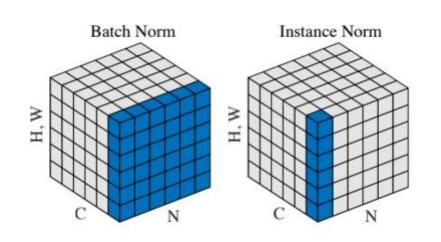
- Aim : To retrieve better image with modification text of a given image
- Used TIRG (Text Image Residual Gating) to learn the composition of feature with text
 + image
- With **gating connection** and **residual connection**, it retains the image feature with modified text and learns similarity between gated features and target image features
- Used **classification loss** from deep metric learning

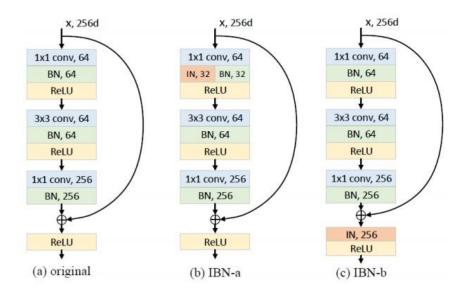


Review

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

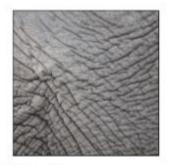
- **Aim :** Want to have better learning and generalization in unseen domain with no additional target domain data
- They thought appearance variance causes the domain gap, therefore by **Batch Norm(BN)** and **Instance Norm(IN)** in network can control the style variances

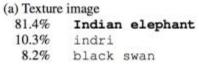




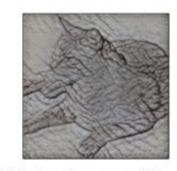
Introduction & Motivation

- CNN architectures often fail to maintain their performance when they confront new test domains, which is known as **domain shift**
- **Main cause :** CNN's strong bias towards image styles (i.e. textures)





(b) Content image 71.1% tabby cat 17.3% grey fox 3.3% Siamese cat



(c) Texture-shape cue conflict
63.9% Indian elephant
26.4% indri
9.6% black swan

ImageNet-trained CNNs are biased towards texture (ICLR 2019)

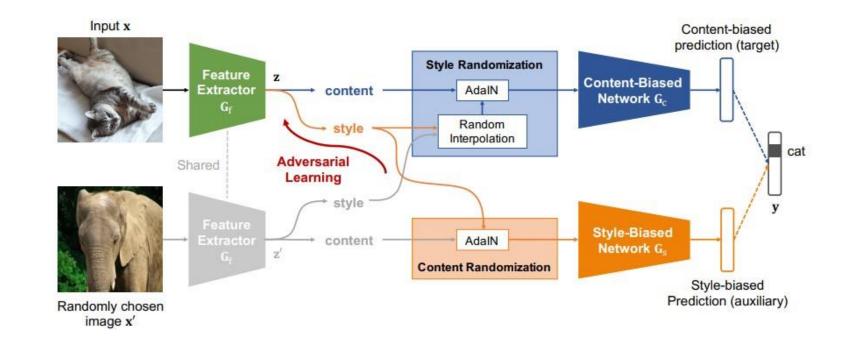
Introduction & Motivation

To overcome the domain gap,

- Learn a shared feature space across multiple source domains
- Split the source domains into meta-train and meta-test (Meta Learning)

Introduction & Motivation

- Propose to reduce the intrinsic style bias of CNNs to close the gap between domains
- Presents Style-Agnostic Networks (SagNets) that disentangle style encodings from class categories to prevent style biased predictions



AdalN

- In style transfer methods, many of approaches have been introduced
- But the main problem was that the speed of optimization is too slow
- Although IN can perform style normalization, can't tell what specific style could be transferred

$$IN(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta \qquad AdaIN(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \mu(y)$$

