CS688: Large-Scale Image & Video Retrieval (Spring 2020)

Contents

1. Image Segmentaion & Retrieval

What is image segmentation?

What's the relationship to image retrieval?

2. Current challenges & solutions:

Challenges: Intra-class inconsistency & Inter-class indistincition Solutions: point-based & countor-basede

- 3. PointRend:Image Segmentation as Rendering
- 4. Summary

What is semantic segmentation?

Idea: recognizing, understanding what's in the image in pixel level.

"Two men riding on a bike in front of a building on the road. And there is a car."

Why semantic segmentation?

- 1. Robot vision and understanding
- 2. Autonomous driving
- 3. Medial image analysis

Interesting topics of segmentation:

- 1. 2D images: (general) sematic segmentation, instance segmentation
- 2. 3D images: Point clouds
- 3. Video segmentation

Semantic segmentation: a process of assigning a label to every pixel in the image

Instance segmentation: treat multiple objects of the same class as distinct individual objects (or instances)

Semantic Segmentation

Instance Segmentation

What is its realtionship to image retrieval

Segmentation-based Retrieval (mainly for object-based retrieval):

1. Avoiding large number of regions in one image ---- manageable regions / objects

2. Extracting simple boundary regions (avoiding disturbrance):---- segmented regions can be a unit in retrieval

3. Make a robust datatset descriptor ---- reduce search space

Challenges and solutions (2D)

- Challenges:
 - ★ Intra-class Inconsistency: The same semantic label but different appearances

Inter-class Indistinction: Different semantic labels but with similar appearances

Possible Solutions: Edge-approximation

Deep Snake for Real-Time Instance Segmentation

Possible Solutions: Edge approximation

Deep Snake for Real-Time Instance Segmentation, CVPR 2020

Possible Solutions: Keypoint detection

Steps:

1) compute the boundary map with given semantic labels.

2) For each pixel, find the closet pixel on the boundary.

Efficient Segmentation: Learning Downsampling Near Semantic Boundaries, ICCV 2019

upsampling +correction

PointRend: Image Segmentation as Rendering (CVPR 2020)

Notes:

Last step of segmentation: ---map all vectors to a K-d space (with conv1*1) ---using argmax(\hat{y}) (pixel classification) ----use the indices as its classification

Steps:

- 1) Upsample (Bilinear Interpolation)
- 2) Uncertainty calculation:
 - --- the difference between the most & second most confidence
 - --- set a threshold 0.5

3) Generate k*N points from uniform distribution and then select the top $\beta * N$ ones (uncertain).

4) Feed selected pixels into 3-layer MLP

У

-0.5

N,K,2*W,2* Н

Sampling

selectio n

Correction: 3-layer MLP

When N = 28 * 28

Sampling Steps: from 7*7 to 112*112

5/12/2020

Subdivision step: 4, resolution 112x112

Key-point Sampling

segmentation

Point Rend (Segementation)

methodoutput resolutionmIoUDeeplabV3-OS-16 64×128 77.2DeeplabV3-OS-8 128×256 77.8 (+0.6)DeeplabV3-OS-16 + PointRend 1024×2048 **78.4 (+1.2)**

method	output resolution	mIoU
SemanticFPN P2-P5	256×512	77.7
SemanticFPN P2-P5 + PointRend	1024×2048	78.6 (+0.9)
SemanticFPN P ₃ -P ₅	128×256	77.4
SemanticFPN P ₃ -P ₅ + PointRend	1024×2048	78.5 (+1.1)

Point Rend: instance

mask head	backbone	COCO	
		AP	AP*
$4 \times \text{conv}$	R50-FPN	37.2	39.5
PointRend	R50-FPN	38.2 (+1.0)	41.5 (+2.0)
$4 \times \text{conv}$	R101-FPN	38.6	41.4
PointRend	R101-FPN	39.8 (+1.2)	43.5 (+2.1)
$4 \times \text{conv}$	X101-FPN	39.5	42.1
PointRend	X101-FPN	40.9 (+1.4)	44.9 (+2.8)

Point Rend (Segementation)

Point Rend: instance

Summary:

Problem: inconsistent segmentation around edge regions Method: key-point detection + pixel-wise correction

Components: 1) Sampling method: coarse prediction + uncertainty 2) Pixel correction : 3-layer MLP

3) Process: iteratively implement upsampling +correction

Personal thinkings:

Ads: 1) Fine-grained segmentation 2) edge preservation

Dis: may not that useful in general semenatics.

Q & A