CS688: Web-Scale Image Search Scale Invariant Region Selection and SIFT

Sung-Eui Yoon (윤성의)

Course URL: <u>http://sgvr.kaist.ac.kr/~sungeui/IR</u>

Announcements

- Parts of my book are updated
- One of students is invited to each class

Class Objectives (Ch. 2.4)

Scale invariant region selection

- Automatic scale selection
- Laplacian of Gradients (LoG) ≈ Difference of Gradients (DoG)
- SIFT as a local descriptor

• At last time, we discussed:

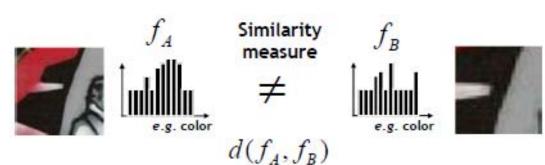
- Different conferences
- Image descriptors that are invariant to various changes
- Harris corner detector

From Points to Regions...

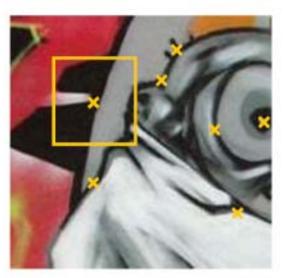
- The Harris and Hessian operators define interest points.
 - Precise localization
 - High repeatability

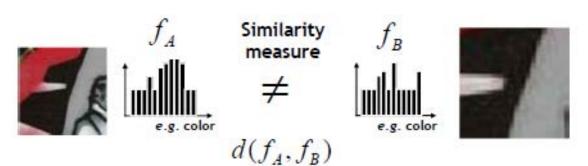
- In order to compare those points, we need to compute a descriptor over a region.
 - How can we define such a region in a scale invariant manner?
- I.e. how can we detect scale invariant interest regions?

- Multi-scale procedure
 - Compare descriptors while varying the patch size



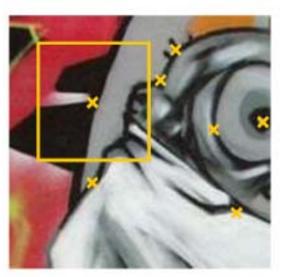
- Multi-scale procedure
 - Compare descriptors while varying the patch size

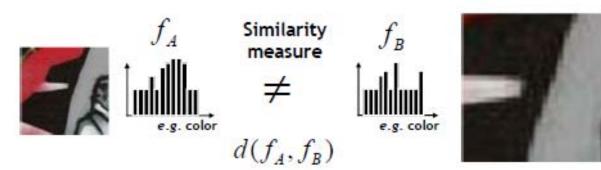


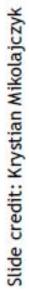




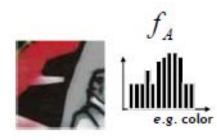
- Multi-scale procedure
 - Compare descriptors while varying the patch size





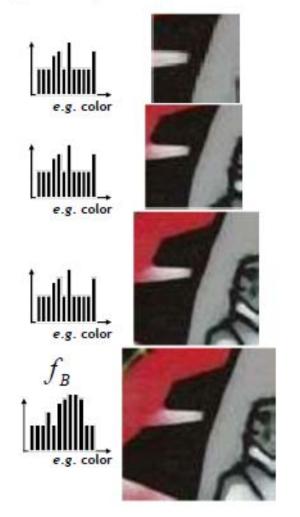


- Comparing descriptors while varying the patch size
 - Computationally inefficient
 - Inefficient but possible for matching
 - Prohibitive for retrieval in large databases
 - Prohibitive for recognition



