PointRend: Image Segmentation as Rendering (Alexander Kirillov, Yuxin Wu, <u>Kaiming He</u>, and <u>Ross Girshick</u>)

PointRend uses a subdivision strategy to adaptively select a non-uniform set of points at which to compute labels.

ELF: Embedded Localization of Features in Pre-Trained CNN

Benbihi, Assia and Geist, Matthieu and Pradalier ICCV 2019

An Guoyuan 20184637

Content

- 1. Background
- 2. Method (Part 1) Saliency Maps
- 3. Method (part 2) Feature Map Selection
- 4. Review and Result
- 5. Discussion

1 Background

Common Requirements

- Problem 1:
 - Detect the same point *independently* in both images

Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:

- For each point correctly recognize the corresponding one

- Repeatable key points detector \rightarrow Harris
- Reliable descriptor \rightarrow LoG; SIFT

A milestone: Convolutional Neural Network

How to use CNN in image search?

Reference:Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed., O'Reilly, 2019 <u>https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53</u>

We often use CNN as a descriptor

3. Bag of word representation

Q: how could CNN be helpful for the detector?

ELF: Embedded Localization of Features in Pre-Trained CNN

2 Method (part 1) – Saliency Maps

• During backpropagation, the gradient is helpful for detecting keypoints.

Saliency map

• During backpropagation, the gradient is helpful for detecting keypoints.

http://research.sualab.com/assets/images/interpretablemachine-learning-overview-2/saliency-map-withgradient-concept.png

Saliency map from feature map.

$$\mathbf{I} \qquad \text{Image} \qquad D_I = H_I \cdot W_I \cdot C_I.$$

 F^l Feature Map $D_F \,=\, H_l\,\cdot\, W_l\,\cdot\, C_l$.

Saliency Map

$$S^{l}(\mathbf{I}) = \left| {}^{t}F^{l}(\mathbf{I}) \cdot \nabla_{I}F^{l} \right|$$

Apply the correlation $\nabla_I F^l$ to the features $F^l(\mathbf{I})$ specifically and generate a visualization in image space $S^l(\mathbf{I})$.

 $\nabla_I F^l$

- The correlation between the feature space and image space
- For every node in feature map, calculate th e gradient to all the pixels in the image.

Q: how to find the best feature map?

3 Method (part 2) – Feature Map Selection

- High level representation
- High resolution localization information

High level representation

• To represent an image, the higher, the better.

High resolution localization information

• To find a accurate location, the lower, the better.

Low level saliency maps activate pixels more accurately.

Low

High

Middle

Summary for feature map selection

- High level representation \rightarrow the higher, the better
- High resolution localization information \rightarrow the lower, the better

Solution: Visually observe the highest level which provides accurate localization.

4 Review and Result

Review

This paper focus on these parts

Result

5 Discussion

Discussion

- Main Contribution:
 - Feature map based saliency map
 - Only use pre-trained CNN

- New directions
 - Harris on feature map.
 - Selecting the best feature map: SIFT-LoG

Laplacian-of-Gaussian (LoG)

