CS688: Web-Scale Image Search

Sung-Eui Yoon (윤성의)

Course URL: http://sgvr.kaist.ac.kr/~sungeui/IR

About the Instructor

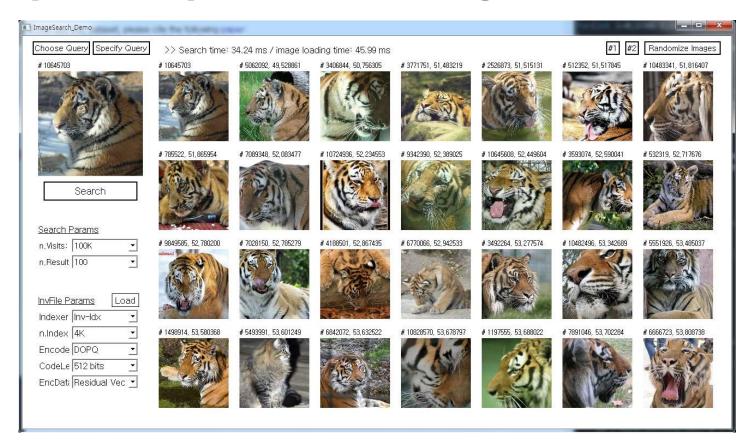
- Joined KAIST at 2007
- Notable recognitions
 - Organized tutorial on image search at CVPR
 - Worked with Adobe, Naver, Hancom, etc.
 - Produced a professor on image search (SKKU)
 - Received next-generation scientist award (IT category) at 2019 from S-Oil and Korea Academy of Science
- Related materials
 - Paper and video: <u>http://sgvr.kaist.ac.kr/publication</u>
 - YouTube videos: http://www.youtube.com/user/sglabkaist

Research Theme: Scalable Ray Tracing, Image Search, Motion Planning

 Designing scalable techniques to efficiently handle massive models on commodity hardware or clouds

Photo-realistic rendering

Image search



Motion planning

Results of Image Search

- Collaborated with Adobe, NAVER, Hancom
 - 11M images
 - Use deep neural nets for image representations
 - Spend only 35 ms for a single CPU thread

About the Instructor

- Contact info
 - Email: sungeui@kaist.edu
 - Office: 3432 at CS building (E3-1)
 - Homepage: http://sgvr.kaist.ac.kr/~sungeui

Class Information

- Class time
 - 4:00pm ~ 5:15pm on TTh
- Office hours
 - Right after the class time
 - You can make arrangements by sending emails

TA

- JaeYoon Kim (김재윤)
 - Room: E3-1 #3443
 - jaeyoon1603@gmail.com

 Use KLMS first for questions and discussions, instead of sending emails

About the Course

- We will focus on the following things:
 - Broad understanding on image (and video) search techniques and classification
 - In-depth knowledge on recent methods for web-scale data
 - Design better technologies as your final project

• Main theme:

 Think about how we can connect any techniques (e.g., classification) to search and matching problems

Image Search or Content-Based Image Retrieval (CBIR)