Similarity measure

 $d(f_A, f_B)$

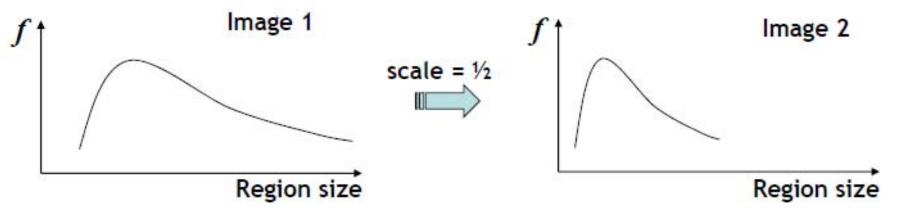


Slide credit: Krystian Mikolajczyk

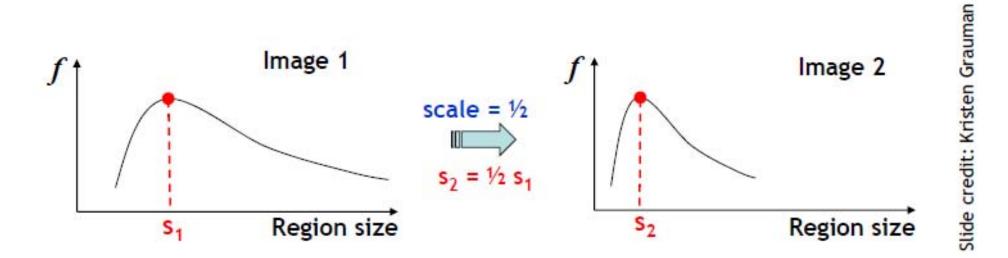
- Solution:
 - Design a function on the region, which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

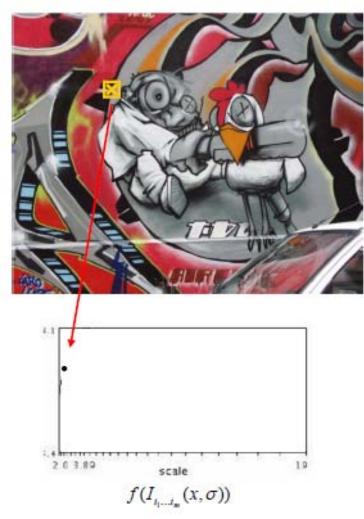
Example: average intensity. For corresponding regions (even of different sizes) it will be the same.

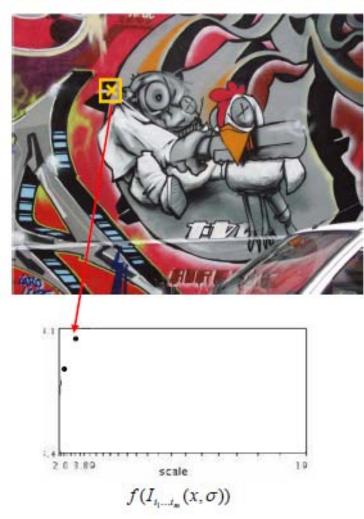
 For a point in one image, we can consider it as a function of region size (patch width)

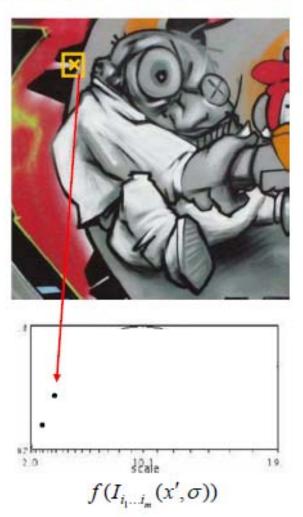


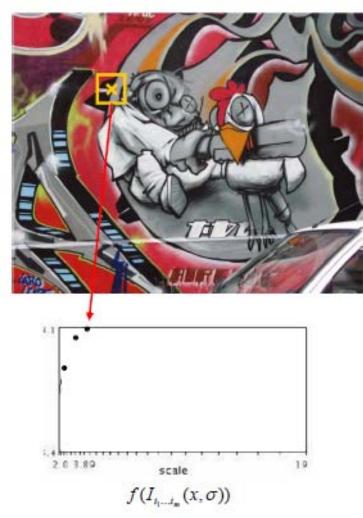
- Common approach:
 - Take a local maximum of this function.
 - Observation: region size for which the maximum is achieved should be invariant to image scale.

