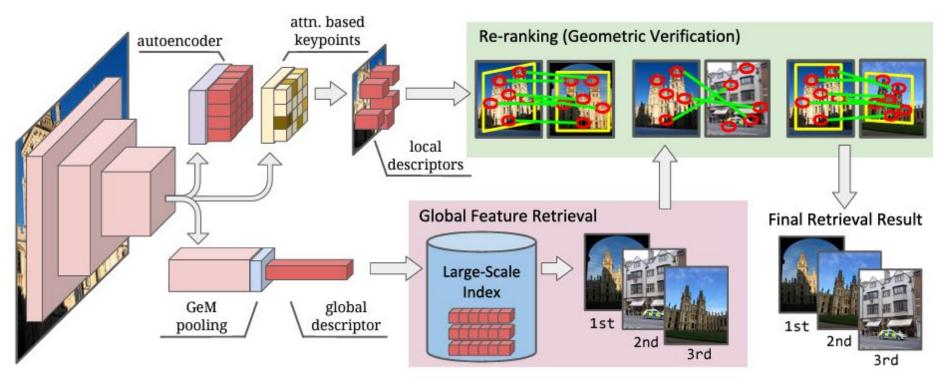
Improving Spatial Context of Global Descriptors for Image Retrieval

Jinhwan Seo, Kyu Beom Han (서진환, 한규범)

2024/05/01

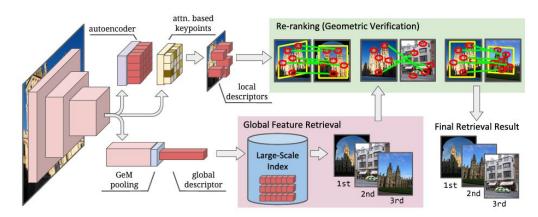
Overall Retrieval Framework

- Global descriptors for efficient ranking
- Local descriptors for precise re-ranking based on geometric similarity



Motivation

- Re-ranking (e.g., spatial verification) is necessary because <u>ranking via global descriptors often lack spatial</u> <u>context between local features (descriptors)</u>
- Increasing initial search performance can <u>reduce</u> <u>necessity of re-ranking, making retrieval efficient</u>
- Add spatial context to global descriptors



(b) Breakdown of average time per query.

very slow

initial search	hypergraph propagation	uncertainty calculation	spatial verification		
0.62 s	1.07 s	0.0003 s		41.12 s	

Slide from CS588

Brief Idea

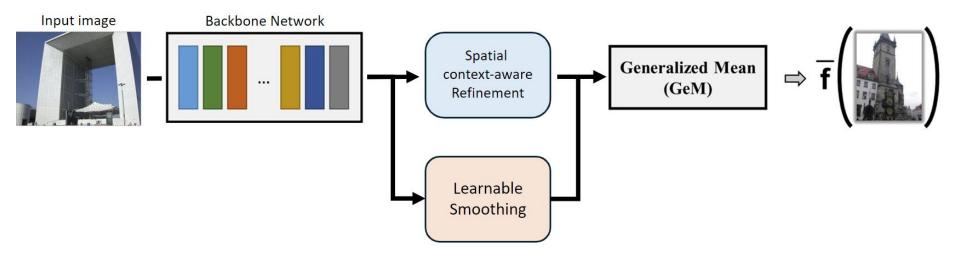
Provide <u>spatial context between local descriptors</u> for global descriptor

Method 1: Learnable Smoothing

- Local spatial context

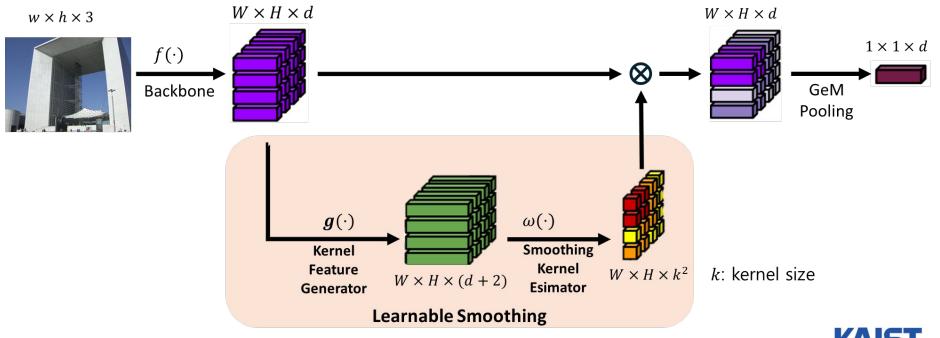
Method 2: Spatial context-aware refinement

