Deepfake Retrieval Systems: Detecting Identity Fraud in Image Databases

Jumin Lee and Suhyeon Ha (T4) 2024. 06. 05.

CS588 Final Project Presentation

Introduction

Target Task

• Given an authentic image, our goal is to detect fake images pretending to depict the same person in database.

ID 13, Real

ID 13, Fake

Results

Query

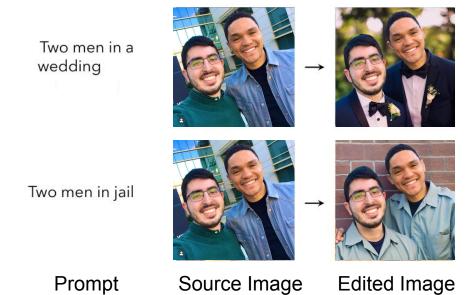
- No existing work to <u>retrieve deepfakes of the query image</u>.
- A combination of face retrieval and forgery detection can be utilized.

Stage 1	Stage 2	or	Stage 1	Stage 2
Face Retrieval	Forgery Detection	or	Forgery Detection	Face Retrieval

- Face retrieval
 - : Identify images that match the given identity.
- <u>Forgery detection</u>

: Determine whether the identified **arbitrary images** have been manipulated.

- Prompt-guided inpainting can modify images while preserving their identities.
- If we use <u>deepfake detection</u> instead of <u>forgery detection</u>, we can not handle this issue.



- No existing work to <u>retrieve deepfakes of the query image</u>.
- A combination of face retrieval and forgery detection can be utilized.

Stage 1	1 Stage 2		Stage 1	Stage 2
Face Retrieval	Forgery Detection	or	Forgery Detection	Face Retrieval

- Why is face retrieval ahead of forgery detection?
 - : Being unrecognized as someone's identity suggests its quality is doubtful.

• Given an authentic image, our goal is to detect fake images pretending to depict the same person in database.

Database

ID 13, Real

ID 13, Real&Fake

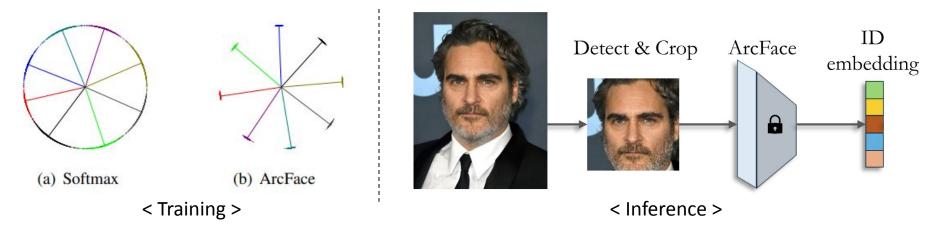
ID 13, Fake

CS588 Final Project Presentation

Related Work

ArcFace

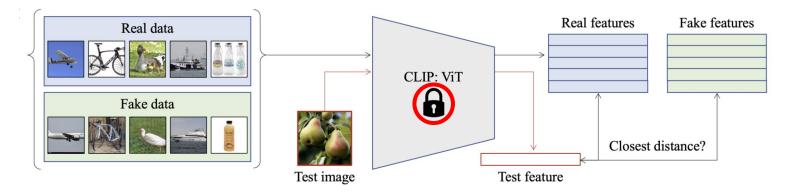
• ArcFace: Additive Angular Margin Loss for Deep Face Recognition, CVPR 2019



- Train with loss term that depends on the angle between classes to create a larger gap between different classes.
- After training, model can get ID embedding.

UniDet

• Towards Universal Fake Image Detectors that Generalize Across Generative Models, CVPR 23



The classification process should happen in a feature space which has not been trained

to separate images from the two classes.

In Midterm Project Presentation

- Checked the performance of UniDet for stage 2.
- Classification accuracy result.

Detection method		Gei	nerative Adve	rsarial Netwo	rks		Denoising Diffusion Models DALL-E					Models
Detection method	Pro-GAN	Cycle-GAN	Big-GAN	Style-GAN	Gau-GAN	Star-GAN	Glide	Guided	LDM		Deepfakes	CelebDF
UniDet w/ LC	100.00	98.50	94.50	82.00	99.50	97.00	79.07	70.03	94.19	81.47	66.60	11.01
					Deepf	akes						
	UniDet's image embedding (<mark>Real/Fake</mark>)									i		
	Classi	fication A	Accuracy		66. Accuracy = 94%,		= 42%) (Real Accur	11.01 acy = 99%, Fake	e Accuracy = 1	%)	11

In Midterm Project Presentation

• There is still room for improvement in forgery detection for both datasets.