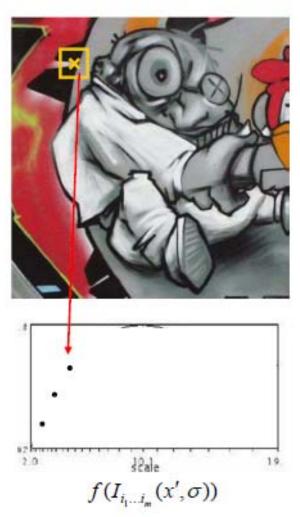




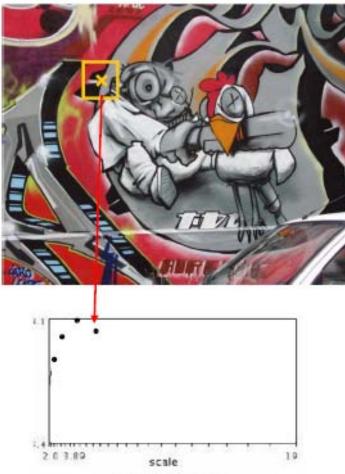




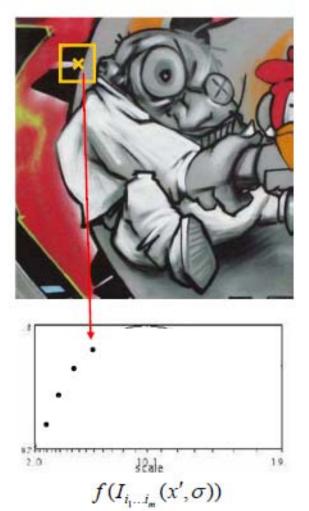


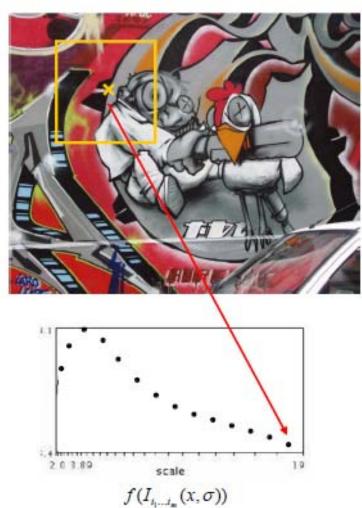


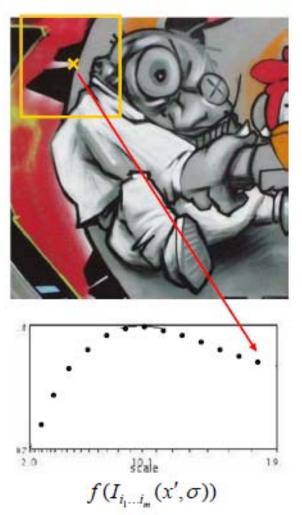
Function responses for increasing scale (scale signature)