- Global spatial context



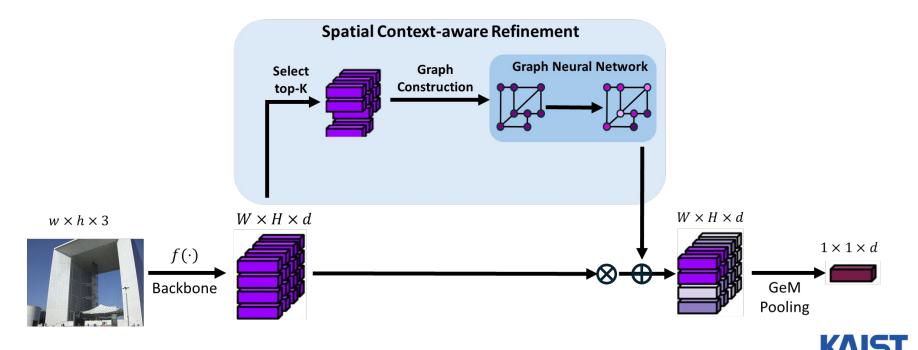
Method 1. Learnable Smoothing

- Gather neighbor local feature based on learned weight
- Learnable kernel bandwidth (receptive field) for smoothing
- Estimate <u>self-confidence</u> to reduce burstiness



Method 2. Spatial Context-aware Refinement

- Learnable smoothing focus on limited region of locality
- Each GCN propagates messages to next block
- Can consider global spatial and semantic context

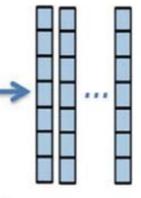


Global v.s. Local Descriptors

- Local descriptors
 - Represents multiple keypoints
 - Contains spatial & geometric relationship
 - Exhaustive to match local descriptors between multiple images
- Global descriptors
 - Represents an image
 - Mostly an aggregation of local descriptors
 - Efficient matching between multiple images

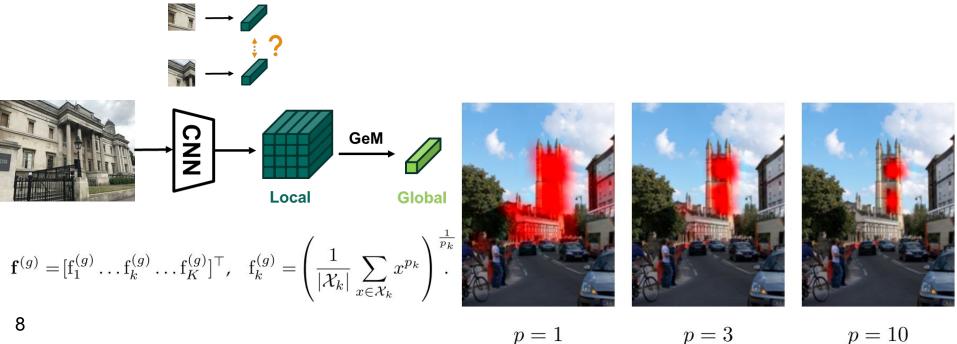
Global feature representation

Local feature representation



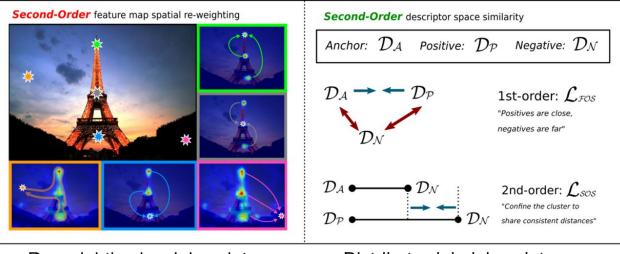
Related Works - GeM

- Generalized Mean Pooling
- Channel-wise Learnable P
- Limitation -
 - Less control on spatial information



