SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for Exposing Deepfakes

ICCV 2023

Jumin Lee 2024. 05. 22.

- Deepfakes Detection with Generalizability
- By <u>training only with real images</u>, the model detects when it gets a fake image as input at test time.
- Achieve high performance on any deepfakes.

Motivation

• Generative models are spreading rapidly, and there is a growing concern about

them - <u>human faces have been a particularly target</u> for such models.

• However, the **existing method**(deepfakes classifier) to distinguish between real and fake images **doesn't work with new deepfake models.**

Proposed Method

- One-class self-supervised learning using real face images only.
- **Soft discrepancy** : Different <u>local perturbations</u> introduced into real images.
- **Pretext Task**: Through the <u>localization</u> of the soft discrepancy region and the

detection of different augmentation methods.

< Examples of faces with soft-discrepancies >

The perturbed area of the four images is within the circle with different augmentation.

Proposed Method

(a) Training (p_i : predefined prototypes)

(b) Anomaly detection

- By training these 2 pretext tasks with a <u>single multi-task regressor</u>, the generated soft discrepancies are **pushed towards a set of target prototypes**.
- Once trained, it is able to provide an **anomaly score** for deepfake detection.

Proposed Method

(a) Training (\mathbf{p}_i : predefined prototypes)

(b) Anomaly detection

6

• Target prototypes (NOT learnable)

: Generated as **evenly distributed points** on a unit hypersphere, with the number of prototypes determined by the <u>combinations of discrepancy locations and types</u>.

Contribution

- Treat deepfake detection as an **out-of-distribution (OOD) detection** task.
- Introduce Bounded Contrastive Regression (BCR) loss and Guthat to train 2 pretext tasks
 - <u>localization</u> of the soft discrepancy region
 - <u>detection</u> of different augmentation methods.
- Demonstrate the superior generalization capabilities compared to existing (SoTA) deepfake detectors.

Method

Method

- Each image is transformed with a soft discrepancy.
- 2. Passed through the $\underline{f_e}$ and $\underline{f_p}$ to generate its **embedding**.
- Bounded Contrastive Regression
 and Guidance loss map these
 embeddings to the corresponding
 <u>hard prototypes</u> on the hypersphere.

$$\mathcal{L}_{\text{SeeABLE}} = \mathcal{L}_{\text{BCR}} + \lambda \, \mathcal{L}_{\text{GUI}}$$

(a) Training (\mathbf{p}_i : predefined prototypes)

Method #1. Soft Discrepancy

- Soft discrepancies ۲
 - : Unique location and type combinations of perturbation for 2 pretext task.

 $sd(\mathbf{I}, \tilde{y}_{loc}, \tilde{y}_{tupe}) = blend\left(Loc(\mathbf{I}, \tilde{y}_{loc}), \mathbf{I}, Type(\mathbf{I}, \tilde{y}_{tupe})\right)$

Location : $N_{loc} = N_{rows} \times N_{cols}$ •

Type : $N_{type} = 2$

Spatial and frequency domain perturbations.

 $\mathbf{b} blend \; (\mathbf{M}, \mathbf{I}^s, \mathbf{I}^t) = \mathbf{M} \odot \mathbf{I}^s + (1 - \mathbf{M}) \odot \mathbf{I}^t$

Method

- Each image is transformed with a soft discrepancy.
- 2. Passed through the $\underline{f_e}$ and $\underline{f_p}$ to generate its **embedding**.
- 3. Bounded Contrastive Regression and Guidance loss map these embeddings to the corresponding <u>hard prototypes</u> on the hypersphere.

$$\mathcal{L}_{\text{SeeABLE}} = \mathcal{L}_{\text{BCR}} + \lambda \, \mathcal{L}_{\text{GUI}}$$

(a) Training (\mathbf{p}_i : predefined prototypes)

• Train embeddings that are not only distinguishable but also well-clustered

around predefined target prototypes.

$$\mathcal{L}_{ ext{BCR}} = \mathcal{L}_{ ext{SupCon}} + \sum_{i=1}^{N} rac{\mathcal{L}_{ ext{NT-Xent}}\left(\mathbf{z}_{i}, \mathbf{p}_{ ilde{y}_{i}}
ight)}{|P(i)|}$$

Supervised Contrastive Loss Regressive Loss

- Supervised Contrastive Loss : Encourages embeddings with the <u>same label to be</u> <u>close together</u>.
- Regressive Loss : Ensures that the embeddings are <u>well-clustered around their</u> <u>respective prototypes.</u>

• Supervised Contrastive Loss

: Train embeddings with the same label to be close together.

$$\mathcal{L}_{ ext{SupCon}} = \sum_{i=1}^{N} rac{1}{|P(i)|} \sum_{p \in P(i)} -\log rac{\exp(ext{sim}(z_i, z_p) / au)}{\sum_{a \in A(i)} \exp(ext{sim}(z_i, z_a) / au)}$$

- Normalized temperature-scaled cross entropy loss between the embeddings z_i and z_p.
 - P(i) : the set of indices of all samples in the batch that have the same label as the i-th sample.
 - A(i) : the <u>set of all embeddings</u> in the batch excluding.

