< Special Topic in Rendering > Path Guiding

CS482 Interactive Computer Graphics

Jaeyoon Kim Ph.D. student @ SGVR Lab kimjy2630@kaist.ac.kr

Review

Rendering Equation Monte Carlo Path Tracing

Rendering Equation

• Rendering equation [Immel et al. 1986; Kajiya 1986] *L*: a radiance **x**: a point $\boldsymbol{\omega}$: a direction Ω : the hemisphere $\mathbf{n}_{\mathbf{x}}$: the normal vector at \mathbf{x} f_s : the BSDF (material) *i*: inward *o*: outward *e*: self-emitting

•
$$\frac{L_{o}(\mathbf{x}, \boldsymbol{\omega}_{o})}{\frac{Outgoing}{radiance}} = \frac{L_{e}(\mathbf{x}, \boldsymbol{\omega}_{o})}{\frac{Self-emitting}{radiance}} + \int_{\Omega} \frac{L_{i}(\mathbf{x}, \boldsymbol{\omega}_{i}) f_{S}(\mathbf{x}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o})}{\frac{Inward}{radiance}} \frac{I_{SDF} = Material}{BSDF = Material}$$

Monte Carlo Ray Tracing

• MC integration of rendering equation.

L: a radiance **x**: a point $\boldsymbol{\omega}$: a direction $\boldsymbol{\Omega}$: the hemisphere $\mathbf{n}_{\mathbf{x}}$: the normal vector at **x** f_{s} : the BSDF (material) *i*: inward *o*: outward *e*: self-emitting

•
$$\langle L_o(\mathbf{x}, \boldsymbol{\omega}_o) \rangle = L_e(\mathbf{x}, \boldsymbol{\omega}_o) + \frac{1}{N} \sum_{k=1}^N \frac{\langle L_i(\mathbf{x}, \boldsymbol{\omega}_{i,k}) \rangle f_s(\mathbf{x}, \boldsymbol{\omega}_{i,k}, \boldsymbol{\omega}_o)(\boldsymbol{\omega}_{i,k} \cdot \mathbf{n}_{\mathbf{x}})}{p(\boldsymbol{\omega}_{i,k})}$$

Monte Carlo Path Tracing

• MC integration of rendering equation.

L: a radiance **x**: a point $\boldsymbol{\omega}$: a direction Ω : the hemisphere $\mathbf{n}_{\mathbf{x}}$: the normal vector at \mathbf{x} f_s : the BSDF (material) *i*: inward *o*: outward *e*: self-emitting

• Set N = 1 for intermediate bounces

•
$$\langle L_o(\mathbf{x}, \boldsymbol{\omega}_o) \rangle = L_e(\mathbf{x}, \boldsymbol{\omega}_o) + \frac{\langle L_i(\mathbf{x}, \boldsymbol{\omega}_i) \rangle f_s(\mathbf{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o)(\boldsymbol{\omega}_i \cdot \mathbf{n}_x)}{p(\boldsymbol{\omega}_i)}$$

Path Guiding

Variance in Path Tracing

•
$$\langle L_o(\mathbf{x}, \boldsymbol{\omega}_o) \rangle = L_e(\mathbf{x}, \boldsymbol{\omega}_o) + \frac{1}{N} \sum_{k=1}^{N} \frac{\langle L_i(\mathbf{x}, \boldsymbol{\omega}_{i,k}) \rangle f_s(\mathbf{x}, \boldsymbol{\omega}_{i,k}, \boldsymbol{\omega}_o)(\boldsymbol{\omega}_{i,k} \cdot \mathbf{n}_{\mathbf{x}})}{p(\boldsymbol{\omega}_{i,k})}$$

• $Var[\langle L_o(\mathbf{x}, \boldsymbol{\omega}_o) \rangle] = Var \left[\frac{1}{N} \sum_{k=1}^{N} \frac{\langle L_i(\mathbf{x}, \boldsymbol{\omega}_{i,k}) \rangle f_s(\mathbf{x}, \boldsymbol{\omega}_{i,k}, \boldsymbol{\omega}_o)(\boldsymbol{\omega}_{i,k} \cdot \mathbf{n}_{\mathbf{x}})}{p(\boldsymbol{\omega}_{i,k})} \right]$
 $= \frac{1}{N} Var \left[\frac{\langle L_i(\mathbf{x}, \boldsymbol{\omega}_i) \rangle f_s(\mathbf{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o)(\boldsymbol{\omega}_i \cdot \mathbf{n}_{\mathbf{x}})}{p(\boldsymbol{\omega}_i)} \right]$

- If $p \propto L_i f_s \cos \theta_i$, $Var[\langle L_o(\mathbf{x}, \boldsymbol{\omega}_o) \rangle] = 0$ • Shoot more rays to the direction with intens
 - Shoot more rays to the direction with intense light
- Path guiding: estimation for incident radiance

Path Guiding – 1D example

- MC integration for $\int_0^{\pi} \sin^2 x \, dx$
 - Sampling pdf p
 - 1. uniform distribution
 - 2. triangle-shaped pdf

1.2

Path Guiding Results

Huang, Jiawei, et al. "Online Neural Path Guiding with Normalized Anisotropic Spherical Gaussians." ACM Transactions on Graphics 43.3 (2024): 1-18.