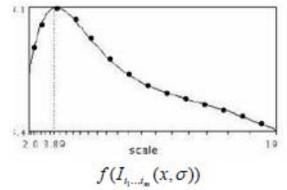


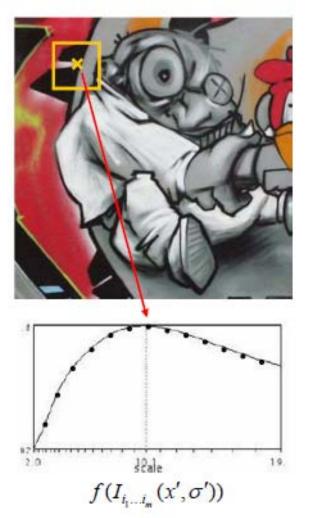
 $f(I_{i_1\ldots i_m}(x,\sigma))$



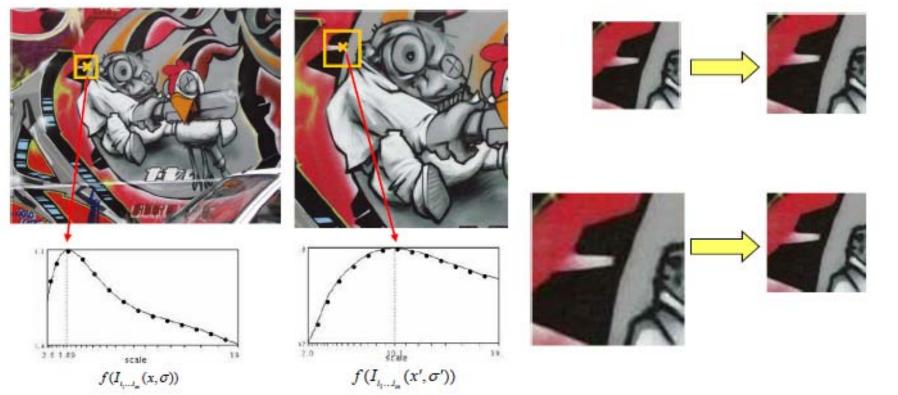








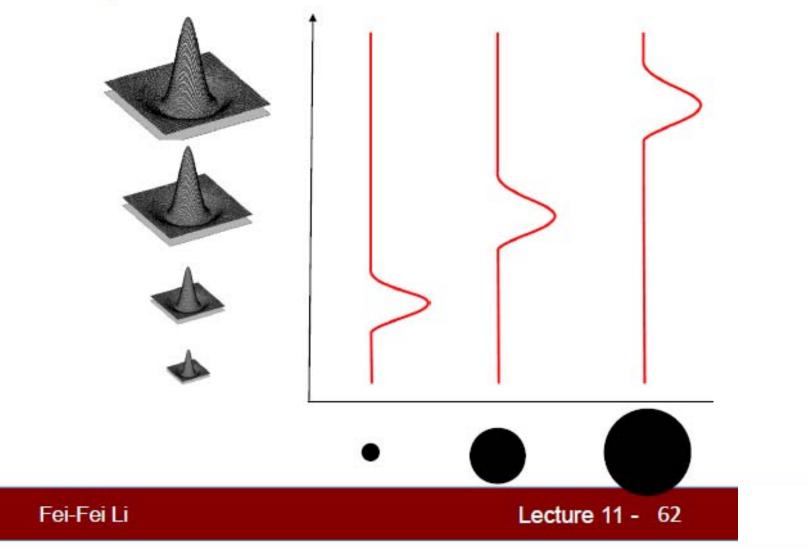
Normalize: Rescale to fixed size



Slide credit: Tinne Tuytelaars

What Is A Useful Signature Function?

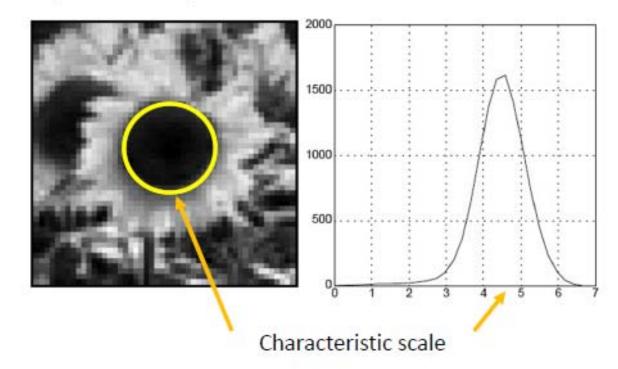
Laplacian-of-Gaussian = "blob" detector



Slide credit: Bastian Leibe

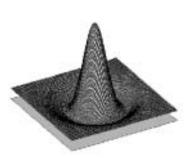
Characteristic Scale

 We define the characteristic scale as the scale that produces peak of Laplacian response

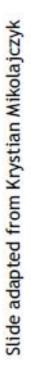


T. Lindeberg (1998). <u>"Feature detection with automatic scale selection.</u>" International Journal of Computer Vision 30 (2): pp 77--116.

