CVPR 2023

Implicit Identity Driven Deepfake Face Swapping Detection

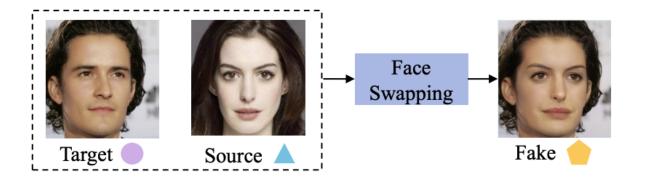
Suhyeon Ha

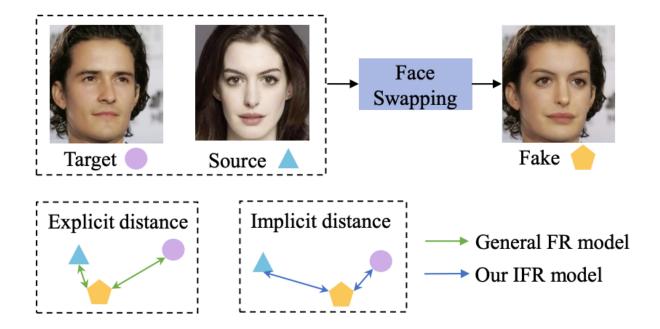
2024.05.27

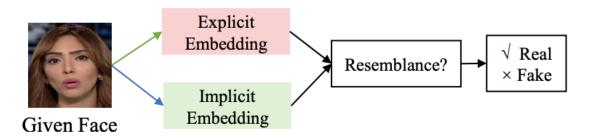
Review

- One-class self-supervised learning using real face images only.
- **Soft discrepancy**: Different <u>local perturbations</u> introduced into real images.
- **Pretext Task**: Through the <u>localization</u> of the soft discrepancy region and the <u>detection</u> of different augmentation methods.

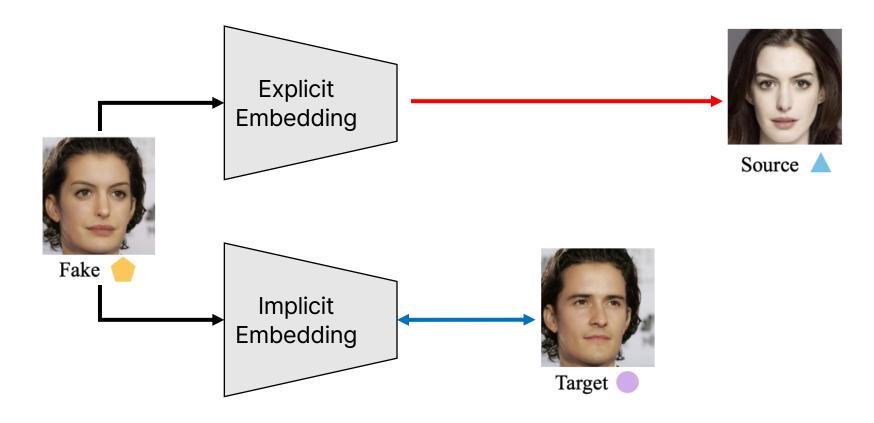
< Examples of faces with soft-discrepancies >



