## Evaluation of CNN-based Single-Image Depth Estimation Methods(CVPR 18)

Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, Marco Körner



## Main Topic

- Single image -> Depthmap estimation
- Application: Shape, depth aware image retrieval



# Introduction

Problem

Goals

### Problem

- Error metrics does not reflect detailed structures
- No sufficient dataset for training



(a) RGB image



(b) Depth map





(c) Prediction (d) Prediction detail Positively evaluated but poor details

### Goals

- 1. Introduce a set of new error metrics
- 2. Present a new **dataset** from laser scan
- 3. Evaluate state-of-art methods

# 1. Error Metrics

Commonly Used Error Metrics Hard Examples Requirements for Good Metric Planarity, Orientation Metric Depth Boundary Metric

#### **Commonly Used Error Metrics**

**Threshold:** % of y such that  $\max(\frac{y_i}{u_i^*}, \frac{y_i^*}{u_i}) = \sigma < thr$ Absolute rel. diff.: rel =  $\frac{1}{T} \sum_{i,j} |y_{i,j} - y_{i,j}^*| / y_{i,j}^*$ Squared rel. diff.: srel =  $\frac{1}{T} \sum_{i,j} |y_{i,j} - y_{i,j}^*|^2 / y_{i,j}^*$ **RMS (linear):** RMS =  $\sqrt{\frac{1}{T} \sum_{i,j} |y_{i,j} - y_{i,j}^*|^2}$ **RMS (log):**  $\log_{10} = \sqrt{\frac{1}{T} \sum_{i,j} \left| \log y_{i,j} - \log y_{i,j}^* \right|^2}$ 

### Hard Examples



Paint? Bumps?



Reflection? Shallow Region??

## Requirements for Good Metric

(Overall accuracy)+

- Capture planarity
- Orientation of surface
- Depth Discontinuity(edge) location





#### Planarity, Orientation Metric

- Annotated Plane:  $\pi_k^* = (\eta_k^*, d_k^*)$  (normal vector, origin)
- Project depthmap  $Y_k$  to 3D points  $P_{k;i,j}$



## Depth Boundary Metric

- Edge prediction using "Structured Edge "
- Euclidian distance between Structured Edge and Ground T.



## 2. Dataset

Existing Datasets Data Acquisition Proposed Dataset: IBims-1

## **Existing Datasets**

- Multiple laser scan (ETH3D, Tanks&Temples, ...)
  ➢ Occlusion
- Custom Built-in 3D scanner (Kitti)
  - Low Resolution
- Active RGB-D sensors (NYU depth v2, Matterport3D)
  - > Short range, erroneous specular surface

## Data Acquisition

- DSLR + Single laser scanner
- Custom tripod to align optical center





(a) Laser scanner

(b) Camera

### Proposed Dataset: IBims-1

- High-resolution RGB-D with annotations
- Object masks and edges



(a) Camera image





(d) Distinct edges

# 3. Evaluation

Previous Works CNN Based Depth Estimation(Eigen et el) Quantitative Evaluations Qualitative Evaluations

#### Previous Works

- Eigen et el. First CNN based approach.
- Liu et el. CNN + conditional random fields(CRF).
- Laina et el. Fully convolutional network
- Li et el. Two-streamed CNN for depth and depth gradients
- Xu et el. Integrate multiple CNN using CRF

#### CNN Based Depth Estimation(Eigen et el)



Figure from Eigen et el. "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network"

#### Quantitative Evaluations

• Li et el is best with standard metrics, but not with proposed metrics

| Method              | Standard Metrics ( $\sigma_i = 1.25^i$ ) |             |      |            |            |            | PE (in m/°)                       |                                   | DBE (in px)                                 |                                              | DDE (in %)                       |                           |                           |
|---------------------|------------------------------------------|-------------|------|------------|------------|------------|-----------------------------------|-----------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------|---------------------------|---------------------------|
|                     | rel                                      | $\log_{10}$ | RMS  | $\sigma_1$ | $\sigma_2$ | $\sigma_3$ | $\varepsilon_{\rm PE}^{\rm plan}$ | $\varepsilon_{\rm PE}^{\rm orie}$ | $\varepsilon_{\mathrm{DBE}}^{\mathrm{acc}}$ | $\varepsilon_{\mathrm{DBE}}^{\mathrm{comp}}$ | $\varepsilon_{\mathrm{DDE}}^{0}$ | $\varepsilon_{\rm DDE}^-$ | $\varepsilon_{\rm DDE}^+$ |
| Eigen [7]           | 0.36                                     | 0.22        | 2.92 | 0.35       | 0.63       | 0.79       | 0.18                              | 33.27                             | 3.60                                        | 48.08                                        | 64.53                            | 32.31                     | 3.15                      |
| Eigen (AlexNet) [6] | 0.32                                     | 0.18        | 2.63 | 0.42       | 0.72       | 0.82       | 0.21                              | 26.64                             | 3.01                                        | 32.00                                        | 74.65                            | 21.51                     | 3.84                      |
| Eigen (VGG) [6]     | 0.29                                     | 0.17        | 2.59 | 0.47       | 0.73       | 0.85       | 0.17                              | 21.64                             | 3.16                                        | 27.47                                        | 75.10                            | 23.44                     | 1.46                      |
| Laina [16]          | 0.27                                     | 0.16        | 2.42 | 0.56       | 0.76       | 0.84       | 0.22                              | 32.02                             | 4.58                                        | 38.41                                        | 77.12                            | 20.89                     | 1.99                      |
| Liu [20]            | 0.33                                     | 0.17        | 2.51 | 0.46       | 0.73       | 0.84       | 0.22                              | 31.90                             | 2.32                                        | 16.85                                        | 77.27                            | 16.38                     | 6.35                      |
| Li [19]             | 0.25                                     | 0.14        | 2.32 | 0.58       | 0.79       | 0.86       | 0.20                              | 26.67                             | 2.36                                        | 21.02                                        | 80.99                            | 16.44                     | 2.57                      |

Table 3: Quantitative results for standard metrics and proposed PE, DBE, and DDE metrics on IBims-1 applying different SIDE methods

### Qualitative Evaluations

• Laina et el seems poor, Liu et el seems good (Proposed metrics well represent these points)



(a) RGB

(b) Laina et al. [16]

(c) Liu et al. [20]

(d) Eigen [6]