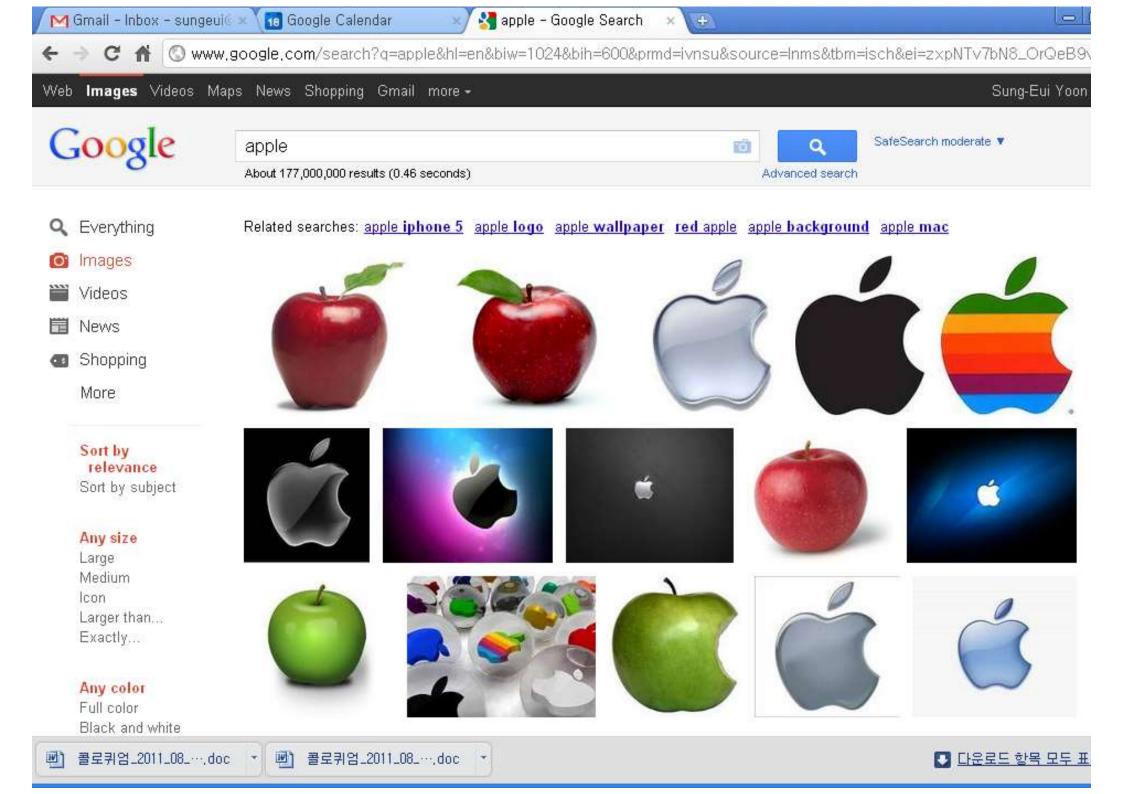
 Identify similar images given a userspecified image or other types of inputs

Image Search

 Identify similar images given a userspecified image or other types of inputs

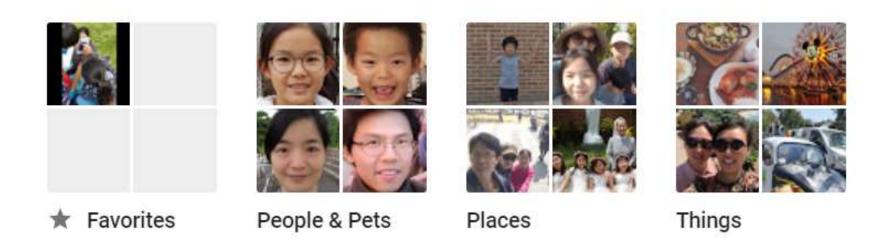
Extract image descriptors (e.g., SIFT or CNNs)