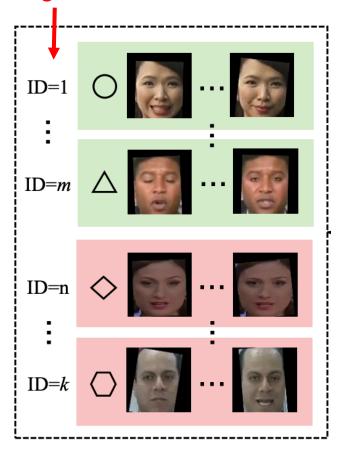


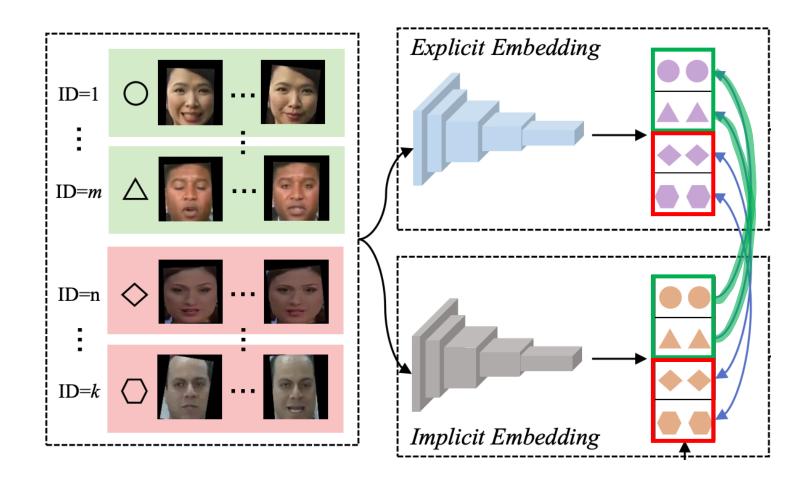


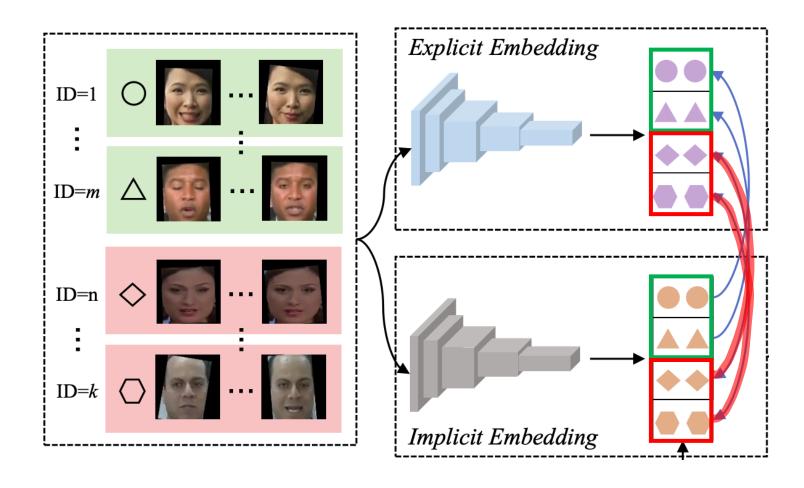
- We propose the <u>implicit identity driven framework</u> for face swapping detection, which explores the implicit identity of fake faces. This enhances the deep network to distinguish fake faces with <u>unknown manipulations</u>.
- We specially design <u>explicit identity contrast</u> (EIC) <u>loss</u> and the <u>implicit identity exploration</u> (IIE) <u>loss</u>. EIC aims to pull real samples closer to their explicit identities and push fake samples away from their explicit identities. IIE is margin-based and guides fake faces with known target identities to have small intraclass distances and large inter-class distances.
- Extensive <u>experiments and visualizations</u> demonstrate the superiority of our method over the state-of-the-art approaches.

