Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts

Zeng et al., ICML, 2022

Presented by: Filippo Momentè (20246132)

Why this work?

- A foundational model
- Relevant for Image Retrieval
- Basis for my Project

Course Project: Recap

- Idea: using a foundation model pre-trained on vision and language to perform Content-based Image Retrieval
- Captions contain global information about an image
- We can use them to augment our global representations
- We can also use object-level information to improve our representations

Introduction

- Vision-Language Pretraining: learning vision and language alignments from image-text pairs
- Can be divided into:
 - Coarse-grained: encode overall features
 - Fine-grained: learn more detailed information (e.g. object-level)

- Previous works had limitations
- Coarse-level:
 - Only general image-level info are learned
- Fine-grained:
 - Object-level information used for representations
 - But no relation between them encoded
 - Number of classes also limited

• An example: OSCAR (Li et al., ECCV 2020)

	Contrastive Loss				Masked Token Loss									
Features														
Network						Multi	-Layer	Transf	ormers					
Embeddings	\square								\bigcirc					
Data	[CLS]	A	dog	is W	[MASK] on kens	а	couch	[SEP]	dog Obje	couch ct Tags	[SEP]	Region	Features
Modality								Lan	guage		Image Languag	e	Image	
Dictionary														

- Hypothesis: image-text and object-text alignments should be learned together
- Three types of data
 - Object labels: "man", "backpack"
 - Region annotations: "boy wearing backpack"
 - Image captions: "The first day of school gives a mixed feeling to both students and parents

Architecture Overview

- Text encoder
- Image encoder
- Fusion module
- Object Detection: Box regression + IoU losses
- Jointly trained with Matching Loss, Contrastive Loss, Masked Language Modeling Loss

Contributions

- The first VL foundational model to try to learn both image and object-text pairs together
- It was able to reach SoTA on several tasks
 - Including Image-Text Retrieval

Method

The Architecture

- Image Encoder
- Text Encoder
- Cross-modal Encoder
- All Transformer-based

Input Format

 $(I, T, \{(V^j, T^j)\}^N)$

Vision Encoder

- Image split into patches
- Patches passed to the Transformer Layer
- Representing object-level info: patches aggregated together (patch reshape)
- Average of features also computed

Cross-Modal Modeling

• Obtained visual concepts are aligned with text

Bounding Box Prediction

- Bounding boxes predicted given image and text representations for each object
- Fused together
- L1 + IoU losses

Contrastive Learning

- Samples: (V, T)
- V can be image or object-level representation
- Text and Image contrasted together

Other Losses

- Matching Loss
- Masked Modeling Loss
 - Predict masked word in text based on the visual concept
- Final loss: combination of them

Experiments

Datasets

• A mix of datasets

	Dataset	# Images	# Captions	# Ann
4M	COCO	0.11M	0.55M	0.45M
	VG	0.10M	-	5.7M
	SBU	0.86M	0.86M	-
	CC-3M	2.9M	2.9M	-
16M	4M	4.0M	5.1M	6.2M
	Objects365	0.58M	-	2.0M
	OpenImages	1.7M	-	4.2M
	CC-12M	11.1M	11.1M	-

Results on Image-Text Retrieval

• MSCOCO and Flickr30K

Mathod	# Doromo	# Pre-train	MSCOCO	(5K test set)	Flickr30K (1K test set)			
Wiethou		Images	TR	IR	TR	IR		
		3	R@1/R@5/R@10	R@1/R@5/R@10	R@1/R@5/R@10	R@1/R@5/R@10		
UNITER _{large}	300M	4M	65.7 / 88.6 / 93.8	52.9 / 79.9 / 88.0	87.3 / 98.0 / 99.2	75.6/94.1/96.8		
METER-Swin	380M	4M	73.0/92.0/96.3	54.9 / 81.4 / 89.3	92.4 / 99.0 / 99.5	79.0/95.6/98.0		
ALBEF	210M	4M	73.1/91.4/96.0	56.8 / 81.5 / 89.2	94.3 / 99.4 / 99.8	82.8 / 96.7 / 98.4		
METER-CLIP	380M	4M	76.2/93.2/96.8	57.1 / 82.7 / 90.1	94.3 / 99.6 / 99.9	82.2/96.3/98.4		
VinVL _{large}	550M	5.6M	75.4/92.9/96.2	58.8/83.5/90.3		-		
ALIGN	490M	1.8B	77.0/93.5/96.9	59.9 / 83.3 / 89.8	95.3 / 99.8 / 100.0	84.9 / 97.4 / 98.6		
ALBEF	210M	14M	77.6/94.3/97.2	60.7 / 84.3 / 90.5	95.9 / 99.8 / 100.0	85.6 / 97.5 / 98.9		
X-VLM	216M	4M	80.4 / 95.5 / 98.2	63.1 / 85.7 / 91.6	96.8 / 99.8 / 100.0	86.1 / 97.4 / 98.7		
X-VLM	216M	16M	81.2 / 95.6 / 98.2	63.4 / 85.8 / 91.5	97.1 / 100.0 / 100.0	86.9 / 97.3 / 98.7		

Ablation Study

	Meta-Sum	MSCOCO		Flickr30K		VQA	NLVR ²	RefCOCO+	
		TR	IR	TR	IR	test-dev	test-P	$testA^d$	$testB^d$
X-VLM	605.0	78.8	60.6	96.0	84.1	76.20	82.42	72.07	54.84
w/o object	603.5	77.4	60.4	95.0	83.7	75.87	82.10	73.37	55.69
w/o region	596.0	76.8	60.2	96.0	83.6	75.84	82.20	70.73	50.60
w/o bbox loss	594.9	77.5	60.2	95.7	83.5	76.77	81.49	69.32	50.38
w/o all	580.6	74.5	57.9	95.6	82.8	74.90	80.70	67.79	46.43

Conclusion

Limitations

- Patches are merged with a non-learnable strategy
 - It would be interesting to make this learnable
- Object-level may not be enough
 - Details are also important
 - Especially in Image Retrieval
 - Even more fine-grained representations relevant

Recap

- This work proposed a novel foundational model for VL tasks
- Jointly pre-trained on image and object-text pairs
- Trained to perform object detection
- SoTA on image-text and text-image Retrieval

Thank you! (Quiz time)

Quiz

- 1. What is the correct final loss of X-VLM?
 - a. IoU + Masked Language Modeling + Contrastive Loss + Matching Loss
 - b. Average Precision + Masked Language Modeling + Contrastive Loss
 - c. (IoU + L1) + Masked Language Modeling + Contrastive Loss + Matching Loss
 - d. Average Precision + IoU + Masked Language Modeling + Contrastive Loss
- 2. What is NOT true about the architecture?
 - a. The image encoder is a Transformer
 - b. Contrastive loss is computed both between visual representations alone as well as visual-text pairs
 - c. The Image encoder splits images into patches
 - d. Textual information is fused with visual one before predicting the bounding boxes