Interactive Sound Propagation and Rendering for Large Multi-Source Scenes

Author: CARL SCHISSLER and DINESH MANOCHA
University of North Carolina at Chapel Hill
Presenter: Andrew Kim
Review of Last Week: Real-Time Polygonal-Light Shading with Linearly Transformed Cosines

- Rendering equation of Polygonal Light involves spherical integration
- Accurate spherical integration of BRDF is not possible
- Use of Linearly Transformed Cosines approximates various shapes of BRDFs with low complexity

Author: Eric Heitz
Presenter: In Yeong Cho
Table of Contents

1. Introduction
2. Goal / Problems
3. Solutions
 1. Acoustic Reciprocity for Spherical Sources
 2. Source Clustering
 3. Hybrid Convolution Rendering
4. Results
5. Limitations
6. Summary
Video

- https://www.youtube.com/watch?v=0QjBUwlrD98
Introduction

- Visual complexity of scenes in media such as games are increasing
- Rendering sounds at such rate remains a big challenge
 - Large number of sound sources
 - Large number of objects
 - Simulating Acoustic effects
Goal / Problems

- **Goal:**
 Render *large number of sounds* in a *complex scene* at an *interactive rate*

- **Problems:**
 - Simulating reverberation
 - Sounds reaching the listener after a large number of reflections
 - Computationally expensive
 - Complexity of sound propagation algorithm
 - Increases linearly as the number of sound sources increase
 - Real-time audio rendering
 - Hundreds of sources creates thousands of paths
Solutions

- 1. Acoustic Reciprocity for Spherical Sources
- 2. Source Clustering
- 3. Hybrid Convolution Rendering
Solutions

- 1. Acoustic Reciprocity for Spherical Sources
- 2. Source Clustering
- 3. Hybrid Convolution Rendering
1. Acoustic Reciprocity for Spherical Sources

- Acoustic Reciprocity: Backwards Ray Tracing
 - Instead of the source, rays are traced from the listener
 - No longer linearly dependent on the number of sound sources
1. Acoustic Reciprocity for Spherical Sources

- Spherical Sources: **Representing Sound Sources as Spheres**
 - Cone of rays are fired back to the image of the listener
 - Rays that are not occluded by the obstacles go into the diffuse cache
Solutions

1. Acoustic Reciprocity for Spherical Sources
2. Source Clustering
3. Hybrid Convolution Rendering
2. Source Clustering

- Sounds far away from the listener and are close to each other are ‘clustered’
- Clustered sounds are treated as one spherical sound source
2. Source Clustering

- Clustering considers obstacles between the sound sources
- Rays are traced around the sound sources to see if the sources reside in the same acoustic space
2. Source Clustering

- Clustered sound source use large detection sphere, which may result in too much sound energy for source with small radii
- Normalization factor = \(\frac{\text{area of sound source silhouette}}{\text{area of cluster silhouette}} \)

\[
w = \frac{\pi r_i^2}{\pi r_{bs}^2}.
\]
Solutions

- 1. Acoustic Reciprocity for Spherical Sources
- 2. Source Clustering
- 3. Hybrid Convolution Rendering
3. Hybrid Convolution Rendering

- A method to speed up the simulation of **Doppler Effect**
- Doppler Effect: Sound source that move towards or away from the listener generate different frequencies in relation to the velocity.

3. Hybrid Convolution Rendering

- Methods to render Doppler Effect:
 - Fractionally interpolated delay lines
 - Accurate rendering of Doppler Effect
 - Becomes expensive as the number of sound paths increases
 - Partitioned frequency-domain convolution
 - Handles large amount of Doppler Effects
 - Not an accurate simulation

3. Hybrid Convolution Rendering

- Hybrid Convolution Rendering: **Combines the two methods**
- Doppler shift amount is calculated for each sound paths
- If (Doppler shift amount) > (threshold):
 - Use **Fractionally interpolated delay lines**
- If (Doppler shift amount) < (threshold):
 - Use **Partitioned frequency-domain convolution**
- If too many use of **Fractionally interpolated delay lines**:
 - Sort by decreasing amount of Doppler shift amount and sound path intensity

Overall Pipeline

- Source Clustering
- Backwards Ray Tracing
- Spherical Sources
- Hybrid Convolution Rendering
Results

- Backward ray tracing is 4.8 times faster than forward ray tracing
- Still has linear complexity
Results

- Clustering reduces the number of sources by around a factor of 2 on average
- Clustering efficiency is increased as more sources are far away from the listener
Limitations

- Since it is based on ray-tracing, it cannot accurately simulate low frequency sounds
- Assumption that all scene primitives are larger than the wavelength
- Representation of sound sources as spheres may not work well in some situations
Summary

- Render **large number of sounds** in a **complex scene** at an **interactive rate** using:
 - 1. Acoustic Reciprocity for Spherical Sources
 - Backwards Ray Tracing – Rays from listener to sound sources
 - Spherical sound source – Allows smooth interpolation
 - 2. Source Clustering
 - Clustered when sound sources are far away from the listener
 - Clustered when sound sources are close to each other with no obstacles
 - 3. Hybrid Convolution Rendering

- Successful at rendering large number of sound sources in a complex scene at an interactive rate