Real-time Application of LTC for Shadow Rendering

신은혁 - Eun Hyouk Shin 조인영 - In Young Cho

Overview

- 1. Analytic solution of rendering equation
 - a. Linearly Transformed Cosines(LTCs) revisited
- 2. Limitations of LTC: Global illumination
 - a. Why is GI so critical?
- 3. Project Scope: Shadow
- 4. Our Idea
- 5. Project Plan & Roles

Analytically Solving Rendering Eq

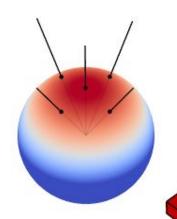
- Spherical Integrals are common in rendering
 - Rendering equation

$$L(\omega_o) = L_e(\omega_o) + \int_{\Omega} L(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i d\omega_i$$

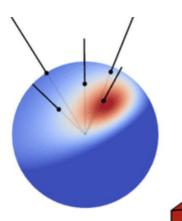
Exact integration are not common

- Numerical integration is slow
 - Stochastic methods suffer from noise

Analytically Solving Rendering Eq


- Real-time rendering
 - Sampling is not practical
 - Need efficiency, allows approximate
 - Trade correctness for efficiency

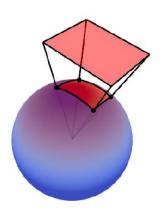
Analytical solutions are welcome

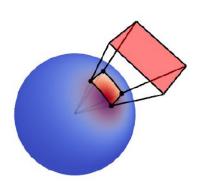

$$L(\omega_o) = L_e(\omega_o) + \int_{\Omega} L(\omega_i) f_r(\omega_i, \omega_o) \cos \theta_i d\omega_i$$

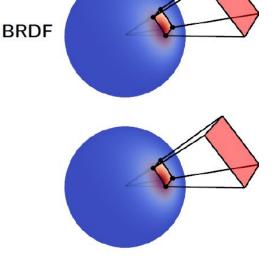
LTC Revisited

- Cosine
 - Easy to compute the integral

- Linearly Transformed Cosine (LTC)
 - Approximate BRDFs




LTC Revisited


- Change of variables
 - **Connect LTC with plain cosine**
 - **Easy integration for LTC too**

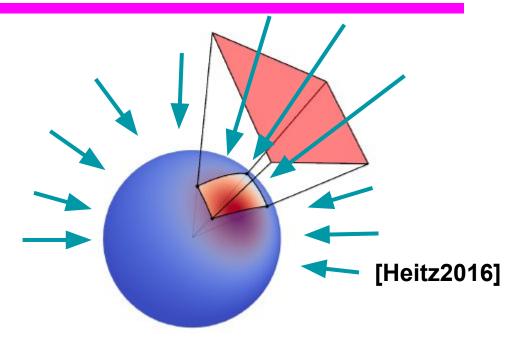
[Heitz2016]

- **Polygonal light**
 - **Projected to hemisphere**

LTC Revisited

- Fine quality real-time rendering
 - With a very simple idea

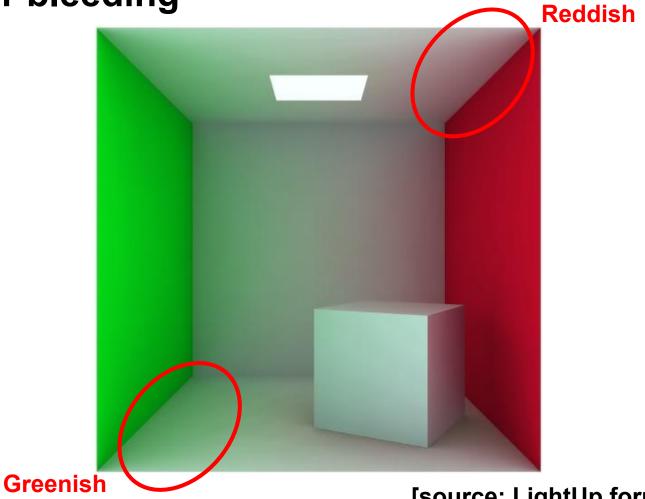
[Heitz2016]



There Are Always Pros & Cons!

What are the drawbacks/ limitations of LTC in the paper?

Limitations of LTC (1)


No indirect light

- Because, indirect illumination needs global interaction
 - Means, time-consuming
 - Radiosity, MC ray tracing

Indirect Light

Color bleeding

[source: LightUp forum]

Indirect Light

Specular materials

(a) Local Illumination

(b) Global Illumination

Limitations of LTC (2)

- No shadows
 - Not considered a visibility term (V = 1)
 - No obstacles between light and material

$$\int_{\Omega} Light \times BRDF \times Visibility$$

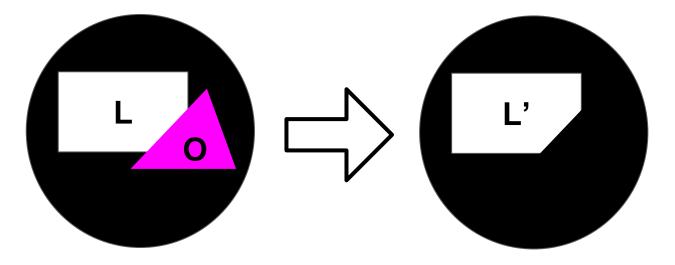
[Heitz2016]

Shadow

Shadow

[source: LightWave documentation]

Limitations of LTC: Summary


- No global illumination
 - No indirect lights
 - No shadows

Our Project Scope

"Efficient Shadow Rendering Using LTC"

Our Idea: Projected Visible Light

- Visible part of projected light is also polygon
- Use it as our integration domain

 Further optimization: approximate with simpler polygons, parametrization for avoiding redundant computation

Project Plan

- Understand LTC demo code
 - Currently, scene is limited to very simple scene
- Render general scene with LTC (baseline)
 - Learn OpenGL pipeline, scene representation
- Projected visible light
 - Optimization: vertex reduction (simplification)
- Check results

The Roles of Each Member

- Eun Hyouk Shin (focus: scene geometry)
 - Learn scene representation
 - Implement projected visible light
 - (Optional) vertex reduction
- In Young Cho (focus: image production)
 - Learn OpenGL pipeline
 - Implement LTC integration for general scene

Summary

- Why is LTC useful?
 - Analytic method is good for real time rendering
- Limitations of LTC
 - Lack of global illumination
- Problem (Project Scope)
 - Shadow rendering
- Why is it important?
 - GI adds more realistic lighting to 3D scenes
- Our idea
 - Projected visible light