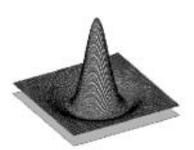
- Interest points:
 - Local maxima in scale space of Laplacian-of-Gaussian

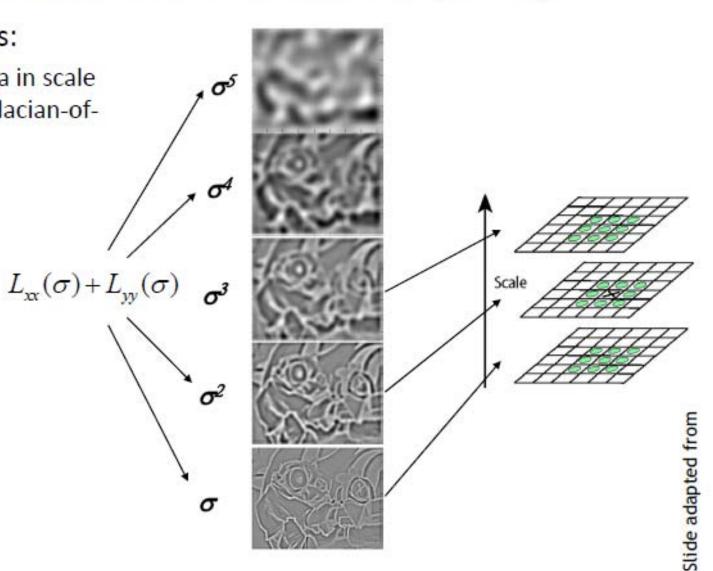


05 σ^4 $L_{xx}(\sigma) + L_{yy}(\sigma)$ σ^{3} σ^2 σ

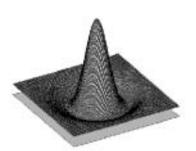


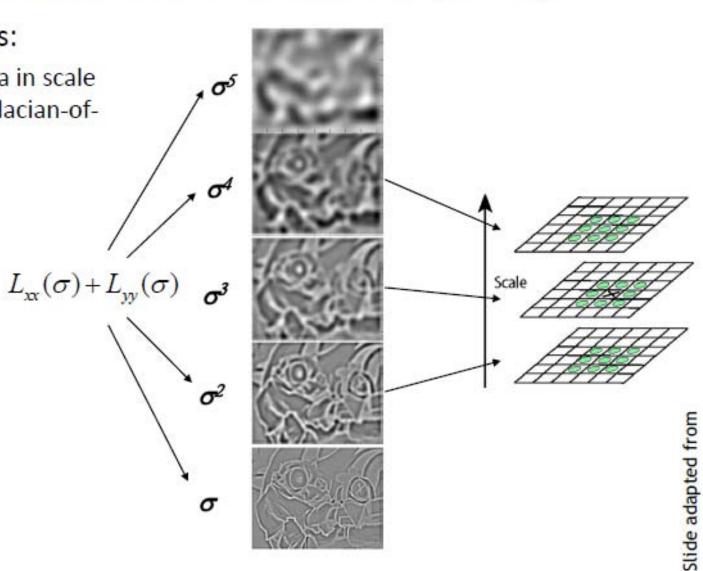
- Interest points:
 - Local maxima in scale space of Laplacian-of-Gaussian



