CS380: Computer Graphics Modeling Transformations

Sung-Eui Yoon (윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/CG/

KAIST

Class Objectives (Ch. 3.5)

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations

Outline

- Where are we going?
- Sneak peek at the rendering pipeline
- Vector algebra
- Modeling transformation
- Viewing transformation
- Projections

The Classic Rendering Pipeline

- Object primitives defined by vertices fed in at the top
- Pixels come out in the display at the bottom
- Commonly have multiple primitives in various stages of rendering

Modeling Transforms

- Start with 3D models defined in modeling spaces with their own modeliing frames: $\dot{m}_{1}^{t}, \dot{m}_{2}^{t}, \ldots, \dot{m}_{n}^{t}$
- Modeling transformations orient models within a common coordinate frame called world space, \dot{w}^{t}
- All objects, light sources, and the camera live in world space
- Triviall rejection attempts to eliminate objects that cannot possibly be seen

- An optimization

Illumination

- Illuminate potentially visible objects
- Final rendered color is determined by object's orientation, its material properties, and the light sources in the scene

KAIST

Viewing Transformations

- Maps points from world space to eye space:

$$
\dot{e}^{t}=\dot{w}^{t} \mathbf{V}
$$

- Viewing position is transformed to the origin
- Viewing direction is oriented along some axis

Clipping and Projection

- We specify a volume called a viewing frustum
- Clip objects against the view volume, thereby eliminating geometry not visible in the image
- Project objects into two-dimensions

Rasterization and Display

- Rasterization converts objects pixels

- Almost every step in the rendering pipeline involves a change of coordinate systems!
- Transformations are central to understanding 3D computer graphics

But, this is a architectural overview of a recent GPU (Fermi)

- Highly parallel
- Wide memory bandwidth
- Support CUDA (general language)

But, this is a architectural overview of a recent GPU

Recent CPU Chips (Intel's Core i7 processors)

Vector Algebra

- Already saw vector addition and multiplications by a scalar
- Discuss two kinds of vector multiplications
- Dot product (•)
- Cross product (×)
- returns a scalar
- returns a vector

Dot Product (•)

$\vec{a} \cdot \vec{b} \equiv \vec{a}^{\top} \vec{b}=\left[\begin{array}{llll}a_{x} & a_{y} & a_{z} & 0\end{array}\right]\left[\begin{array}{c}b_{x} \\ b_{y} \\ b_{z} \\ 0\end{array}\right]=s, \quad \vec{a} \cdot \dot{b} \equiv \vec{a}^{\top} \dot{b}=\left[\begin{array}{llll}a_{x} & a_{y} & a_{z} & 0\end{array}\right]\left[\begin{array}{c}b_{x} \\ b_{y} \\ b_{z} \\ 1\end{array}\right]=s$

- Returns a scalar s
- Geometric interpretations s:

$$
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{~b}}=|\mathrm{a}||\mathrm{b}| \cos \theta
$$

- Length of \vec{b} projected onto and \vec{a} or vice versa
- Distance of \dot{b} from the origin in the direction of \vec{a}

Cross Product (\times)

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}} \equiv\left[\begin{array}{cccc}
0 & -a_{z} & a_{y} & 0 \\
a_{z} & 0 & -a_{x} & 0 \\
-a_{y} & a_{x} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
b_{x} \\
b_{y} \\
b_{z} \\
0
\end{array}\right]=\bar{c} \quad \begin{array}{l}
\vec{a} \cdot \vec{c}=0 \\
\vec{b} \cdot \vec{c}=0
\end{array} \\
& \vec{c}=\left[\begin{array}{lll}
a_{y} b_{z}-a_{z} b_{y} & a_{z} b_{x}-a_{x} b_{z} & a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
\end{aligned}
$$

- Return a vector \vec{c} that is perpendicular to both \vec{a} and \vec{b}, oriented according to the right-hand rule

Cross Product (\times)

- A mnemonic device for remembering the cross-product

$$
\begin{aligned}
& \vec{a} \times \bar{b} \equiv \operatorname{det}\left[\begin{array}{ccc}
\bar{i} & \bar{j} & \vec{k} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right] \\
&=\left(a_{y} b_{z}-a_{z} b_{y}\right) \bar{i}+\left(a_{z} b_{x}-a_{x} b_{z}\right) \bar{j}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \vec{k} \\
& \vec{i}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
& \vec{j}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \\
& \vec{k}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Modeling Transformations

- Vast majority of transformations are modeling transforms
- Generally fall into one of two classes
- Transforms that move parts within the model

$$
\dot{m}_{1}^{t} \mathbf{c} \Rightarrow \dot{m}_{1}^{t} \mathbf{M} \mathbf{c}=\dot{m}_{1}^{t} \mathbf{c}^{\prime}
$$

- Transforms that relate a local model's frame to the scene's world frame

$$
\dot{m}_{1}^{t} \mathbf{c} \Rightarrow \dot{m}_{1}^{t} \mathbf{M c}=\dot{w}^{t} \mathbf{c}
$$