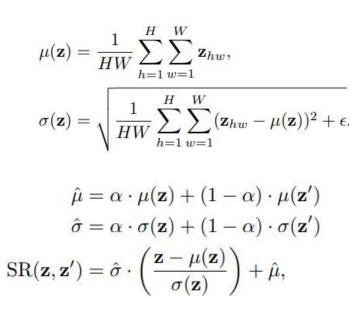
AdalN

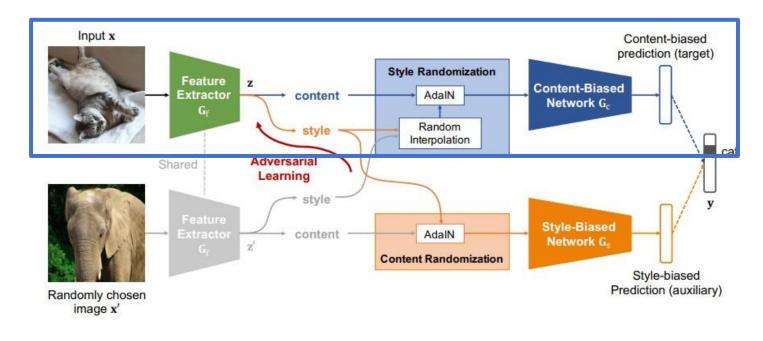
- With content *x* and style *y*, we can adaptively stylize input *x* with the style *y*
- We call the normalization process as whitening, and the shifting process as coloring

$$IN(x) = \gamma \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \beta \qquad AdaIN(x, y) = \sigma(y) \left(\frac{x - \mu(x)}{\sigma(x)}\right) + \mu(y)$$

Content-biased learning

- Enforce the model to learn content-biased features by introducing a style randomization (SR) module
- Constructs randomize style by interpolating between the styles of z and z', then replaces the style of the input with AdalN

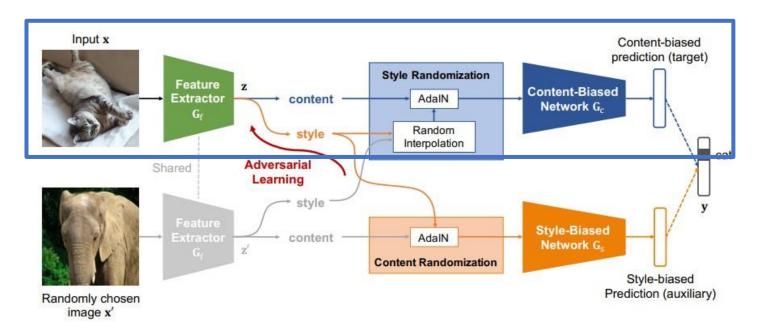




Content-biased learning

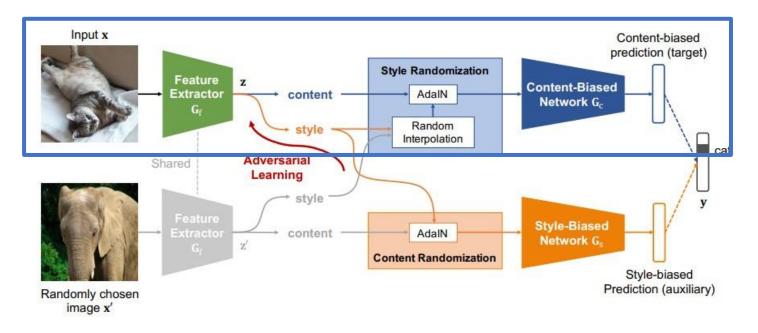
- Then the representation is fed into the content-biased network
- Jointly optimizes the both feature extractor and the content-biased network
- K = Number of class categories

$$\min_{\mathbf{G}_{f},\mathbf{G}_{c}} L_{c} = -\mathbb{E}_{(\mathbf{x},\mathbf{y})\in S} \sum_{k=1}^{K} \mathbf{y}_{k} \log \mathbf{G}_{c}(\mathrm{SR}(\mathbf{G}_{f}(\mathbf{x}),\mathbf{z}'))_{k}$$