Input


Web-scale image database

Output

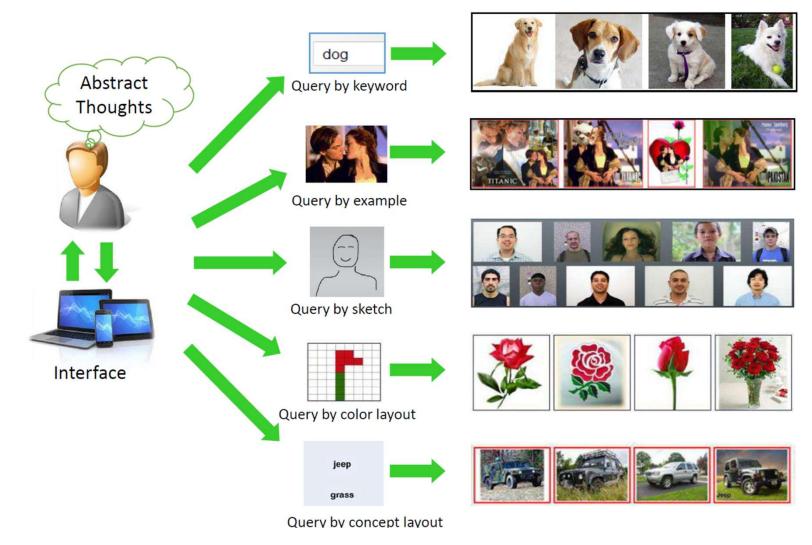
Applications


- Search
- Image stitching
- Object/scene/location recognitions
- Robot motion planning
- Copyright detection

Google Photos and Many Search Functionality

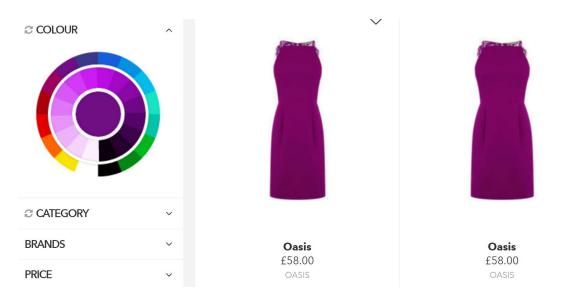
Search "Daehak-ro"

Cross Domain Image Search


Visual similarity across image domains

Shrivastava et al., SIGA

Different Search Scenario


Zhou et al., arxiv

Some Image Search Companies

Based on near duplicate image search

Snap fashion

Some Startups

- 학생 창업
 - 클디**, 2011**년 창업

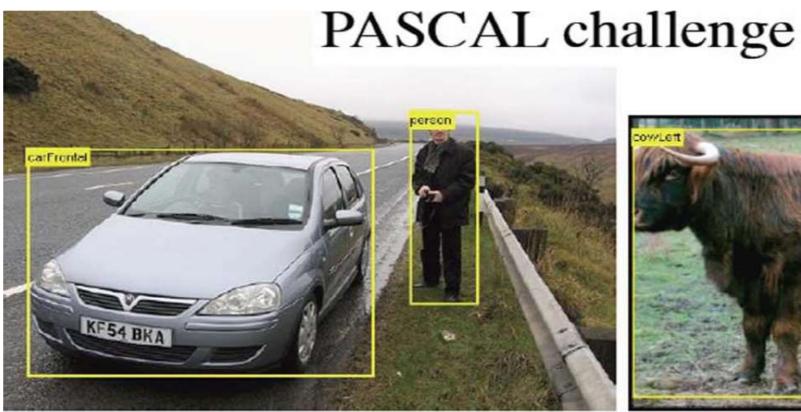
클디 팀원들, 왼쪽부터 김효은 연구원, 백승욱 CEO, 이정인 CTO

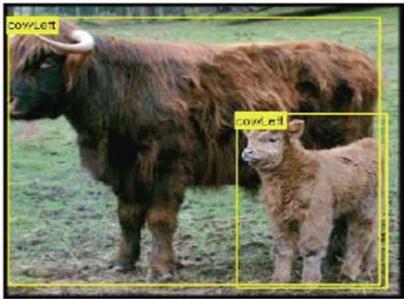
기술기반 스타트업으로서 좋은 모범 사례를 남기고 싶다

Panorama Stitching

(a) Matier data set (7 images)

(b) Matier final stitch


[Brown, Szeliski, and Winder, 2005]


http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Lecture 12 - 32

9-Feb-11

Object Detection

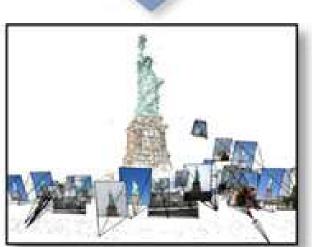
Product Image Recognition

[X. Shen et al., ECCV 2012]

