
Efficient Image Clustering Conditioned on 
Text Criteria
Sheikh Shafayat



Recap on my previous paper presentation…



What is the problem?

● Use cases:
○ You can cluster the same images 

in many different ways

○ By mood, location, event

● They are doing image clustering

● Not just any kind of clustering
○ Clustering based on user query

○ Query is word based

K given



More example…



How does it work?



But there were some problems…



● Computationally VERY expensive

● Need to run every step for every query

● For every query:

○ Caption all images in the database using VLM

○ Cluster those captions using LLM

○ Put each image to corresponding cluster using LLMs

Cons about the paper… 🧐



Notice the three steps:

● For every query:

○ Caption all images in the database using VLM

○ Cluster those captions using LLM

○ Put each image to corresponding cluster using LLMs

The Question of this Project was?

Can we replace these LLM calls?



How Did I Approach?



What was my approach?

● Simple:

○ Generating caption like before

○ Then get text embedding of the caption

○ Perform embedding clustering

■ Using K-Means clustering algorithm



What was my approach?



But, does it actually work?



It is not obvious why it should work

● So, first experiment with CIFAR-10

○ Cluster CIFAR-10 test set

■ Majority label of each cluster is the label for all the 

images in that cluster



Results?

● Pretty Good!:
○ Accuracy: 0.97 

○ F1: 0.976

○ Precision: 0.977

○ Recall: 0.976

● Comparable with 0.987 (acc) 

reported in the paper

Note, number of samples are not same across classes. I was working 
with 1000 samples



That was proof of concept



Let’s solve the real problem



Stanford 40-Actions Dataset

● There are 40 

different actions 

people are doing

● We need to classify 

them

● Authors also relabel 

1000 data

○ Mood 

○ Location



How does my clustering method do?



The results are interesting…



The results are interesting…



The results are interesting…



The results are interesting…



The results are interesting…



The results are interesting…

● Sometimes it works, sometimes it fails

● We got the labels by asking GPT4 [denoted gpt4 summary]

○ Taking the 20 images closest to each centroid

○ Summarizing their captions



Note that…

● Our label does not 
always correspond to 
the label given the 
dataset

● There is no “sitting” 
cluster in the dataset

● But “sitting” cluster is 
just as valid



Note that…

● The label is “on beach”
● Which is kind of right



Note that…

● Sometimes the cluster 

we get is same as the 

given dataset

● “Climbing” is indeed a 

category in the dataset



Note that…

● Sometimes our cluster 

name is slightly 

different



Note that

● Sometimes the 

clustering is not very 

good



Let’s see the numbers



Note that, the numbers are not really comparable:

● Their cluster membership inference requires 

several more LLM/nltk calls

● While mine does not

My implementation vs paper’s expensive 
implementation

Mine
0.580465
 0.741
0.5461

My implementation:

● Much faster (~ 1 min max)

○ No complex prompting

● But does not reach as high score



Why it doesn’t reach as high score?

● Sometimes the caption model fails

○ It was LLaVa model

○ Happens often

● Got classified as “planting flowers”

The person, a young boy, is located 
in a garden, standing next to a 
bush



Why it doesn’t reach as high score?

● Sometimes the caption model fails

○ It was LLaVa model

○ Happens often

● Got classified as “planting flowers”

The person, a young boy, is located 
in a garden, standing next to a 
bush



Why it doesn’t reach as high score?

● Sometimes it is not really a 

“mistake”

● It got classified as “cooking”



We can control K, right?



What happens if you control K?

● K = 2
○ Only “Standing” and “Sitting”

● K = 5
○ “Standing”, “Sitting”, “Working”, 

“Climbing”, “Walking”

● K = 10
○ 'Standing', 'Playing guitar', 'Washing 

dishes', 'Standing in a field', 'Walking', 

'Sitting', 'Climbing', 'Boating', 'Next to 

car', 'Positioned' (?!)

The larger K, the 
more fine-grained 
the clustering



What’s Next?



One easy way might improve it:

● Spurious correlation hurt generalization

○ Water in the background != boating

○ A simple post processing might help

○ I want to avoid expensive LLM calls

■ Cosine similarity with embeddings might 

work



In Summary



Summary

● I found a very easy solution to speed up the 

computation

○ Original implementation takes several hours per 

query 

○ Mine takes ~1 mins 

● My results are qualitatively good

○ But not as good as the ones on the paper

● Some simple post processing might

○ Improve the numbers even further



Thanks for listening 🤗