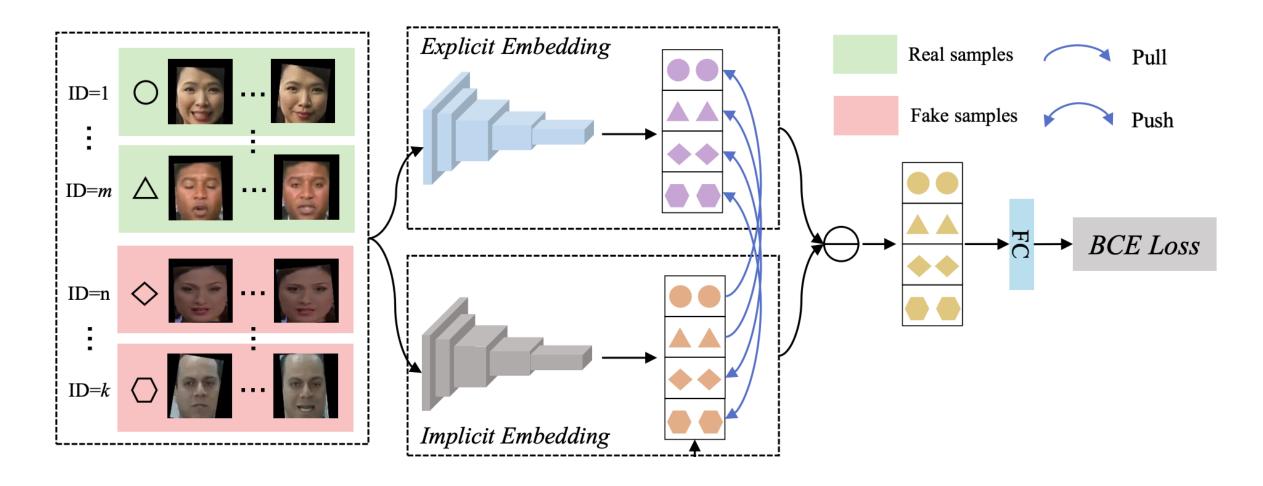


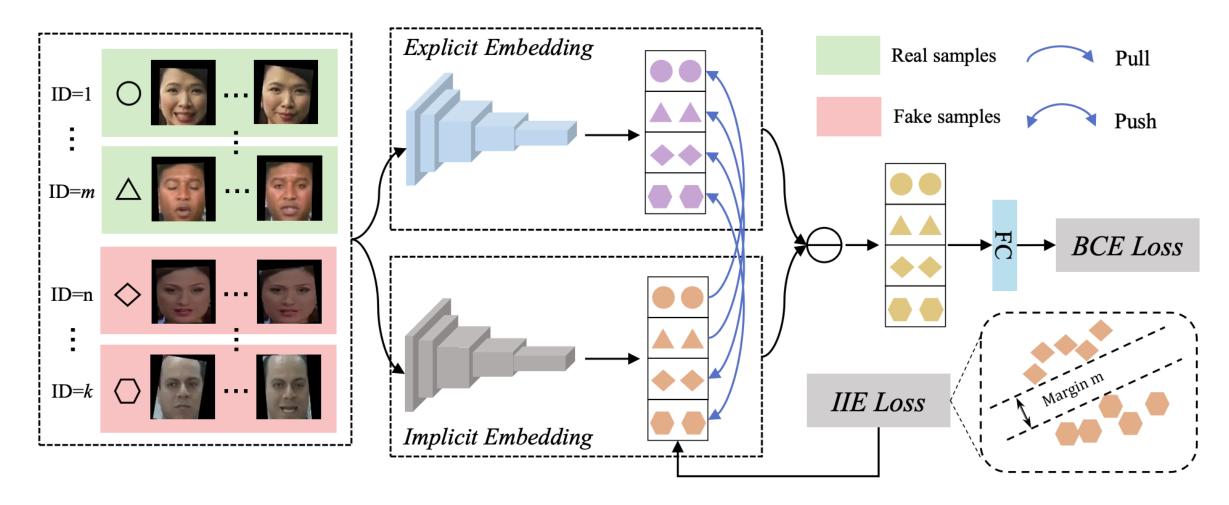
Target ID











Loss Function

$$\mathcal{L}_{iie} = \mathcal{L}_{iie}^{+} + \mathcal{L}_{iie}^{-}.$$
 $\mathcal{L} = \mathcal{L}_{bce} + \lambda_{1}\mathcal{L}_{eic} + \lambda_{2}\mathcal{L}_{iie},$

Explicit Identity Contrast

$$\mathcal{L}_{ ext{eic}} = rac{1}{N_F} \sum_{i \in F} \delta\left(F_{im}\left(x_i
ight), F_{em}\left(x_i
ight)
ight) - \ rac{1}{N_R} \sum_{i \in R} \delta\left(F_{im}\left(x_i
ight), F_{em}\left(x_i
ight)
ight),$$

- x_i : face image
- δ : cosine similarity
- F_{im} : implicit identity embedding network
- F_{em} : generic explicit face recognition network
- R: a set of real samples
- *F*: a set of fake samples
- N_R : the number of R
- N_F : the number of F

Implicit Identity Exploration

w/ known implicit identity

$$\mathcal{L}_{iie}^{+} = -\mathbb{E}_{x_i, y_i \sim \mathcal{K}} \left[\log \frac{e^{s(\cos(\theta y_i) - \mathbf{m})}}{e^{s(\cos(\theta y_i) - \mathbf{m})} + \sum_{j \neq y_i} e^{s\cos\theta_j}} \right]$$