Examples of product images in the database

Examples of query images taken by mobile phones

Landmark or Location Detection


query

City-scale image DB

3D Reconstruction

 Conducted by feature matching among many images

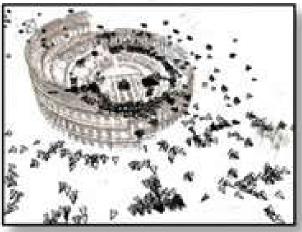


Photo tourism

Example: Transfiguring Portraits [SIG. 16]


input

"curly hair"

"india"

"1930"

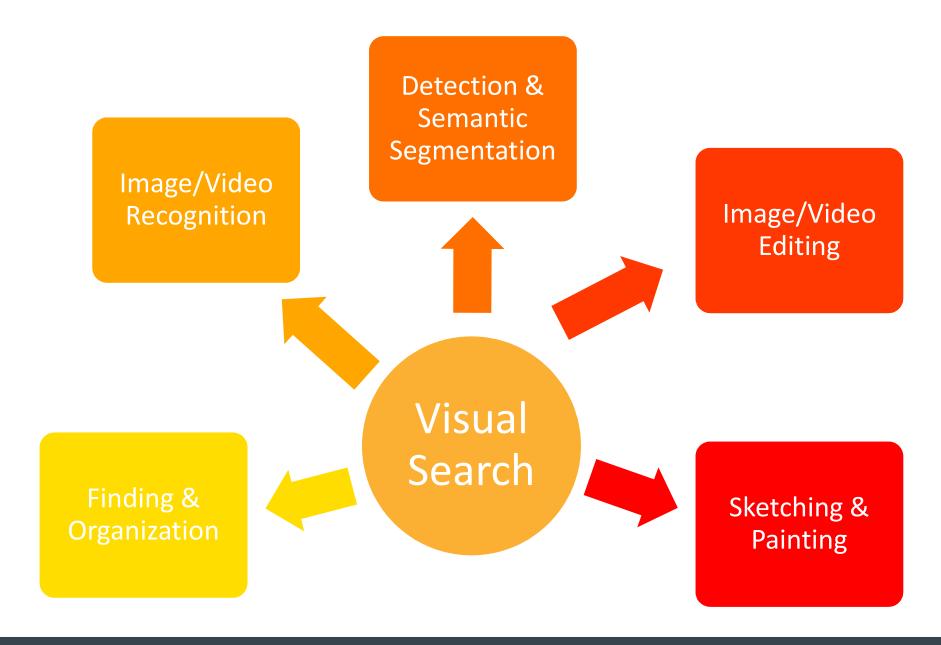
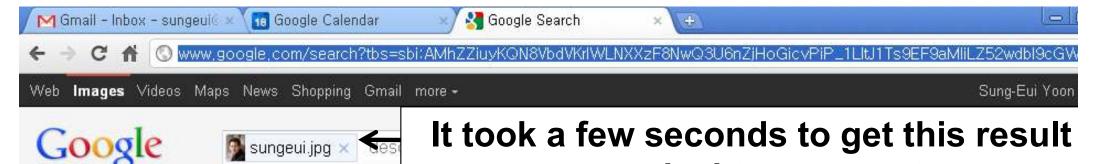
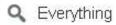

Time-Lapse Photography and Edit Transfer [Shen et al.]

Figure 1: Our regional foremost matching for Internet images estimates accurate regional correspondence and enables several applications.

Possible Application Domains

Web-Scale Visual Data and Novel Applications


- Visual data are getting more widely used in our daily life
 - YouTube, Facebook, Flickr, etc.
- Many challenging issues
 - Processing them requires scalable algorithms
 - Web-scale visual data can enable new applications (e.g., photo tourism)
 - Achieving high accuracy, each search UI, etc.


콜로퀴엄_2011_08_....doc ☑ 다운로드 항목 모두 표시...

on my desktop computer.