Related Works - SOLAR

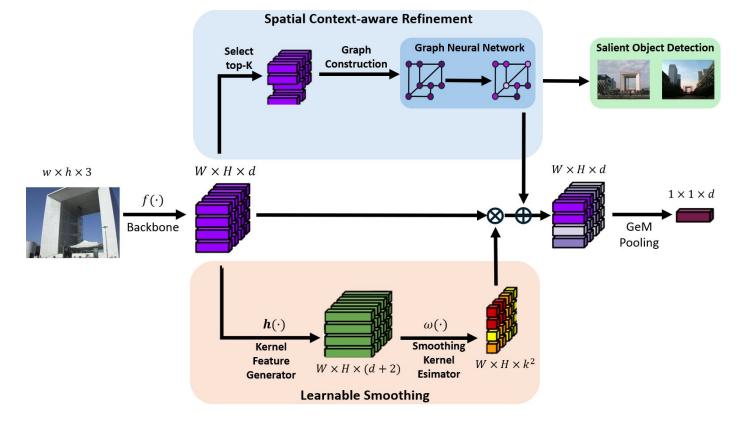
- Re-weighting local descriptor before GeM
- Confine clusters with second-order loss
- Limitation:
 - Attention map requires expensive computational cost
 - Cannot guarantee that it contains spatially contextual information



Re-weighting <u>local descriptors</u> prior to GeM Distribute <u>global descriptors</u> in descriptor space

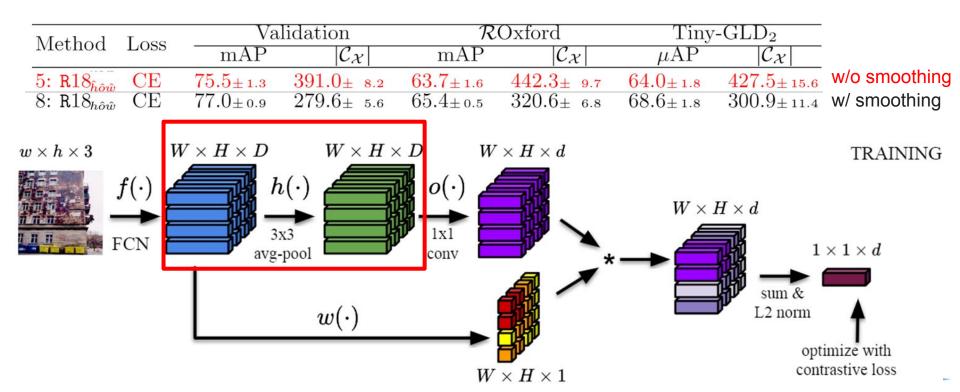
Overall Method

- Learnable smoothing : Local spatial context
- Spatial Context-aware Refinement : Global spatial context



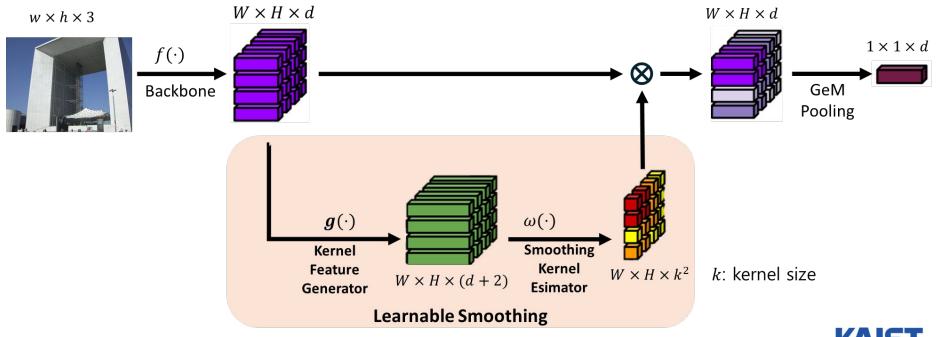
Method 1. Learnable Smoothing

- Smoothing (i.e., AvgPool) adds spatial context & reduces burstiness of local features
- More sophisticated smoothing can provide finer spatial context