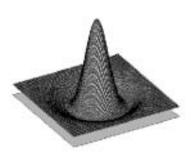


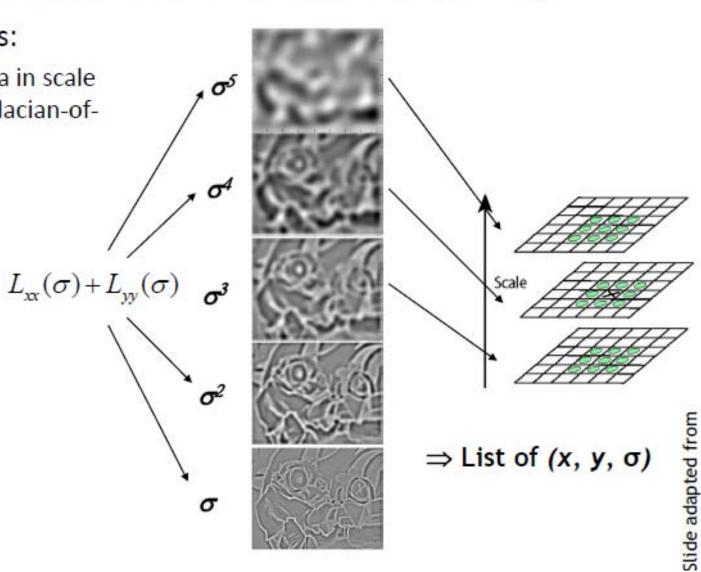
- Interest points:
 - Local maxima in scale space of Laplacian-of-Gaussian





- Interest points:
 - Local maxima in scale space of Laplacian-of-Gaussian



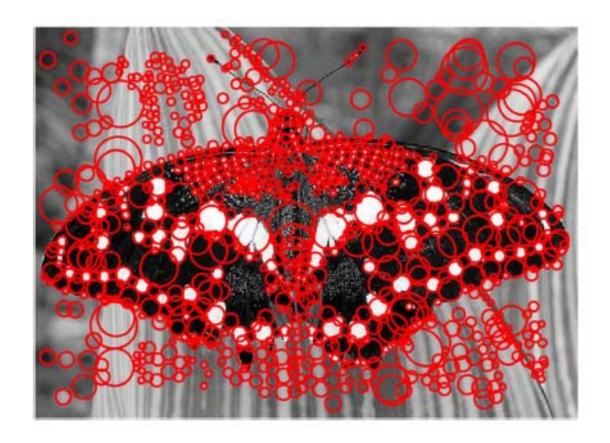


LoG Detector: Workflow

LoG Detector: Workflow

sigma = 11.9912

LoG Detector: Workflow



Slide credit: Svetlana Lazebnik

Technical Detail

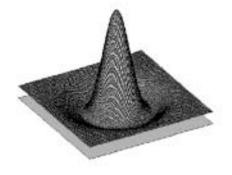
 We can efficiently approximate the Laplacian with a difference of Gaussians:

0.2

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)^{a_{1}}$$
(Laplacian)
$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)
$$\Box = Laplacian$$

Difference-of-Gaussian (DoG)

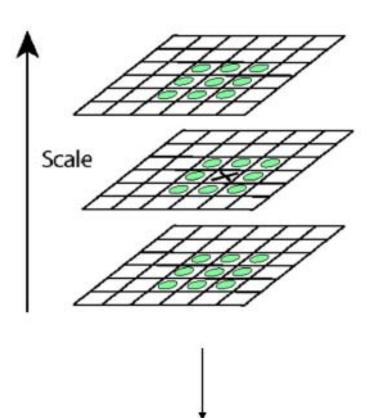
- Difference of Gaussians as approximation of the LoG
 - This is used e.g. in Lowe's SIFT pipeline for feature detection.
- Advantages
 - No need to compute 2nd derivatives
 - Gaussians are computed anyway, e.g. in a Gaussian pyramid.