 \rightarrow Our goal is to improve <u>facial forgery detection</u> of UniDet for <u>deepfake retrieval</u> <u>system</u>.

Detection method		Gei	nerative Adve	rsarial Netwo	rks		Denois	ing Diffusi	on Models	DALL-E	Deepfake	Models
Detection method	Pro-GAN	Cycle-GAN	Big-GAN	Style-GAN	Gau-GAN	Star-GAN	Glide	Guided	LDM		Deepfakes	CelebDF
UniDet w/ LC	100.00	98.50	94.50	82.00	99.50	97.00	79.07	70.03	94.19	81.47	66.60	11.01
_					Deepfakes							
	UniDet's image embedding (<mark>Real/Fake</mark>)											
	Classification Accuracy				66. Accuracy = 94%,		= 42%) (Real Accura	11.01 cy = 99%, Fake	e Accuracy = 1	%)	12

CS588 Final Project Presentation

Our Approach

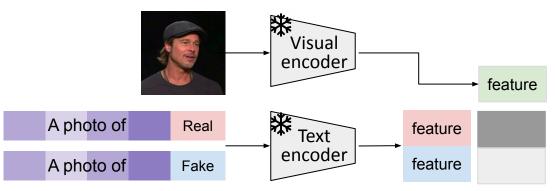
- UniDet uses only CLIP's visual features for forgery detection.
- We try to combine CLIP's visual and **text features** to improve UniDet's performance.
 - \circ $\,$ It's used for many other tasks such as classification and generation.

ex) Classification : CoOp[1], CoCoOp[2]

ex) Generation : Arc2Face[3]

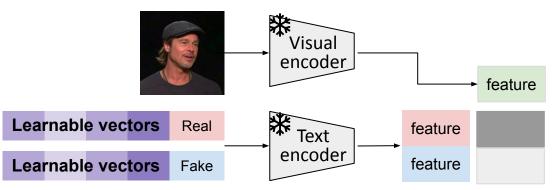
Learning to Prompt for Vision-Language Models, IJCV 2022
Conditional Prompt Learning for Vision-Language Models, CVPR 2022
Arc2Face: A Foundation Model of Human Faces, arxiv 2024

- UniDet uses only CLIP's visual features for forgery detection.
- We try to combine CLIP's visual and **text features** to improve UniDet's performance.



- However, we need prompt engineering which is inefficient.
 - A photo of [CLASS]. / A photo of a [CLASS]. / A [CLASS]. / ...

- UniDet uses only CLIP's visual features for forgery detection.
- We try to combine CLIP's visual and **text features** to improve UniDet's performance.

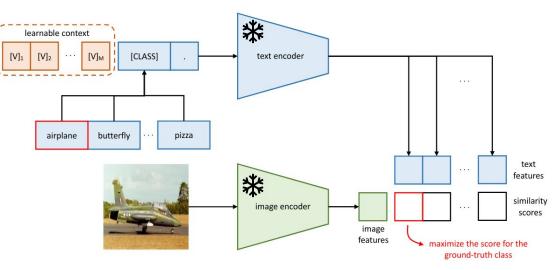


• So we apply Context Optimization (CoOp).

• What is Context Optimization (CoOp) ?

: Model prompt's context words with learnable vectors while the entire pre-trained parameters are kept fixed.

- Using cross entropy loss.



• Inference

Database

ID 13, Real

Face Retrieval

Stage 1. ArcFace

ID 13, Real&Fake

Forgery Detection

Stage 2. Ours

ID 13, Fake

CS588 Final Project Presentation

Results

Experiment details for Stage 2.

- Training Dataset : ProGAN dataset
- Evaluation Dataset for Deepfake Models
 - Deepfakes : 5,405 frames (= 2,707 real + 2,698 fake)
 - CelebDF : 50,205 frames (= 4,820 real + 45,385 fake)

Fake

Deepfakes

CelebDF

Quantitative results

• Stage 2. Classification Accuracy.

