CS380: Computer Graphics Viewing Transformation

Sung-Eui Yoon (윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/CG/

Class Objectives

- Know camera setup parameters
- Understand viewing and projection processes
- Related to Ch. 4: Camera Setting
- At the last class:
- Briefly went over rendering pipeline
- 3D rotation w/ the frame concept
- Geometric meanings of dot product and cross products

Questions

- In rendering pipeline, it seems to me that the Trivial rejection in Modeling Transforms and Clipping do the same function. Eliminating not visible things. What is the difference between them?

Viewing Transformations

- Map points from world spaces to eye space
- Can be composed from rotations and translations

Viewing Transformations

- Goal: specify position and orientation of our camera
- Defines a coordinate frame for eye space

"Framing" the Picture

- A new camera coordinate
- Camera position at the origin
- Z-axis aligned with the view direction
- Y-axis aligned with the up direction

- More natural to think of camera as an object positioned in the world frame

Viewing Steps

- Rotate to align the two coordinate frames and, then, translate to move world space origin to camera's origin

An Intuitive Specification

- Specify three quantities:
- Eye point (e) - position of the camera
- Look-at point (p) - center of the image
- Up-vector (\vec{u}_{a}) - will be oriented upwards in the image

Deriving the Viewing Transformation

- First compute the look-at vector and normalize

$$
\overrightarrow{\mathrm{l}}=\mathrm{p}-\mathrm{e} \quad \hat{\mathrm{l}}=\frac{\overrightarrow{\mathrm{l}}}{|\overrightarrow{\mathrm{l}}|}
$$

- Compute right vector and normalize
- Perpendicular to the look-at and up vectors

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{l}} \times \overrightarrow{\mathrm{u}}_{\mathrm{a}} \quad \hat{\mathrm{r}}=\frac{\overrightarrow{\mathrm{r}}}{|\overrightarrow{\mathrm{r}}|}
$$

- Adjust up-vector
- $\overrightarrow{\mathrm{u}}_{\mathrm{a}}$ is only approximate direction

- Perpendicular to right and look-at vectors

$$
\hat{\mathrm{u}}=\hat{\mathrm{r}} \times \hat{I}
$$

Our Approach

- Translate the camera origin to the world origin, followed by rotating the camera coordinates (E) to the world coordinate (W):

$$
W c=E \mathbf{R}_{v} \mathbf{T}_{-e} c
$$

Rotation Component

- Map our vectors to the cartesian coordinate axes

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\hat{r} & \hat{u} & -\hat{\imath}
\end{array}\right] R_{\mathrm{v}}
$$

- To compute R_{v} we invert the matrix on the right
- This matrix \mathbf{M} is orthonormal (or orthogonal) - its rows are orthonormal basis vectors: vectors mutually orthogonal and of unit length
- Then, $\mathrm{M}^{-1}=\mathrm{M}^{\mathrm{T}}$
- So,

$$
\mathbf{R}_{v}=\left[\begin{array}{c}
\hat{\mathrm{r}}^{\mathrm{t}} \\
\hat{\mathrm{u}}^{\mathrm{t}} \\
-\hat{\mathrm{i}}^{\mathrm{t}}
\end{array}\right]
$$

Translation Component

- Need to translate all world-space coordinates so that the eye point is at the origin
- Composing these transformations gives our viewing transform, V

$$
\left.\left.\begin{array}{c}
\dot{w}^{t}=\dot{e}^{t} \mathbf{R}_{v} \mathbf{T}_{-\dot{e}} \\
\mathbf{V}=\mathbf{R}_{v} \mathbf{T}_{-\dot{e}}=\left[\begin{array}{cccc}
\hat{r}_{x} & \hat{r}_{y} & \hat{r}_{z} & 0 \\
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} & 0 \\
-\hat{l}_{x} & -\hat{l}_{y} & -\hat{l}_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}-e_{x}\right. \\
0
\end{array}\right] \begin{array}{c}
e_{y} \\
0
\end{array} 0 \quad 1 \quad-e_{z}\right]=\left[\begin{array}{cc}
\hat{r} & -\hat{r} \cdot \vec{e} \\
\hat{u} & -\hat{u} \cdot \vec{e} \\
-\hat{l} & \hat{i} \cdot \vec{e} \\
0 & 0
\end{array}\right]
$$