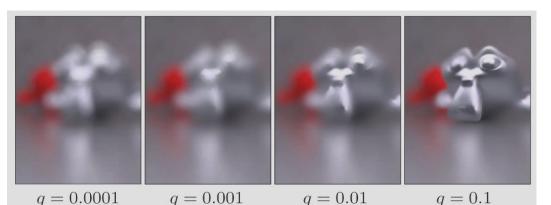
Method 1. Learnable Smoothing

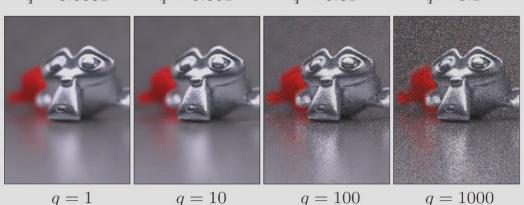
- Gather neighbor local feature based on learned weight
- Learnable kernel bandwidth (receptive field) for smoothing
- Estimate <u>self-confidence</u> to reduce burstiness

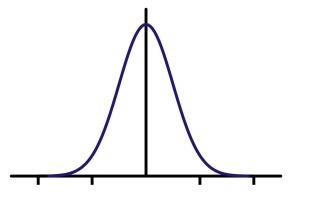


Prelim. Gaussian Image Filter

- Gaussian image filter reduces high-frequency details (e.g., noise)
- Further developed for image denoising (e.g., bilateral filter)







$$g(x,y) = \frac{1}{2\pi q} \exp\left[-q(x^2 + y^2)\right]$$

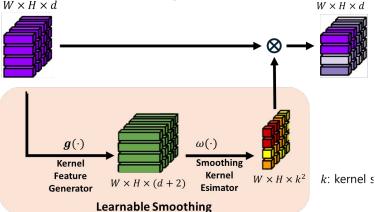
2d gaussian

Learnable Smoothing Kernel

- Kernel Feature Generator g(·) estimates three pixel-wise features
 - Kernel feature $f_{xy} \in \mathbb{R}^d$
 - Bandwidth $a_{xy} \in \mathbb{R}$

۱۸/

- Self-confidence $c_{xy} \in \mathbb{R}$
- Calculate Gaussian kernel weight ω(·) over K x K neighbors



$$\mathbf{K} \begin{bmatrix} (\mathbf{u}, \mathbf{v}) \\ \mathbf{k} \\ \mathbf{k} \\ \mathbf{K} \end{bmatrix} \mathbf{k}$$
 if $x = u$ and $y = v$

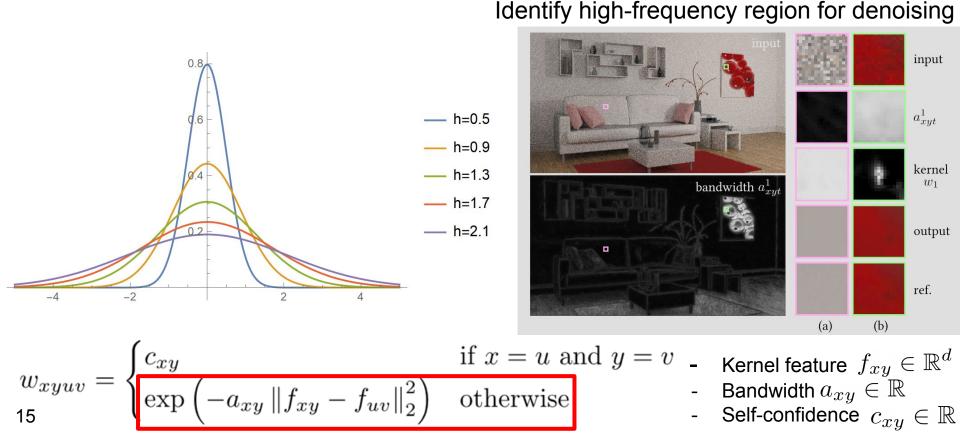
$$w_{xyuv} = \begin{cases} c_{xy} & \text{if } x = u \text{ and } y = v \\ \exp\left(-a_{xy} \|f_{xy} - f_{uv}\|_{2}^{2}\right) & \text{otherwise} \end{cases}$$