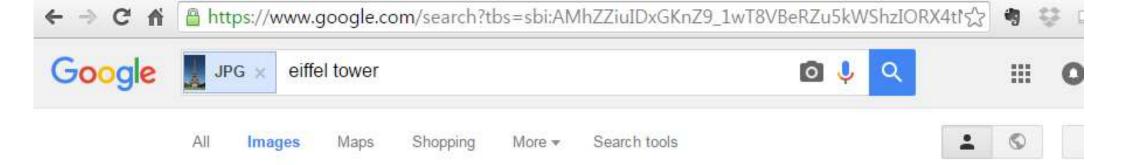
Shopping More

Image size: 200×272

Find other sizes of this image: All sizes - Small

Pages that include matching images

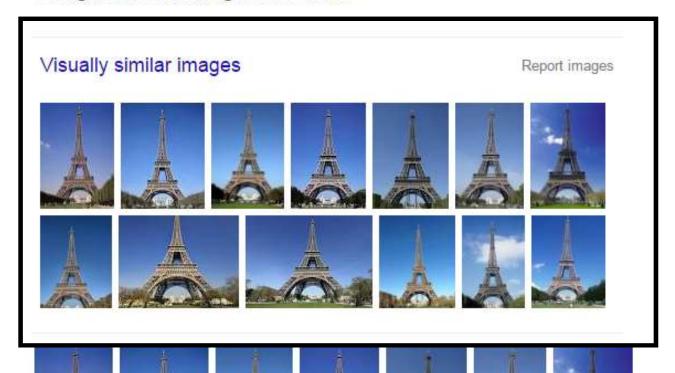
Sungeui Yoon (성의,윤성의) 🤍 sglab.kaist.ac.kr/~sungeui/ - Cached Sung-Eui Yoon (윤 성의) Assistant professor, Scalable Graphics/Geometric Algorithm Lab. Dept. of Computer Science · KAIST ...


 200×272

- [Translate this page] webst.kaist.ac.kr/content.php?db=professor - Cached 이름Cha, Meeyoung (차미영) 조교수; 연구분야Social Computing, Data-Driven Social Science: 학위PhD, KAIST, 2008; 전화번호+82-42-350-2922; 이 메일meeyoungcha

2010.09.13 - KGC 2011 🔍 - [Translate this page] www.kgconf.com/kor/html/conference_c_view.html?cate3... - Cached Kristian Segerstrale Playfish, 소셜게임의 미래 현재 소셜게임의 현주소와 빠르게 성 장하는 소셜게임의 미래를 예리한 견식으로 소개 ...

100 × 100


About 453 results (0.64 seconds)

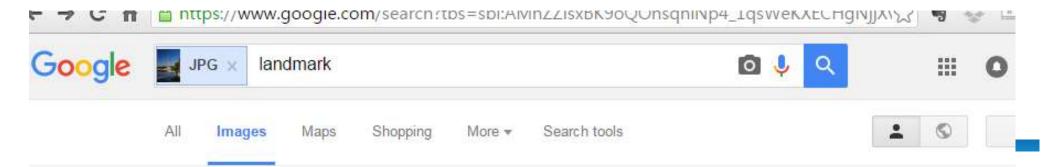


Image size: 240 × 400

Find other sizes of this image: All sizes - Small - Medium - Large

Best guess for this image: eiffel tower


About 7 results (0.61 seconds)

Image size: 433 × 624

Find other sizes of this image: All sizes - Medium

Best guess for this image: landmark

Some of Topic Lists

- Feature detectors
- Descriptors
- Nearest neighbor search
- Bag-of-Word
- Recognition
- Convolutional neural network
- Feature aggregation

- Hashing techniques
- Large-scale retrieval indexing techniques
- Video related techniques
- Various applications
- Image generation for cross domain
- Attention

Prerequisites

- Basic knowledge of linear algebra and data structures
- Basic knowledge on machine learning (e.g., regression) and deep learning
 - Assume you to know deep learning and modify it for your application
- Some prior experiences on programming
- If you are not sure, please consult the instructor at the end of the course

Course Overview

- Half of lectures and other half of student presentations
 - This is a research-oriented course
- What you will do:
 - Choose papers and present them
 - Propose ideas that can improve the state-ofthe-art techniques
 - Quiz, mid-term, final-term exams, and
 - Have fun!

