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Introduction
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Background Recap

▪ Main assumption: language can be beneficial to classical Computer Vision tasks

▪ It can reduce the complexity of models while retaining competitive performances
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Background Recap

▪ Relevant example: Pix2Seq (Chen et al., 2022)

▪ Teaching a model to write the location of objects

▪ It enables efficient object detection

▪ Can we use language information
to improve Image Retrieval?
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Idea

▪ Let's use captions to improve global representations for content-based image retrieval

▪ Similarly to typical global features, they encode information about the general meaning of an image

o We can modulate the granularity of the description by enriching it with details

▪ Fuse together text embeddings and image embeddings and train jointly
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Idea

▪ This is typical when we have Image-to-Text or Text-to-Image retrieval

▪ Not when our queries and our database are both composed by images

▪ In this case, captions helpful to build a better representation space
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Another idea

▪ Additionally, we can jointly train our model to detect relevant objects

▪ Assumption: learning to detect objects can improve retrieval accuracy

▪ Already attempted
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A backbone

▪ X-VLM2 (Zeng et al., 2023)

o Pre-trained for many vision-
language tasks

o Image representations fused 
with object-level and textual 
information

o SoTA in Text-Image Retrieval 
(fine-tuned)
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Zeng et al., 2023



X2-VLM

▪ Perfect for this idea

▪ Already pre-trained with language and object-level info

o But not fine-tuned or tested on Content-Based Image Retrieval
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Dataset

▪ DeepFashion2 (Ge et al., 2019)

▪ Given a user-uploaded picture, find the correspondent commercial ones

▪ Challenging dataset

o Different levels of occlusion, viewpoint change, scale

▪ It contains object-level annotations
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Ge et al., 2019



Methodology
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Collecting Captions

▪ Expensive

▪ They need to be highly detailed to be relevant

▪ Solution: 
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Zhu et al., 2023



Collecting Captions - 2

▪ An LLM and a VQA model interact

▪ The LLM asks questions

▪ VQA answers

▪ At the end, summarized caption is more detailed than the original caption
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Collecting Captions - 3

▪ Original work: GPT-3

o Highly expensive

▪ Idea: let's try with Phi-3 (Abdin et al., 2024)

▪ X2-VLM for VQA
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Collecting Captions - Limitations

▪ My implementation doesn't do this

▪ Still too expensive

▪ Caption format: An image of a dress with viewpoint {}, occlusion level {}, scale {}, and zoom in {}
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Finetuning X2-VLM

❑ Pre-training losses: MLM + ITC + ITM + (L1 + IoU)

❑ Fine-tuning losses: ITC + ITM + (L1 + IoU) + ArcFace

❑ Arcface for classification

o Margin loss: you add a margin to logits and scale

o Margin: 0.15, Scaling: 30.0
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Inference

❑ Input: query images about clothes from consumers

❑ Need to find the corresponding images from the shop
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Experiments
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Overview of the Experiments

▪ Performed

o Zero-shot Image Retrieval

o X2-VLM already has been trained jointly with language and object info

o Fine-tuned with object information and captions (not generated automatically)

▪ Planned

o Fine-tuning with synthetic captions from Deepfashion2 and more samples
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Zero-shot IR

▪ Zero-shot results really not satisying

o MAP very close to zero (2.7%)

o It is possible that mistakes in the implementation were made

▪ A Transformer as backbone may also be the issue
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Finetuning

▪ Fine-tuned with captions and object-level information

o 1 epoch with 1000 samples

▪ Small improvement, but still mAP close to 0 (3.4%)

▪ The errors made however appears interesting
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Error Analysis

▪ Interestingly, it seems like the type of clothes are somewhat identified, however not the exact one 
from the query

3 settembre 20XX 22

Query



Error Analysis
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Error Analysis
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Error Analysis
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Error Analysis
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Query



Conclusion
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Observations and Limitations
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▪ The network didn't really catch the point

▪ However, it is somehow reasoning

▪ Object detection and captions would likely help

o Model doesn't get exactly what it should be looking for in the picture

▪ Only global features were considered

o This likely shows in the results



Conclusion
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▪ Objective: seeing whether textual information can be used to improve Content Based Image Retrieval

▪ Additionally include Object-level information

▪ Zero-shot + limited fine-tuning attempted

▪ Quantitative performances very low but qualitative ones suggests the model is somewhat reasoning



Thank you!

Final Project Presentation – Filippo Momentè (T3)
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