$$\mathbf{K} = \mathbf{k}$$

Н

Learnable Bandwidth

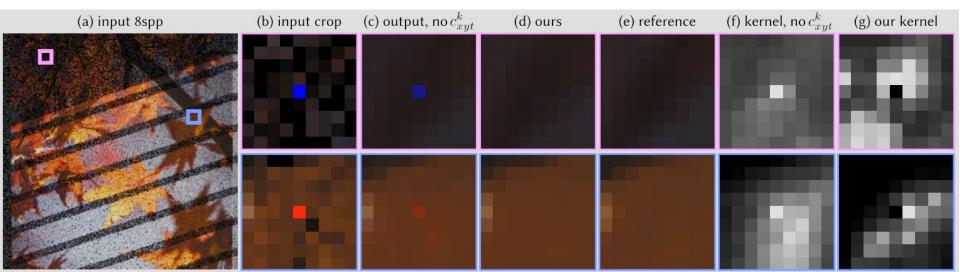
- Gaussian kernel with learnable bandwidth $-a_{xy}$
 - Larger bandwidth (Narrow): Spatially non-correlated info.
 - Smaller bandwidth (Wide): Spatially correlated info.



Learnable Self-confidence

- Allows to reject itself when it is non-relevant for image retrieval

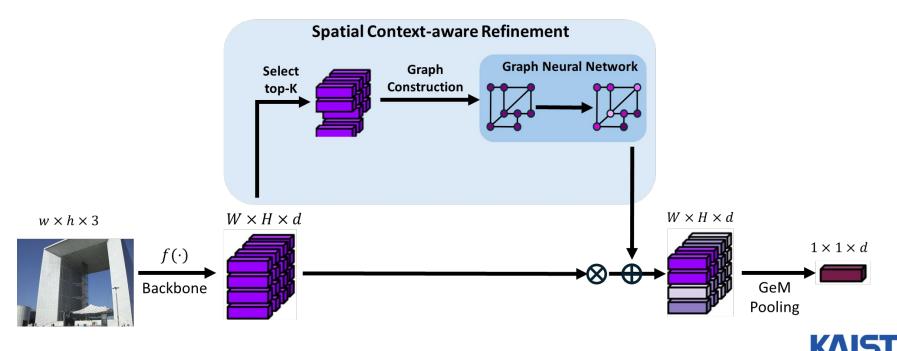
Helps to reject when the center pixel is an outlier for denoising



$$w_{xyuv} = \begin{cases} c_{xy} & \text{if } x = u \text{ and } y = v \\ \exp\left(-a_{xy} \|f_{xy} - f_{uv}\|_{2}^{2}\right) & \text{otherwise} \end{cases} - \text{Kernel feature } f_{xy} \in \mathbb{R}^{d} \\ - \text{Bandwidth } a_{xy} \in \mathbb{R} \\ - \text{Self-confidence } c_{xy} \in \mathbb{R} \end{cases}$$

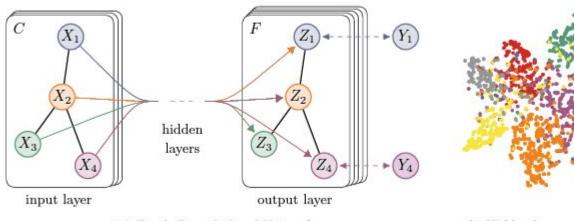
Method 2. Spatial Context-aware Refinement

- Learnable smoothing focus on limited region of locality
- Each GCN propagates messages to next block
- Can consider global spatial and semantic context



Related Works - GNN

- Propagate messages via GCN
- Learn connection between contiguous nodes
- Image retrieval
 - Each local descriptor can be represented as node
 - The spatial relation between each node can be represented as edge