- \mathcal{K} : real & fake samples with known implicit identities
- x_i : face image
- y_i : implicit identity
- θ_i : angle between $F_{im}(x_i)$ and proxy of j-th identity
- s: feature rescale hyperparemeter
- *m*: margin hyperparameter

Implicit Identity Exploration

w/ unknown implicit identity

$$\mathcal{L}_{iie}^{-} = -\mathbb{E}_{x_i, y_i^* \sim \mathcal{U}} \left[\log \frac{e^{\left(v_{y_i^*}^T F_{im}(x_i)/\tau\right)}}{\sum_{j=1}^{Q} e^{\left(v_j^T F_{im}(x_i)/\tau\right)}} \right]$$

- *U*: unknown fake samples
- x_i : face image
- y_i^* : unknown implicit identity
- $V \in \mathbb{R}^{D \times Q}$: lookup table
- τ: temperature

Loss Function

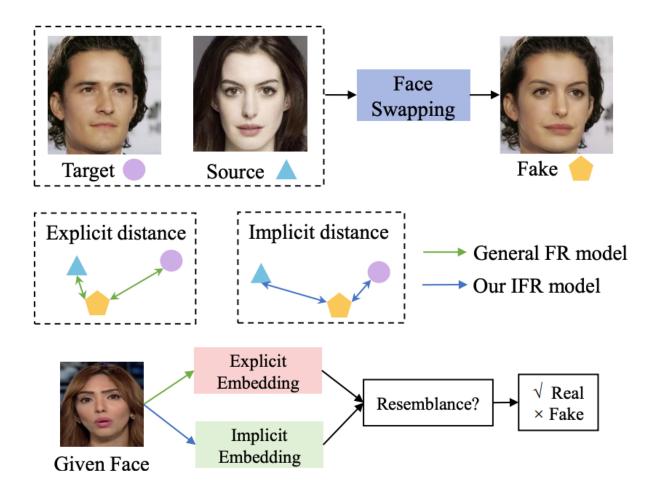
$$\mathcal{L}_{iie} = \mathcal{L}_{iie}^{+} + \mathcal{L}_{iie}^{-}.$$
 $\mathcal{L} = \mathcal{L}_{bce} + \lambda_{1}\mathcal{L}_{eic} + \lambda_{2}\mathcal{L}_{iie},$

Qualitative Results

Method	FF++		Celeb-DF		DFD		DFDC	
	AUC (%)	EER (%)	AUC (%)	EER (%)	AUC (%)	EER (%)	AUC (%)	EER (%)
Xception [42]	99.09	3.77	65.27	38.77	87.86	21.04	69.90	35.41
EN-b4 [47]	99.22	3.36	68.52	35.61	87.37	21.99	70.12	34.54
Face X-ray [27]	87.40	-	74.20	-	85.60	-	70.00	-
MLDG [24]	98.99	3.46	74.56	30.81	88.14	21.34	71.86	34.44
F3-Net [52]	98.10	3.58	71.21	34.03	86.10	26.17	72.88	33.38
MAT(EN-b4) [53]	99.27	3.35	76.65	32.83	87.58	21.73	67.34	38.31
GFF [32]	98.36	3.85	75.31	32.48	85.51	25.64	71.58	34.77
LTW [45]	99.17	3.32	77.14	29.34	88.56	20.57	74.58	33.81
Local-relation [7]	99.46	3.01	78.26	29.67	89.24	20.32	76.53	32.41
DCL [46]	99.30	3.26	82.30	26.53	91.66	16.63	76.71	31.97
UIA-ViT [55]	99.33	-	82.41	-	94.68	-	75.80	-
Ours	99.32	2.99	83.80	24.85	93.92	14.01	81.23	26.80

Table 2. Cross-database evaluation from FF++(C23) to Celeb-DF, DFD, and DFDC in terms of AUC and EER. The FF++ belongs to the intra-testing results while others represent to the unseen dataset testing.

Recap



Recap

Strength

- Simple and effective idea
- Generalizability

Weakness

Lookup table

Thank you

