PointRend: Image Segmentation as Rendering
(Alexander Kirillov, Yuxin Wu, Kaiming He, and Ross Girshick)

PointRend uses a subdivision strategy to adaptively select
a non-uniform set of points at which to compute labels.
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1 Background



Common Requirements

* Problem 1:

— Detect the same point independently in both images

No chance to match!

requirement?

We need a repeatable detector!

Slide credit: Darya Frolova, Denis Simakov



Common Requirements

* Problem 1:

— Detect the same point independently in both images

* Problem 2:
— For each point correctly recognize the corresponding one

requirement2

~ We need a reliable and distinctive descriptor!

Slide credit: Darya Frolova, Denis Simakov



» Repeatable key points detector - Harris

* Reliable descriptor - Lal; SIFT



A milestone: Convolutional Neural Network
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How to use CNN in image search?

Reference:Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd ed., O'Reilly, 2019
https ://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

We often use CNN as a descriptor

3. Bag of word representation
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Q: how could CNN be helpful for the detector?

ELF: Embedded Localization of Features
in Pre-Trained CNN

Feature map
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2 Method (part 1) — Saliency Maps

* During backpropagation, the gradient is helpful for detecting keypoints.



Saliency map

 During backpropagation, the gradient is helpful for detecting keypoints.
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http://research.sualab.com/assets/images/interpretable-
machine-learning-overview-2/saliency-map-with-
gradient-concept.png



http://research.sualab.com/assets/images/interpretable-machine-learning-overview-2/saliency-map-with-gradient-concept.png

Saliency map from feature map.
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how to find the best feature map?
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3 Method (part 2) — Feature Map Selection

e High level representation
« High resolution localization information



High level representation

* To represent an image, the higher, the better.




High resolution localization information

e To find a accurate location,
the lower, the better.

Low level saliency maps activate
pixels more accurately.




Summary for feature map selection

e High level representation -
* High resolution localization information =

Solution: Visually observe the highest level which provides
accurate localization.




4 Review and Result



Review

5. NMS

4. Saliency map
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Result
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5 Discussion



Discussion

* Main Contribution:
» Feature map based saliency map
* Only use pre-trained CNN

Laplacian-of-Gaussian (LoG)

* New directions flerios s
e Harris on feature map.

 Selecting the best feature map: SIFT-LoG
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