Detection method	Generative Adversarial Networks							Denoising Diffusion Models			Deepfake Models		Arra
	Pro-GAN	Cycle-GAN	Big-GAN	Style-GAN	Gau-GAN	Star-GAN	Glide	Guided	LDM		Deepfakes	CelebDF	Avg.
UniDet w/ LC	100.00	98.50	94.50	82.00	99.50	97.00	79.07	70.03	94.19	81.47	66.60	11.01	81.15
Ours	100.00	95.60	93.80	95.25	93.43	99.15	92.88	84.3	88.16	91.50	79.63	11.70	93.22

- Demonstrates high performance gains, especially on Deepfakes dataset.
- However, we also have same problem with CelebDF dataset.
- Even if we crop out just the faces like in the deepfake dataset, we achieve

14.25% accuracy performance.

Quantitative results

• Stage 2. Classification Accuracy.

Detection method	Deepfake Models				
Detection method	Deepfakes	CelebDF			
UniDet w/ LC	66.60	11.01			
Ours	79.63	11.70			
Ours fintuned w/ CelebDF dataset	87.29	50.34			

- <u>Fine-tuning</u> with CelebDF datasets can increase the Deepfakes' performance to 87%.
- Still show low performance on CelebDF dataset.

Our overall framework

• Inference

Database

ID 13, Real

Face Retrieval

Stage 1. ArcFace

Forgery Detection

Stage 2. Ours

ID 13, Fake

ID 13, Real&Fake Deepfakes : 5,405 frames (= 2,707 real + 2,698 fake)

Qualitative results

Retrieved images from each stage are shown. Red-dotted box denotes missed deepfake.

Recall: 100% (22/22)

Query

Stage 1

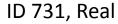
Recall: 85.7% (12/14)

Stage 2

Deepfakes : 5,405 frames (= 2,707 real + 2,698 fake)

Qualitative results

Retrieved images from each stage are shown. Red-dotted box denotes missed deepfake.



Recall: 100% (19/19) Stage 1

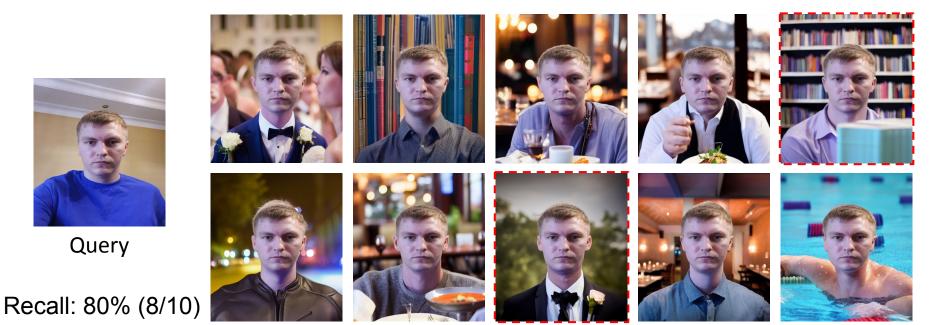
Recall: 80% (4/5) Stage 2

Image Credit: Raising the Cost of Malicious AI-Powered Image Editing, CVPR 2024

Qualitative results

• We also check our model can detect modified images while preserving their

identities.



Conclusion

- We first construct the **deepfake retrieval framework**.
 - Not just when identities change, but also when backgrounds change.
- Significant <u>performance improvement</u> compared to UniDet by **using text features**, especially on Deepfakes dataset.
- Limitation
 - The protocol of universal deepfake detection is based on ProGAN, but there is a lack of face images in this dataset, so we need a universal deepfake detection method that can overcome this problem.

Detection method	Generative Adversarial Networks							Denoising Diffusion Models			Deepfake Models		A
	Pro-GAN	Cycle-GAN	Big-GAN	Style-GAN	Gau-GAN	Star-GAN	Glide	Guided	LDM		Deepfakes	CelebDF	Avg.
UniDet w/ LC	100.00	98.50	94.50	82.00	99.50	97.00	79.07	70.03	94.19	81.47	66.60	11.01	81.15
Ours	100.00	95.60	93.80	95.25	93.43	99.15	92.88	84.3	88.16	91.50	79.63	11.70	93.22

Roles

- Jumin
 - Implement CoOp
 - Generate PhotoGuard samples

- Suhyeon
 - Implement ArcFace
 - Implement inference framework

Q&A

CS588 Final Project Presentation

Thank you.