• Regressive Loss

: Train embeddings are well-clustered around their respective prototypes.

$$\mathcal{L}_{\text{Regressive}} = \sum_{i=1}^{N} \frac{1}{|P(i)|} \sum_{p \in P(i)} -\log \frac{\exp(\sin(z_i, p_{\tilde{y}_i})/\tau)}{\sum_{j=1}^{K} \exp(\sin(z_i, p_j)/\tau)}$$

- Normalized temperature-scaled cross entropy loss between the embedding zi and the prototype pi.
 - P(i) : the set of indices of all samples in the batch that have the same label as the i-th sample.

• Train embeddings that are not only distinguishable but also well-clustered

around predefined target prototypes.

$$\mathcal{L}_{ ext{BCR}} = \mathcal{L}_{ ext{SupCon}} + \sum_{i=1}^{N} rac{\mathcal{L}_{ ext{NT-Xent}}\left(\mathbf{z}_{i}, \mathbf{p}_{ ilde{y}_{i}}
ight)}{|P(i)|}$$

Supervised Contrastive Loss Regressive Loss

- Limitation
- Because the **prototypes are evenly distributed**, the distance from any given embedding to an **incorrect prototype is roughly the same**.
- Therefore, the error is similar regardless of which incorrect prototype.

Method #2. Guidance Loss

- Guidance Loss
- To address this issue, use explicitly weights the distances based on **prior**

knowledge about facial geometry and symmetry.

$$\mathcal{L}_{\text{GUI}} = \sum_{i \in [1..N]} G(y_i, \tilde{y}_i) \times \{1 - \sin(z_i, p_{\tilde{y}_i})\}$$
$$G(y_i, \tilde{y}_i) = \begin{cases} 2^{-2} & \text{if } pos(y_i) = pos(\tilde{y}_i) \\ 2^{-1} & \text{else if } sym(pos(y_i)) = pos(\tilde{y}_i) \\ 2^{-0} \times d_{graph}(pos(y_i), pos(\tilde{y}_i)) & \text{otherwise} \end{cases}$$

Method

- Each image is transformed with a soft discrepancy.
- 2. Passed through the $\underline{f_e}$ and $\underline{f_p}$ to generate its **embedding**.
- Bounded Contrastive Regression
 and Guidance loss map these
 embeddings to the corresponding
 <u>hard prototypes</u> on the hypersphere.

$$\mathcal{L}_{\text{SeeABLE}} = \mathcal{L}_{\text{BCR}} + \lambda \, \mathcal{L}_{\text{GUI}}$$

(a) Training (\mathbf{p}_i : predefined prototypes)

Deepfake Detection

- Anomaly score for deepfake detection.
- Apply **K soft discrepancy** transformation for test image.
- Classifies test image as such if the anomaly score exceeds a certain threshold.

Results

Results

• All models are trained on FF++ and tested on datasets not seen during training.

Method	Pristine only	Test set - AUC (%)				
		CDFv2	DFDC	DFDCp	Avg.	
DSP-FWA [46]	\checkmark	69.3	-	-	69.3	
Two-branch [50]		76.6	-	-	76.6	
LipForensics [28]		82.4	73.5	-	77.9	
Face X-ray [45]		79.5	65.5	-	72.5	
SLADD [5]		79.7	-	76.0	77.8	
PCL+I2G [71]	\checkmark	90.0	67.5	74.4	77.3	
SBI† [60]	\checkmark	85.9	69.8	74.9	76.9	
OST [48]		74.8	-	83.3	79.1	
UIA-ViT [74]	\checkmark	82.4	-	75.8	79.1	
FTCN-TT [72]		86.9	74.0	-	80.4	
LTTD [26]	\checkmark	89.3	-	80.4	-	
SeeABLE (ours)	\checkmark	87.3	75.9	86.3	83.2	

[†]SBI was re-evaluated using the official code with M_{ConvexHull}.

< Generalizability Across Datasets >

Results

- All models are tested on deepfake videos created using **four different manipulation techniques**
 - : Deepfakes (DF), Face2Face (F2F), FaceSwap (FS), and NeuralTextures (NT).

Method	Test set - AUC (%)						
	DF	F2F	FS	NT	Avg.		
OC-FD1 [†] [37]	86.2	70.7	84.8	95.3	84.2		
OC-FD2 [†] [37]	88.4	71.2	86.1	97.5	85.8		
Face X-ray [45]	-	-	-	-	87.3		
SBI [60]	97.5	89.0	96.4	82.8	91.4		
OST [48]	-	-	-	-	98.2		
SLADD [5]	-	-	-	-	98.4		
SeeABLE (ours)	99.2	98.8	99.1	96.9	98.5		
[†] OC-FD1 and OC-FD1 refers to two versions of OC-FakeDect							

< Cross-manipulation Evaluation>

Conclusion

Conclusion

- Treat deepfake detection as an **out-of-distribution (OOD) detection** task.
- Introduce **Bounded Contrastive Regression and Guidance Loss** that aims to push the soft-discrepancies to the predefined hard prototypes.
- Demonstrate the superior generalization capabilities compared to existing (SoTA) deepfake detectors.

Limitation

- A small number of cases show wrong answer.
- <u>Real images that come with deepfake-like artifacts</u>

• High-quality deepfakes

Thank you