Transform a world-space point into a point in the eye-space

Viewing Transform in OpenGL

- OpenGL utility (glu) library provides a viewing transformation function:
gluLookAt (double eyex, double eyey, double eyez, double centerx, double centery, double centerz, double upx, double upy, double upz)
- Computes the same transformation that we derived and composes it with the current matrix

Same to glm::gtc::matrix_transform::lookAt (..)

Example in the Skeleton Codes of PA2

```
void setCamera ()
{ ...
// initialize camera frame transforms
    for (i=0; i < cameraCount; i++ )
        {
            double* c = cameras[i];
            wld2cam.push_back(FrameXform());
                glPushMatrix();
                glLoadldentity();
                gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
                gIGetDoublev( GL_MODELVIEW_MATRIX, wld2cam[i].matrix() );
            gIPopMatrix();
            cam2wld.push_back(wld2cam[i].inverse());
        }
```

 \}

Projections

- Map 3D points in eye space to 2D points in image space

- Two common methods
- Orthographic projection
- Perspective projection

Orthographic Projection

- Projects points along lines parallel to z-axis
- Also called parallel projection
- Used for top and side views in drafting and modeling applications
- Appears unnatural due to lack of perspective foreshortening

Notice that the parallel lines of the tiled floor remain parallel after orthographic projection!

Orthographic Projection

- The projection matrix for orthographic projection is very simple

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Next step is to convert points to NDC

View Volume and Normalized Device Coordinates

- Define a view volume
- Compose projection with a scale and a translation that maps eye coordinates to normalized device coordinates

Orthographic Projections to NDC

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & \frac{-(r+l)}{r-l} \\
0 & \frac{2}{t-b} & 0 & \frac{-(t+b)}{t-b} \\
0 & 0 & \frac{2}{f-n} & \frac{-(f+n)}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Some sanity checks:

$$
x^{\prime}(l)=\frac{2 l}{r-l}-\frac{r+l}{r-l}=-\frac{r-l}{r-l}=-1
$$

Orthographic Projection in OpenGL

- This matrix is constructed by the following OpenGL call:
void glOrtho(double left, double right, double bottom, double top, double near, double far);

Same to glm::gtc::matrix_transform::ortho (..)

Perspective Projection

- Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during the renaissance discovered the importance of perspective for making images appear realistic
- Perspective causes objects nearer to the viewer to appear larger than the same object would appear farther away
- Homogenous coordinates allow perspective projections using linear operators

Signs of Perspective

- Lines in projective space always intersect at a point

Perspective Projection for a Pinhole Camera

Perspective Projection Matrix

- The simplest transform for perspective projection is:

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- We divide by w to make the fourth coordinate 1
- In this example, w = z
- Therefore, $x^{\prime}=x / z, y^{\prime}=y / z, z^{\prime}=0$

Normalized Perspective

- As in the orthographic case, we map to normalized device coordinates

\longrightarrow

NDC Perspective Matrix

$$
\left[\begin{array}{c}
\mathbf{w} \mathbf{x}^{\prime} \\
\mathbf{w y}^{\prime} \\
\mathbf{w z}^{\prime} \\
\mathbf{w}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 \cdot \text { near }}{\text { right-left }} & 0 & \frac{-(\text { right+left })}{\text { right-left }} & 0 \\
0 & \frac{2 \cdot \text { near }}{\text { top-bottom }} & \frac{- \text { (top+bottom })}{\text { top-bottom }} & 0 \\
0 & 0 & \frac{\text { far-near }}{\text { far-near }} & \frac{-2 \cdot f a r-\text { near }}{\text { far-near }} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\mathbf{y} \\
z \\
1
\end{array}\right]
$$