Traditional Methods in Path Guiding

Grid-based MM-based Tree-based

Variance-aware

Grid-Based Path Guiding [Jensen 1995]

• Represent radiance fields with grid structure

GMM-Based Path Guiding [Vorba et al. 2014]

Used Gaussian mixture model (GMM) to represent radiance fields

Tree-Based Path Guiding [Müller et al. 2017; Müller 2019]

- Used hierarchical structures
 - k-d tree for spatial subdivision
 - Each spatial leaf node contains a directional quadtree

- VMM-based radiance representation
- Variance-based merge/split
- Parallax-aware representation

Ruppert, Lukas, Sebastian Herholz, and Hendrik PA Lensch. "Robust fitting of parallax-aware mixtures for path guiding." ACM Transactions on Graphics (TOG) 39.4 (2020): 147-1.

- Von Mises-Fischer (vMF) distribution (spherical Gaussian)
 - $\upsilon(\omega|\mu,\kappa) = \frac{\kappa}{4\pi\sinh\kappa} e^{\kappa(\mu\cdot\omega)}$ • $\mu \in S^2$ • $\kappa \geq 0$
- vMF mixture model (VMM)
 - $\mathcal{V}(\omega) = \sum_{i=1}^{K} \pi_i \mathcal{V}(\omega | \mu_i, \kappa_i)$
 - $\sum_{i=1}^{K} \pi_i = 1$

- Overall procedure
 - Sample rays under VMM $\mathcal{V}(\omega|\Theta) = \sum_{k=1}^{K} \pi_k v(\omega|\mu_k, \kappa_k)$
 - $S = \{s_1, \dots, s_N\}, s_n = \{x_n, \omega_n, p(\omega_n | x_n), \tilde{L}_i(x_n, \omega_n)\}$
 - Compute weight for each sample • $w_n = \frac{1}{\tilde{\Phi}(x)} \frac{\tilde{L}_i(x_n, \omega_n)}{p(\omega_n | x_n)'} \tilde{\Phi}(x) = \frac{1}{N} \sum_{n=1}^N \frac{\tilde{L}_i(x_n, \omega_n)}{p(\omega_n | x_n)}$
 - Compute sufficient statistics for updating VMM parameters

•
$$r_k = \sum_{n=1}^N w_n \gamma_k(\omega_n) \omega_n$$
, $\bar{r}_k = \frac{\|r_k\|}{\sum_{n=1}^N w_n \gamma_k(\omega_n)}$

• Update VMM parameters from sufficient statistics

•
$$\hat{\mu}_k = \frac{r_k}{\|r_k\|'} \hat{\kappa}_k \approx \frac{3\bar{r}_k - \bar{r}_k^3}{1 - \bar{r}_k^2}, \ \hat{\pi}_k = \frac{\sum_{n=1}^N w_n \gamma_k(\omega_n)}{\sum_{j=1}^K \sum_{n=1}^N w_n \gamma_j(\omega_n)}$$

- Parallax-aware representation for incident radiance
 - VMM is shared in each spatial region
 - Parallax causes additional estimation error
- Later, solved in MLP-based methods

Variance-Aware Path Guiding [Rath et al. 2020]

- Recall: If $p \propto L_i f_s \cos \theta_i$, $Var[\langle L_o(\mathbf{x}, \boldsymbol{\omega}_o) \rangle] = 0$
- Can we get exact value of $L_i(\mathbf{x}, \boldsymbol{\omega}_i)$?
 - No!
- How can we compensate estimation error for $L_i(\mathbf{x}, \boldsymbol{\omega}_i)$?

Variance-Aware Path Guiding [Rath et al. 2020]

• Goal: Finding a pdf p^* minimizing variance $Var[\langle L_o(\mathbf{x}, \boldsymbol{\omega}_o) \rangle]$

• From Euler-Lagrange equation,

•
$$p^* \propto \sqrt{E[\langle L_i(\mathbf{x}, \boldsymbol{\omega}_i) \rangle^2]} f_s(\mathbf{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) |\boldsymbol{\omega}_i \cdot \mathbf{n}|$$

= $\sqrt{E[\langle L_i(\mathbf{x}, \boldsymbol{\omega}_i) \rangle]^2 + Var[\langle L_i(\mathbf{x}, \boldsymbol{\omega}_i) \rangle]} f_s(\mathbf{x}, \boldsymbol{\omega}_i, \boldsymbol{\omega}_o) |\boldsymbol{\omega}_i \cdot \mathbf{n}|$

Machine Learning Approaches in Path Guiding

Normalizing flows Offline learning Reinforcement learning Hierarchical CNN Implicit representation

Neural Importance Sampling [Müller et al. 2019]

- Learns sampling functions with normalizing flows
 - Piecewise-polynomial coupling transforms

Primary Sample Space [Zheng and Zwicker 2019]

- Learn a bijective warping Ψ_k in primary sample space
 - Φ_k : a mapping from a canonical parametrization of paths with length k, Ω_k over 2(k + 1)-dimensional hypercube $[0,1]^{2(k+1)}$

Offline Path Guiding [Bako et al. 2019]

- Scene-independent method with supervised learning
- Learns incident radiance fields from local neighbor samples
 - Can be considered as denoising for incident radiance fields

Reinforcement Learning [Huo et al. 2020]

- Define two kinds of actions
 - Refine: subdivide a node
 - Resample: double the pdf value of a node
- Reward: reduced noise after radiance field denoising

Hierarchical CNN [Zhu et al. 2021]

• Used hierarchical CNN to deal with quadtree

MLP-Based Representation [Dong et al. 2023]

- Estimate parameters of VMM through MLP
- Implicit representation helps solving parallax problem

Thank you