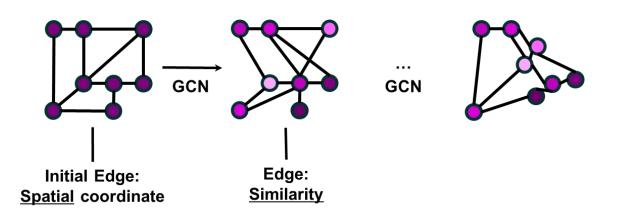


(a) Graph Convolutional Network

(b) Hidden layer activations

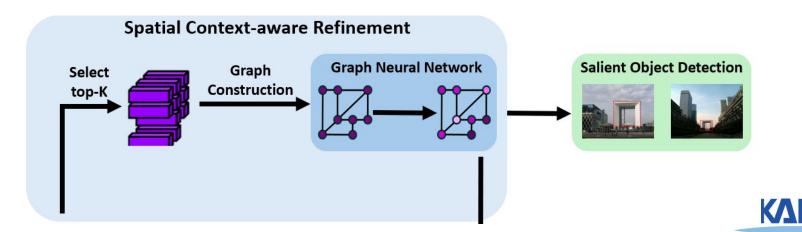
GNN for Image Retrieval

- Create a graph structure for image retrieval
 - Node: Local descriptors (Top-K local features)
 - Edge: Spatial coordinate, similarity
- Extract feature via GNN
 - Context-aware local descriptor
 - Local descriptor could contain not only <u>spatial</u> information but also <u>semantic</u> relations



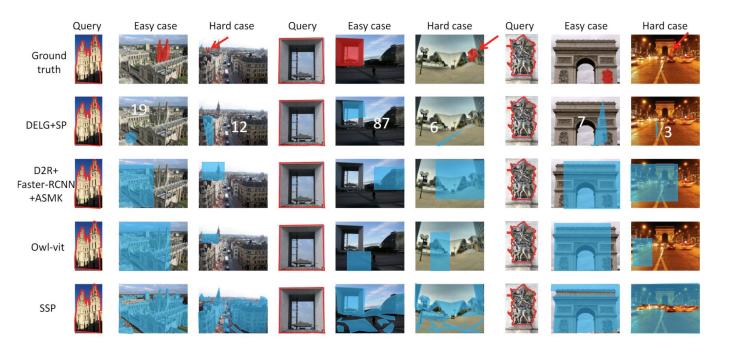
Verification for localization

- We have a rich global descriptor using <u>learnable</u> <u>smoothing</u> and <u>spatial context-aware refinement</u>
- How can we evaluate effectiveness of spatial context?
- We extend <u>salient object detection</u> to verify spatial context as localization performance



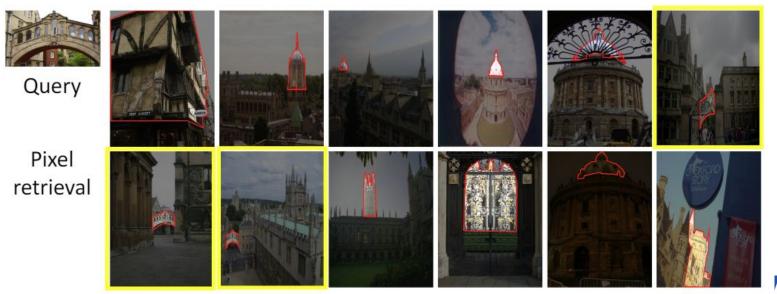
Related Works - Pixel retrieval

- Evaluate localization methods for pixel retrieval
 - Spatial Verification: SIFT, DELF and DELG
 - One-shot Detection: Faster R-CNN, SSD and D2R
 - Dense matching: GLUNet, WarpC, ...