- The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

$$
\begin{aligned}
& \begin{array}{l}
x=\text { left } \\
z=\text { near }
\end{array} \Rightarrow x^{\prime}=\frac{\frac{2 \cdot n e a r \cdot l e f t}{r i g h t-l e f t}-\frac{\text { near }(\text { right }+ \text { left })}{\text { right }- \text { left }}}{n e a r}=\frac{-n e a r}{n e a r}=-1 \\
& x=\text { right } \\
& Z=\text { near }
\end{aligned} \Rightarrow x^{\prime}=\frac{\frac{2 \cdot n e a r \cdot r i g h t}{r i g h t-l e f t}-\frac{n e a r(r i g h t ~}{\text { neleft })}}{\text { right }- \text { left }}=\frac{n e a r}{n e a r}=1 .
$$

NDC Perspective Matrix

$$
\left[\begin{array}{c}
\mathbf{w} \mathbf{x}^{\prime} \\
\mathbf{w y}^{\prime} \\
\mathbf{w z}^{\prime} \\
\mathbf{w}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{2 \cdot \text { near }}{\text { right-left }} & 0 & \frac{-(\text { right+left })}{\text { right-left }} & 0 \\
0 & \frac{2 \cdot \text { near }}{\text { top-bottom }} & \frac{- \text { (top+bottom })}{\text { top-bottom }} & 0 \\
0 & 0 & \frac{\text { far-near }}{\text { far-near }} & \frac{-2 \cdot f a r-\text { near }}{\text { far-near }} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\mathbf{y} \\
z \\
1
\end{array}\right]
$$

- The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

$$
\begin{aligned}
& z=\text { far } \Rightarrow z^{\prime}=\frac{f a r \frac{f a r+n e a r}{f a r-n e a r}+\frac{-2 \cdot f a r \cdot n e a r}{f a r-n e a r}}{f a r}=\frac{\frac{f a r(f a r-n e a r)}{f a r-n e a r}}{\text { far }}=1 \\
& z=\text { near } \Rightarrow z^{\prime}=\frac{n e a r \frac{f a r+n e a r}{f a r-n e a r}+\frac{-2 \cdot f a r \cdot n e a r}{\text { far }-n e a r}}{n e a r}=\frac{\frac{\text { near }(\text { near }- \text { far })}{\text { far }- \text { near }}}{n e a r}
\end{aligned}
$$

Perspective in OpenGL

- OpenGL provides the following function to define perspective transformations:

void gIFrustum(double left, double right, double bottom, double top, double near, double far);

- Some think that using gIFrustum() is nonintuitive. So OpenGL provides a function with simpler, but less general capabilities
void gluPerspective(double vertfov, double aspect, double near, double far);

gluPerspective()

Simple "cameralike" model
Can only specify symmetric frustums

- Substituting the extents into gIFrustum()

gluPerspective()

Simple "cameralike" model
Can only specify symmetric frustums

- Substituting the extents into gIFrustum()

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{cccc}
\frac{\operatorname{COT(\frac {\text {verfov}}{2})}}{\text { aspect }} & 0 & 0 & 0 \\
0 & \operatorname{COT}\left(\frac{\text { verffov }}{2}\right) & 0 & 0 \\
0 & 0 & \frac{\text { far near }}{\text { far-near }} & \frac{-2 \cdot \text { far-near }}{\text { far-near }} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Example in the Skeleton Codes of PA2

```
void reshape( int w, int h)
{
    width = w; height = h;
    gIViewport(0, 0, width, height);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    // Define perspective projection frustum
    double aspect = width/double(height);
    gluPerspective(45, aspect, 1, 1024);
    glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
    gILoadIdentity();
}

\section*{Class Objectives were:}
- Know camera setup parameters
- Understand viewing and projection processes
- Related to Ch. 4: Camera Setting

\section*{Homework}
- Watch SIGGRAPH Videos
- Go over the next lecture slides

- PA2: perform the transformation at the modeling space
- PA3: perform the transformation at the viewing space

\section*{Next Time}
- Interaction
figs
```