Course Overview

- Grade policy
 - Quiz, assignment, and exams: 30%
 - Class attendance and presentations: 30%
 - Final project: 40%
 - Class presentation and projects are the most important activities in this class
- Instructor and students will evaluate presentations and projects
 - Instructor: 50% weights
 - Students: 50% weights

Presentations

- Choose and present papers that are related to the course theme
 - Two talks for each student
 - Present a paper in each talk

Final Project

- Propose ideas to address problems identified from your presentation papers
 - Show benefits of your ideas and how your ideas can improve the state-of-the-art techniques in a logical manner
 - Implementation of your ideas is not required, but is recommended
- Team project is allowed
 - Role of each student should be very clear

Course Awards

- Best speaker and best project awards
 - Lunch or dinner for awardees with me and TAs
- A high grade will be given to members of the best project

Programming HWs and Exams

- Two programming assignments
 - Implement basic image search components
- Late policy
 - No score for late submissions
 - Submit your work before the deadline!
- Two exams
 - Mid-term exam covers class materials
 - Final-term exam covers presentation materials of students

Question HWs for Every Class

- Come up with one question in the class and submit at the end of the class
 - 1 for typical questions (that were answered in the class)
 - 2 for questions with thoughts or that surprised me

Submit questions three times before the mid-term exam

Homework for Every Week

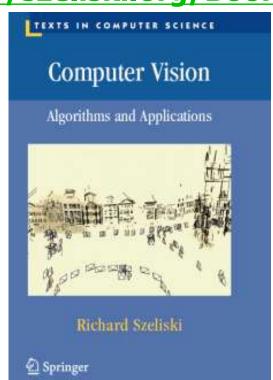
- Go over recent papers on image search
 - Those should be high quality and recent ones
 - Find two papers, and submit your summary before every beginning of the Tue. class
 - Online submission is possible
- Think about possible team members
- Too late if you think them later...

Honor Code

- Collaboration encouraged, but assignments must be your own work
- Cite any other's work if you use their code

- Classroom etiquette: help you and your peer to focus on the class
 - Turn off cell phones
 - Arrive to the class on time
 - Avoid private conversations
 - Be attentive in class

Class Attendance Rule


- Late two times → count as one absence
- Every two absences → lower your grade (e.g., A- → B+)
- To check attendance, I'll call your names
- If you are in situations where you should be late, notify earlier

Resource

- My ongoing draft on image search
 - pdf file is available at the webpage
- Reference
 - Computer vision: algorithms and applications
 - Its file is available (http://szeliski.org/Book/)

IMAGE SEARCH

Other Resources

- Technical papers
 - CVPR, ICCV, ICLR, NeurIPS, ICMR, ACM MM, SIGGRAPH, etc.
 - Youtube (technical talks)
 - Computer vision resource (<u>http://www.cvpapers.com/</u>)
 - Multimedia information retrieval (<u>http://www.mirsociety.org/mweb/</u>)
- Course homepages
- Google or Google scholar

Schedule

- Please refer the course homepage:
 - http://sgvr.kaist.ac.kr/~sungeui/IR

Official Language in Class

English

- I'll give lectures in English
- I may explain again in Korean if materials are unclear to you
- You are no required to use English, but are recommended
- To non-native Korean speakers
 - Many Korean students prefer to use Korean for deeper discussions
 - In these cases, we will use Korean, but I will summarize main points in English

My Wish for You

- Follow up lecture materials and do various class activities/HWs
- Hopefully, they will:
 - Lead to your next publication, or
 - Lead to your next start-up

About You

- Name
- Your (non hanmail.net) email address
- What is your major?
- Previous experience on image search and computer vision
- Credit/audit
- Online submission: https://forms.gle/gRcHfvfdP9DnQBjj8

Next Time

Feature detectors