Slide credit: Bastian Leibe

Key point localization with DoG

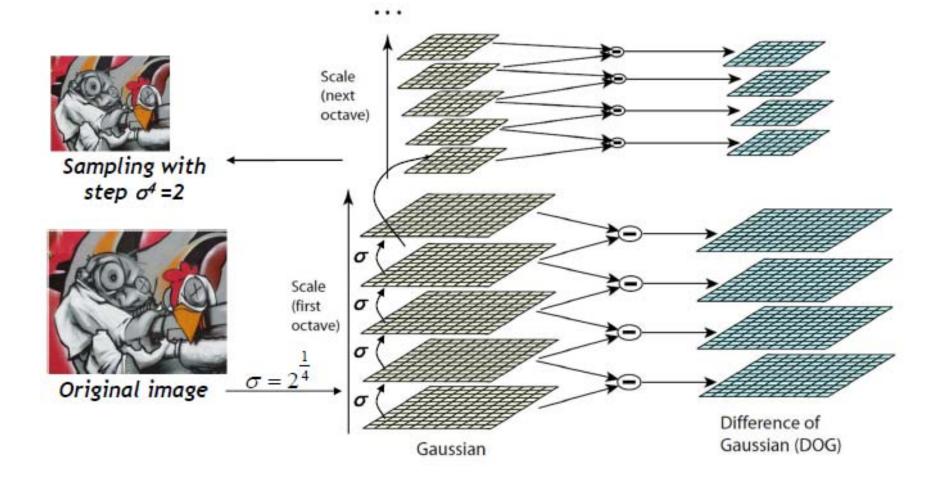
- Detect maxima of difference-of-Gaussian (DoG) in scale space
- Then reject points with low contrast (threshold)
- Eliminate edge responses



Candidate keypoints: list of (x,y,σ)

DoG – Efficient Computation

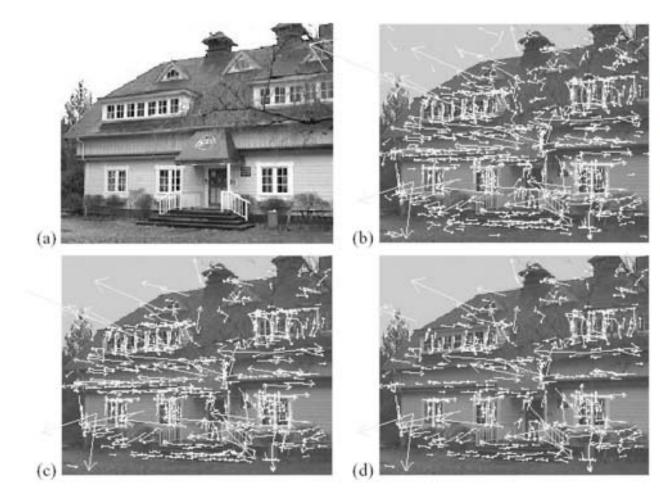
Computation in Gaussian scale pyramid



Slide adapted from Krystian Mikolajczyk

Results: Lowe's DoG

Example of Keypoint Detection

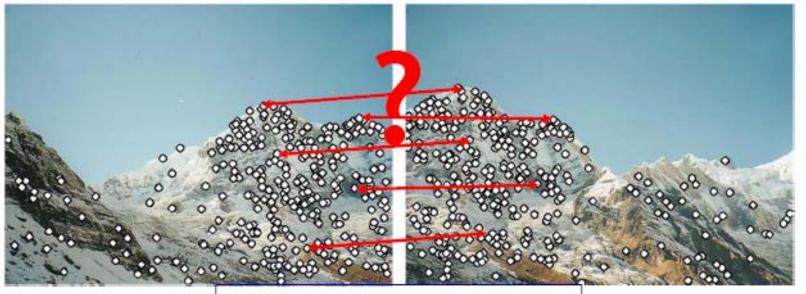


- (a) 233x189 image
- (b) 832 DoG extrema
- (c) 729 left after peak value threshold
- (d) 536 left after testing ratio of principle curvatures (removing edge responses)

Local Descriptors

- We know how to detect points
- Next question:

How to *describe* them for matching?

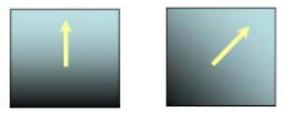


Point descriptor should be:

