CS380: Computer Graphics Triangle Rasterization

Sung-Eui Yoon (윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG/

KAIST

Class Objectives (Ch. 7)

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms
- At the last class:
- Discussed clipping and culling methods of view-frustum, back-face, and hierarchical culling methods

Questions

- How do we apply clipping and culling when there are transparent parts are included in objects? .. virtual optical lenses to obtain realistic view?
- I thought GPUs are exploited most only when extensive multi-threading is used. But up till now there doesn't seem to be any multithreading in the src codes in the lecture/homework materials.

Coordinate Systems

Primitive Rasterization

- Rasterization converts vertex representation to pixel representation

- Coverage determination
- Computes which pixels (samples) belong to a primitive
- Parameter interpolation
- Computes parameters at covered pixels from parameters associated with primitive vertices

Coverage Determination

- Coverage is a 2D sampling problem
- Commonly reduced to 1D problem of checking a sample point
- Possible coverage criteria:
- Distance of the primitive to sample point (often used with lines)
- Percent coverage of a pixel (used to be popular)
- Sample is inside the primitive (assuming it is closed)

Rasterizing with Edge Equations

- Compute edge equations from vertices
- Compute interpolation equations from vertex parameters
- Traverse pixels evaluating the edge equations
- Draw pixels for which all edge equations are positive
- Interpolate parameters at pixels

Edge Equation Coefficients

- The cross product between 2 homogeneous points generates the line between them

- A pixel at (x, y) is "inside" an edge if $E(x, y)>0$

Shared Edges

- Suppose two triangles share an edge. Which covers the pixel when the edge passes through the sample $(E(x, y)=0)$?
- Both
- Pixel color becomes dependent on order of triangle rendering

- Creates problems when rendering transparent objects "double hitting"
- Neither
- Missing pixels create holes in otherwise solid surface
- We need a consistent tie-breaker!

Shared Edges

- A common tie-breaker:

$$
\text { bool } t= \begin{cases}A>0 & \text { if } A \neq 0 \\ B>0 & \text { otherwise }\end{cases}
$$

- Coverage determination becomes if($E(x, y)>0| |(E(x, y)==0 \& \& t))$ pixel is covered

Shared Vertices

- Use "inclusion direction" as a tie breaker
- Any direction can be used

Interpolating Parameters

- Specify a parameter, say redness (r) at each vertex of the triangle
- Linear interpolation creates a planar function

Solving for Linear Interpolation Equations

- Given the redness of the three vertices, we can set up the following linear system:

$$
\left[\begin{array}{lll}
r_{0} & r_{1} & r_{2}
\end{array}\right]=\left[\begin{array}{lll}
A_{r} & B_{r} & C_{r}
\end{array}\right]\left[\begin{array}{rrr}
y_{0} & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right]
$$

with the solution:
$\left.r_{2}\right] \frac{\left[\begin{array}{lll}\left(y_{1}-y_{2}\right) & \left(x_{2}-x_{1}\right) & \left(x_{1} y_{2}-x_{2} y_{1}\right) \\ \left(y_{0}-y_{2}\right) & \left(x_{2}-x_{0}\right) & \left(x_{0} y_{2}-x_{2} y_{0}\right) \\ \left(y_{0}-y_{1}\right) & \left(x_{1}-x_{0}\right) & \left(x_{0} y_{1}-x_{1} y_{0}\right)\end{array}\right]}{\operatorname{det}\left[\begin{array}{rrr}x_{0} & x_{1} & x_{2} \\ y_{0} & y_{1} & y_{2} \\ 1 & 1 & 1\end{array}\right]}$ KAIST

Triangle Area

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \operatorname{det}\left[\begin{array}{ccc}
x_{0} & x_{1} & x_{2} \\
y_{0} & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left(\left(x_{1} y_{2}-x_{2} y_{1}\right)-\left(x_{0} y_{2}-x_{2} y_{0}\right)+\left(x_{0} y_{1}-x_{1} y_{0}\right)\right) \\
& =\frac{1}{2}\left(C_{0}+C_{1}+C_{2}\right) / / \text { they are from edge equations }
\end{aligned}
$$ visible

- Area < 0 means the triangle is back facing:
- Reject triangle if performing back-face culling
- Otherwise, flip edge equations by multiplying by -1

Interpolation Equation

- The parameter plane equation is just a linear combination of the edge equations

$$
\left[\begin{array}{lll}
A_{r} & B_{r} & C_{1}
\end{array}\right]=\frac{1}{2 \cdot \operatorname{area}}\left[\begin{array}{lll}
r_{0} & r_{1} & r_{2}
\end{array}\right]\left[\begin{array}{c}
e_{0} \\
e_{1} \\
e_{2}
\end{array}\right]
$$

$\overline{e_{0}}, \overline{e_{1}}, \overline{e_{2}}$ are vectors of edge equations

Z-Buffering

- When rendering multiple triangles we
need to determine which triangles are visible
- Use z-buffer to resolve visibility
- Stores the depth at each pixel
- Initialize z-buffer to 1 (far value)

A simple three dimensional scene

- Post-perspective z values lie between 0 and 1
- Linearly interpolate depth ($\mathrm{z}_{\text {tri }}$) across triangles
- If $z_{\text {tri }}(x, y)<z B u f f e r[x][y]$ write to pixel at (x, y) zBuffer[$\mathbf{x}][\mathrm{y}]=\mathbf{z}_{\text {tri }}(\mathbf{x}, \mathbf{y})$

Traversing Pixels

- Free to traverse pixels
- Edge and interpolation equations can be computed at any point

- Try to minimize work
- Restrict traversal to primitive bounding box
- Hierarchical traversal
-Knock out tiles of pixels (say 4x4) at a time

Incremental Algorithms

- Some computation can be saved by updating the edge and interpolation equations incrementally:

$$
\begin{aligned}
E(x, y) & =A x+B y+C \\
E(x+\Delta, y) & =A(x+\Delta)+B y+C \\
& =E(x, y)+A \cdot \Delta \\
E(x, y+\Delta) & =A x+B(y+\Delta)+C \\
& =E(x, y)+B \cdot \Delta
\end{aligned}
$$

- Equations can be updated with a single addition!

Triangle Setup

- Compute edge equations
- 3 cross products
- Compute triangle area
- A few additions
- Cull zero area and back-facing triangles and/or flip edge equations
- Compute interpolation equations
- Matrix/vector product per parameter

Massive Models

100,000,000 primitives

1,000,000 pixels
100 visible primitives/pixel

- Cost to render a single triangle
- Specify 3 vertices
- Compute 3 edge equations
- Evaluate equations one

St. Mathew models consisting of about 400M triangles (Michelangelo Project)

Multi-Resolution or Levels-ofDetail (LOD) Techniques

- Basic idea
- Render with fewer triangles when model is farther from viewer

- Methods
- Polygonal simplification

Polygonal Simplification

- Method for reducing the polygon count of mesh

Static LODs

- Pre-compute discrete simplified meshes
- Switch between them at runtime
- Has very low LOD selection overhead

Dynamic Simplification

- Provides smooth and varying LODs over the mesh [Hoppe 97]
$1^{\text {st }}$ person's view
$3^{\text {rd }}$ person's view

Play video

What if there are so many objects?

From "cars", a Pixar movie

Some solution: Stochastic Simplification of Aggregate Detail
Cook et al., ACM SIGGRAPH 2007

Class Objectives were:

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Mon. class
- Just one paragraph for each summary
- Submit questions two times during the whole semester

Next Time

- Illumination and shading
- Texture mapping