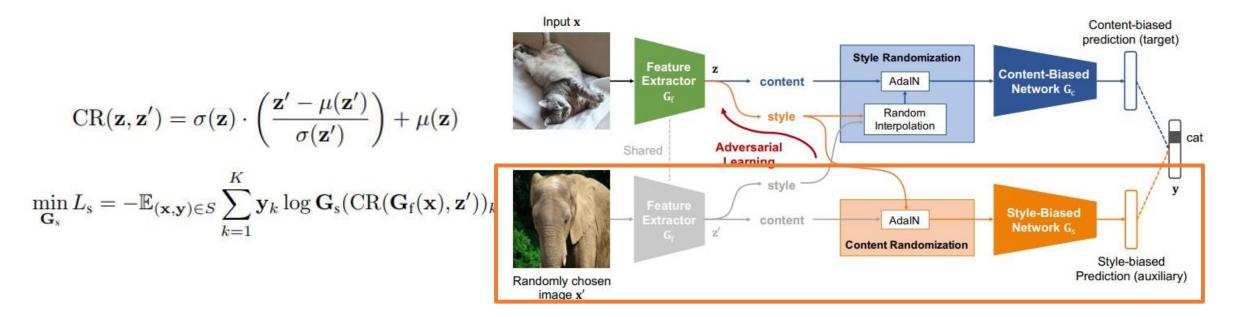
Adversarial Style-Biased learning

- Constrain the feature extractor from learning style-biased representation by adopting an adversarial learning framework
- Build an auxiliary style-biased network as a discriminator to make style-biased predictions



Adversarial Style-Biased learning

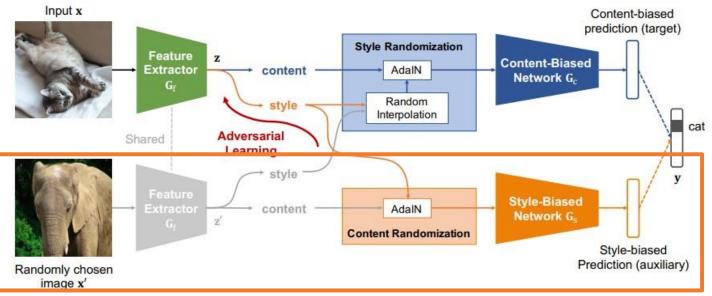
- Contrary to SR which leaves the content of the input and randomizes its style, the CR module does the opposite
- Apply AdalN to the content of z' with the style of z
- It is taken as an input to the style-biased network to make a style biased prediction



Adversarial Style-Biased learning

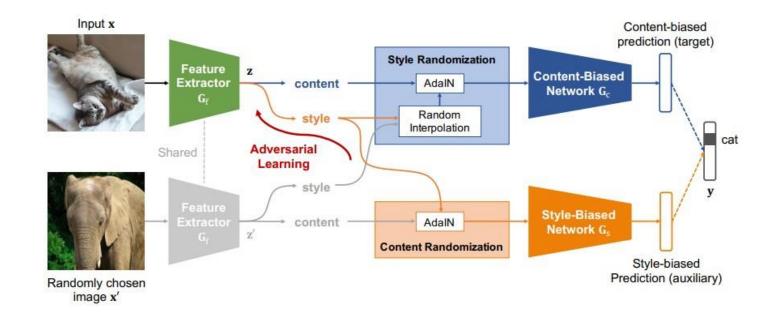
- The feature extractor G_f is then trained to fool G_s by minimizing an adversarial loss computed by the cross entropy
- Efficiently control the trade-off between style and content biases by adjusting the coefficient λ_{adv}

$$\min_{\mathbf{G}_{\mathrm{f}}} L_{\mathrm{adv}} = -\lambda_{\mathrm{adv}} \mathbb{E}_{(\mathbf{x},\cdot) \in S} \sum_{k=1}^{K} \frac{1}{K} \log \mathbf{G}_{\mathrm{s}}(\mathrm{CR}(\mathbf{G}_{\mathrm{f}}(\mathbf{x}), \mathbf{z}')))_{k}$$



Implementation

- The style-biased network forms the same structure with the content-biased network
- Meaning that, no overheads and same network architectures as CNN
- Trained end-to-end