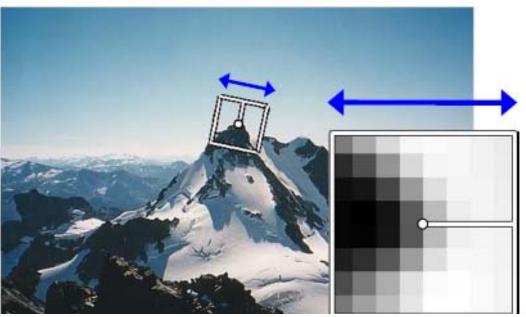
- 1. Invariant
- 2. Distinctive

Rotation Invariant Descriptors

- Find local orientation
 - Dominant direction of gradient for the image patch



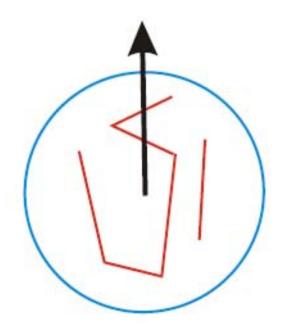
- Rotate patch according to this angle
 - This puts the patches into a canonical orientation.

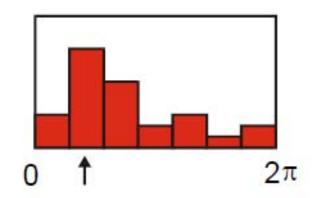


Orientation Normalization: Computation

[Lowe, SIFT, 1999]

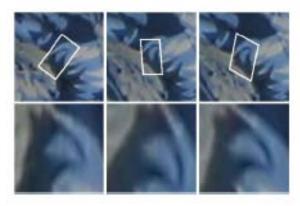
- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation



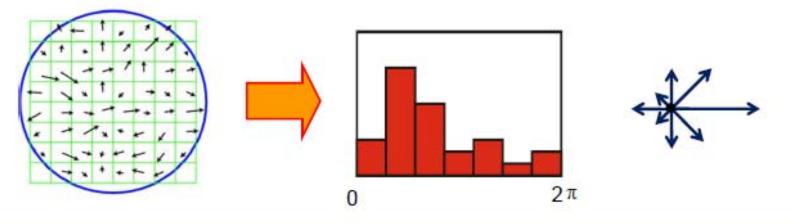


Feature Descriptors

- Disadvantage of patches as descriptors:
 - Small shifts can affect matching score a lot

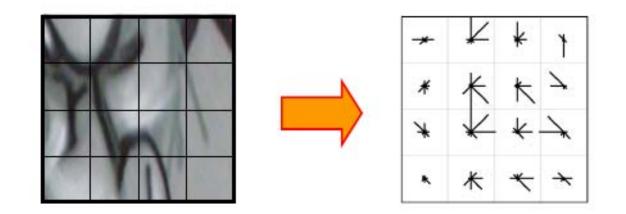


Solution: histograms



Feature Descriptors: SIFT

- Scale Invariant Feature Transform
- Descriptor computation:
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions



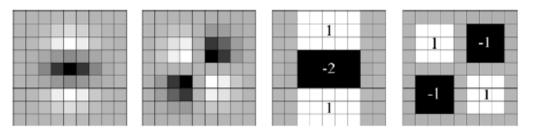
David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Overview: SIFT

- Extraordinarily robust matching technique
 - Can handle changes in viewpoint up to ~60 deg. out-of-plane rotation
 - Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known implementations of SIFT

Other Descriptors

- GIST: a kind of SIFT in a global scale
- SURF: an acceleration using the integral image, i.e., summed area table



• CNN features

80M Tiny Images

- Just use 32 by 32 images
- It works well even for recognition with a simple recognition method (nearest neighbor search) with using 80M data

Indicates the importance of data

PA1 (Optional)

- Objective
 - Understand how to extract SIFT features and to use related libraries (OpenCV, vlfeat, ...)

Class Objectives (Ch. 2.4) were:

- Scale invariant region selection
 - Automatic scale selection
 - Laplacian of Gradients (LoG) ≈ Difference of Gradients (DoG)
 - SIFT as a local descriptor

Next Time...

- Basic deep learning and its applications to computer vision
- Intro to object recognition
- Bag-of-Words (BoW) models

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me
- Write questions 3 times before the mid-term exam
 - Write a question about one out of every four classes
 - Multiple questions in one time will be counted as one time
- Common questions are compiled at the Q&A file
 - Some of questions will be discussed in the class
- If you want to know the answer of your question, ask me or TA on person

