CS380: Computer Graphics Ray Tracing

Sung-Eui Yoon (윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/CG/

Class Objectives

- Understand overall algorithm of recursive ray tracing
- Ray generations
- Intersection tests
- Related chapter
- Part II, Ch. 10: Ray Tracing

Various Visibility Algorithm

- Z-buffer
 - Ray casting, etc.

Ray Casting

- For each pixel, find closest object along the ray and shade pixel accordingly
- Advantages
- Conceptually simple
- Can be extended to handle global illumination effects
- Disadvantages
- Renderer must have access to entire retained model
- Hard to map to special-purpose hardware
- Less efficient than rasterization in terms of utilizing spatial coherence

Recursive Ray Casting

- Ray casting generally dismissed early on because of aforementioned problems
- Gained popularity in when Turner Whitted (1980) showed this image
- Show recursive ray casting could be used for global illumination effects

Ray Casting and Ray Tracing

- Trace rays from eye into scene
- Backward ray tracing
- Ray casting used to compute visibility at the eye
- Perform (recursive) ray tracing for arbitrary rays needed for shading
- Reflections
- Refraction and transparency
- Shadows

Basic Algorithms of Ray Tracing

- Rays are cast from the eye point through each pixel in the image

Shadows

- Cast ray from the intersection point to each light source
- Shadow rays

From kavita's slides

Reflections

- If object specular, cast secondary reflected rays

From kavita's slides

Refractions

- If object tranparent, cast secondary refracted rays

From kavita's slides

Generate rays for supporting effects

An Improved Illumination Model [Whitted 80]

- Phong model

$$
I_{r}=\sum_{j=1}^{\text {numLights }}\left(k_{a}^{j} I_{a}^{j}+k_{d}^{j} I_{d}^{j}\left(\widehat{N} \bullet \hat{L}_{j}\right)+k_{s}^{j} I_{s}^{j}(\widehat{V} \bullet \widehat{R})^{n_{s}}\right)
$$

- Whitted model

$$
I_{r}=\sum_{\mathrm{j}=1}^{\text {num_Visible_Lights }}\left(\mathrm{k}_{\mathrm{a}}^{\mathrm{j}} \mathrm{I}_{\mathrm{a}}^{\mathrm{j}}+\mathrm{k}_{\mathrm{d}}^{\mathrm{j}} \mathrm{I}_{\mathrm{d}}^{\mathrm{j}}\left(\hat{\mathrm{~N}} \cdot \hat{L}_{\mathrm{j}}\right)\right)+\mathrm{k}_{\mathrm{s}} \mathrm{~S}+\mathrm{k}_{\mathrm{t}} \mathrm{~T}
$$

- S and T are intensity of light from reflection and transmission rays
- K_{s}, K_{t} are specular and transmission coefficient

An Improved Illumination Model [Whitted 80]

$I_{r}=\sum_{j=1}^{\text {numLights }}\left(k_{a}^{j} I_{a}^{j}+k_{d}^{j} I_{d}^{j}\left(\widehat{N} \cdot \hat{L}_{j}\right)\right)+k_{s} S+k_{t} T$

Computing reflection and transmitted/refracted rays is based on Snell's law

Ray Tree

Overall Algorithm of Ray Tracing

- Per each pixel, compute a ray, R

Def function RayTracing (R)

- Compute an intersection against objects
- If no hit,
- Return the background color
- Otherwise,
- Compute shading, c
- General secondary ray, R^{\prime}, if necessary
- Perform $\mathbf{c}^{\prime}=$ RayTracing (\mathbf{R}^{\prime})
- Return C+C'

Ray Representation

- We need to compute the first surface hit along a ray
- Represent ray with origin and direction
- Compute intersections of objects with ray
- Return the closest object

$$
\dot{p}(t)=\dot{0}+t \stackrel{\rightharpoonup}{d}
$$

Generating Primary Rays

Generating Secondary Rays

- The origin is the intersection point \mathbf{p}_{0}
- Direction depends on the type of ray
- Shadow rays - use direction to the light source
- Reflection rays - use incoming direction and normal to compute reflection direction
- Transparency/refraction - use snell's law

Intersection Tests

- Go through all of the objects in the scene to determine the one closest to the origin of the ray (the eye)

- Strategy
- Solve of the intersection of the ray with a mathematical description of the object

Simple Strategy

- Parametric ray equation
- Gives all points along the ray as a function of the parameter

$$
\dot{\mathrm{p}}(\mathrm{t})=\dot{\mathrm{O}}+\mathrm{t} \overrightarrow{\mathrm{~d}}
$$

- Implicit surface equation
- Describes all points on the surface as the zero set of a function

$$
f(p)=0
$$

- Substitute ray equation into surface function and solve for t

$$
\mathrm{f}(\mathrm{O}+\mathrm{t} \mathrm{~d})=0
$$

Ray-Plane Intersection

- Implicit equation of a plane:

$$
n \cdot p-d=0
$$

- Substitute ray equation:

$$
n \cdot(0+t \vec{d})-d=0
$$

- Solve for t :

$$
\begin{gathered}
t(n \cdot \vec{d})=d-n \cdot 0 \\
t=\frac{d-n \cdot 0}{n \cdot \vec{d}}
\end{gathered}
$$

Class Objectives were:

- Understand overall algorithm of recursive ray tracing
- Ray generations
- Intersection tests
- Related chapter
- Part II, Ch. 10: Ray Tracing

Next Time

- Acceleration structures and extensions of ray tracing

Homework

- Go over the next lecture slides before the class
- Submit questions two times during the whole semester