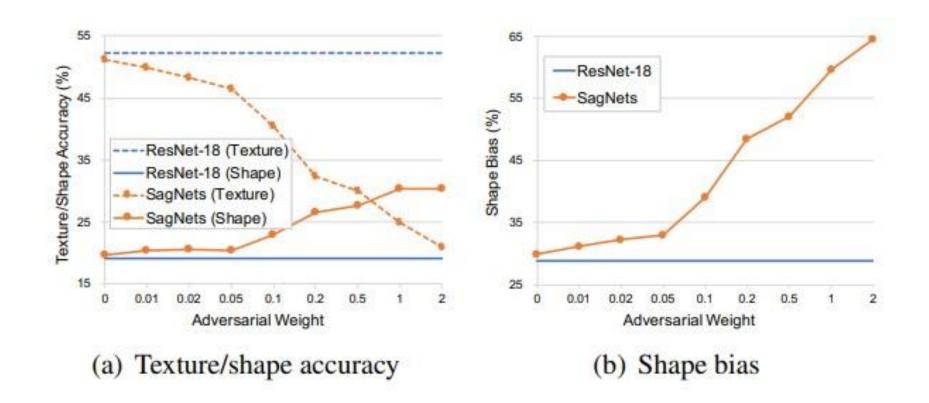


Cue conflict stimuli



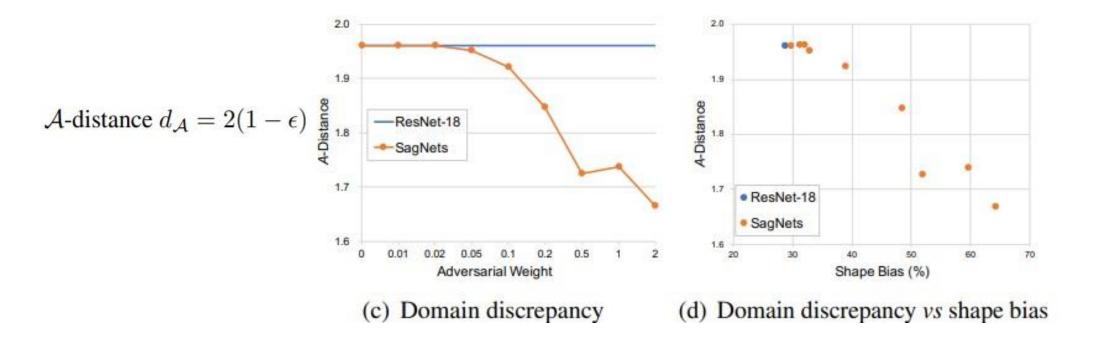
Texture/Shape bias

- Quantify the texture and shape biases by evaluating them on the cue conflict stimuli and counting the number of predictions



Domain Gap

- Measure distance between the two domains (ImageNet, Conflict Cue)
- Where the epsilon, is a generalization error of SVM classifier
- Shape-biased representation generalizes better across domains



Domain Generalization

- Generalize from multiple source domains to a novel target domain (unseen)

	Art paint.	Cartoon	Sketch	Photo	Avg.
		AlexNet			
D-SAM	63.87	70.70	64.66	85.55	71.20
JiGen	67.63	71.71	65.18	89.00	73.38
Epi-FCR	64.7	72.3	65.0	86.1	72.0
MASF	70.35	72.46	67.33	90.68	75.21
MMLD	69.27	72.83	66.44	88.98	74.38
DeepAll	65.19	67.83	63.75	90.08	71.71
SagNet	71.01	70.78	70.26	90.04	75.52
		ResNet-18			
D-SAM	77.33	72.43	77.83	95.30	80.72
JiGen	79.42	75.25	71.35	96.03	80.51
Epi-FCR	82.1	77.0	73.0	93.9	81.5
MASF	80.29	77.17	71.69	94.99	81.04
MMLD	81.28	77.16	72.29	96.09	81.83
DeepAll	78.12	75.10	68.43	95.37	79.26
SagNet ^{-CBL}	78.86	77.05	73.28	95.43	81.15
SagNet ^{-ASBL}	82.94	76.73	74.74	95.07	82.37
SagNet	83.58	77.66	76.30	95.47	83.25

Conclusion

Conclusion

- Presents Style-Agnostic Networks (SagNets) that are robust against domain shift caused by style variability
- By randomizing styles in a latent feature space, SagNets rely more on contents rather than styles

Thank you !