Auxiliary. Salient Object Detection

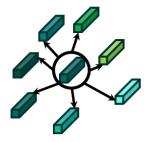
- Pixel retrieval
 - Query-based interaction
 - Enhance user experience in retrieval results
- Salient Object Detection
 - Identify foreground / distinctive part of objects in intra-image



Related Works - SOD

- Unsupervised object discovery
- Assumption:
 - Foreground features are less correlated than background
 - Less features of foreground than background
- Method:
 - Use the information of degree
 - Object seed: patch with the lowest degree
 - Expand features similar with object seed

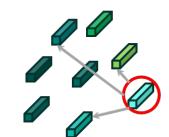
(N, N, D)



- 1. Calculate degree for all *N*² nodes

2. Select the lowest

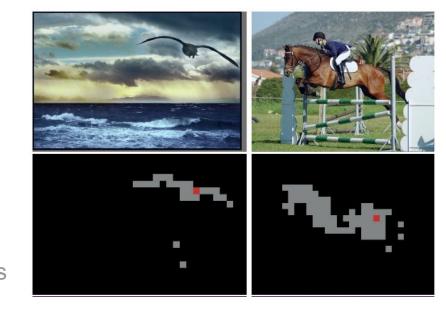
degree

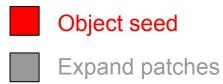


3. Expand seed using <u>similarity</u>

Related Works - SOD

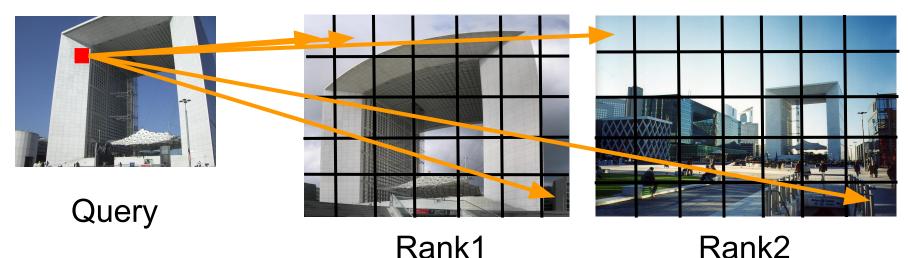
- Pros
 - Quick (60FPS)
 - Simple and effective
- Cons
 - Single object detection
 - Issues when object covers most of image





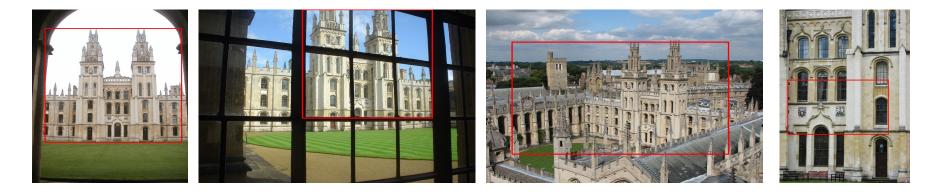
Auxiliary. Salient Object Detection

- Query-based interaction
 - a. Select initial seed in query image
 - b. Calculate similarity in each gallery image (Expansion)



Auxiliary. Salient Object Detection

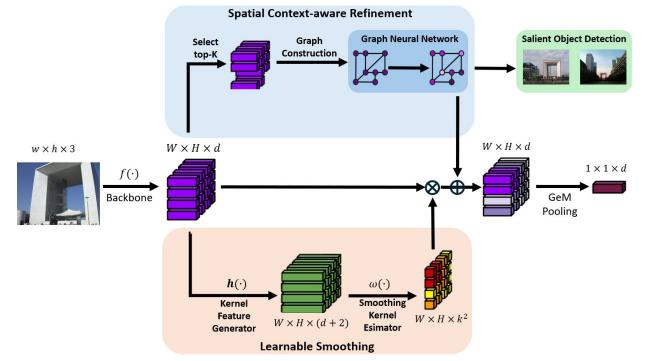
- SOD Results on ROxford & RParis





Summary

- Increase matching performance using global descriptor by providing spatial context of local features
- Learnable smoothing and Graph neural network for local & global spatial context extraction
- Analyze spatial context via localization performance



Plans & Schedule

- Jinhwan : Spatial Context-aware Refinement
- Kyu Beom : Learnable Smoothing
- Week 3-7. Survey
- Week 8. Mid-term
- Week 9. Install & baseline setup
- Week 10. Mid-term presentation
- Week 11-12. Implement our methods
- Week 13. Additional tuning for merging
- Week 14. Prepare final presentation
- Week 15. Final presentation