Translations

- Translate points by adding offsets to their coordinates

$$
\begin{aligned}
& \text { ordinates } \\
& \dot{m}^{\mathrm{t}} \mathrm{c} \Rightarrow \dot{m}^{\mathrm{t}} \mathrm{~T} \mathrm{c}=\dot{\mathrm{m}}^{\mathrm{t}} \mathrm{c}^{\prime} \\
& \dot{m}^{\mathrm{t}} \mathrm{c} \Rightarrow \dot{\mathrm{~m}}^{\mathrm{t}} \mathrm{~T} \mathrm{c}=\dot{\mathrm{w}}^{\mathrm{t}} \mathrm{c}
\end{aligned} \quad \text { where } \quad \mathrm{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & \mathrm{t}_{\mathrm{x}} \\
0 & 1 & 0 & \mathrm{t}_{\mathrm{y}} \\
0 & 0 & 1 & \mathrm{t}_{\mathrm{z}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- The effect of this translation:

3D Rotations

- More complicated than 2D rotations
- Rotate objects along a rotation axis

- Several approaches
- Compose three canonical rotations about the axes
- Quaternions

Geometry of a Rotation

- Natural basis for rotation of a vector about a specified axis:
- \hat{a} - rotation axis (normalized)
- $\hat{a} \times \vec{x}$ - vector perpendicular to
- \vec{x}_{\perp} - perpendicular component of \bar{x} relative to \hat{a}

Geometry of a Rotation

Tensor Product (\otimes)

$$
\begin{aligned}
& \vec{a} \otimes \vec{b} \equiv \vec{a} \vec{b}^{t}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z} \\
0
\end{array}\right]\left[\begin{array}{llll}
b_{x} & b_{y} & b_{z} & 0
\end{array}\right]=\left[\begin{array}{cccc}
a_{x} b_{x} & a_{x} b_{y} & a_{x} b_{z} & 0 \\
a_{y} b_{x} & a_{b} b_{y} & a_{y} b_{z} & 0 \\
a_{z} b_{x} & a_{z} b_{y} & a_{z} b_{z} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& (\vec{a} \otimes \vec{b}) \vec{c}=\left[\begin{array}{l}
\left(b_{x} c_{x}+b_{y} c_{y}+b_{z} c_{z}\right) a_{x} \\
\left(b_{x} c_{x}+b_{y} c_{y}+b_{z} c_{z}\right) a_{y} \\
\left(b_{x} c_{x}+b_{y} c_{y}+b_{z} c_{z}\right) a_{z}
\end{array}\right]=\vec{a}(\vec{b} \cdot \vec{c})
\end{aligned}
$$

- Creates a matrix that when applied to a vector ${ }_{\vec{c}}{ }^{\text {a }}$ return ${ }^{\vec{a}}$ scaled by the project of ${ }^{c}$ onto \vec{b}

Tensor Product (\otimes)

- Useful when $\vec{b}=\vec{a}$
- The matrix $\vec{a} \otimes \vec{a}$ is called the symmetric matrix of $\vec{a} \quad A_{s}=\vec{a} \otimes \bar{a}=$
- We shall denote this A_{\otimes}
$\boldsymbol{A}_{\otimes} \bar{c}$
$=(\vec{a} \otimes \vec{a}) \vec{c}$
$=\vec{a}(\vec{a} \cdot \vec{c})$

Sanity Check

- Consider a rotation by about the x-axis

$$
\begin{aligned}
\operatorname{Rotate}\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \theta\right) & =\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]+\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \cos \theta+\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right](1-\cos \theta)+\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sin \theta \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

- You can check it in any computer graphics book, but you don't need to memorize it

Rotation using Affine Transformation

| \vec{a} | \vec{x}_{\perp} | \vec{b} | \dot{o} |
| :--- | :--- | :--- | :--- |\(\left[\begin{array}{l}s

t

0

1\end{array}\right]\)

Quaternion

- Developed by W. Hamilton in 1843
- Based on complex numbers
- Two popular notations for a quaternion, q
- $\mathbf{w}+\mathbf{x i}+\mathbf{y j}+\mathbf{z k}$, where $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=\mathbf{i j k}=\mathbf{- 1}$
- [w, v], where w is a scalar and \mathbf{v} is a vector
- Conversion from the axis, v, and angle, t
- $q=[\cos (t / 2), \sin (t / 2) \mathbf{v}]$
- Can represent rotation
- Example: rotate by degree a along x axis: $q_{x}=[\cos (a / 2), \sin (a / 2)(1,0,0)]$

Basic Quaternion Operations

- Addition
- $\mathbf{q}+\mathbf{q}^{\prime}=\left[\mathbf{w}+\mathbf{w}^{\prime}, \mathbf{v}+\mathbf{v}^{\prime}\right]$
- Multiplication

- Conjugate
- $\mathbf{q}^{*}=[\mathbf{w},-\mathrm{v}]$
- Norm
- $\mathbf{N}(\mathbf{q})=\mathbf{w}^{\mathbf{2}}+\mathbf{x}^{\mathbf{2}}+\mathbf{y}^{\mathbf{2}}+\mathbf{z}^{\mathbf{2}}$
- Inverse
- $\mathbf{q}^{-1}=\mathbf{q}^{*} / \mathbf{N (q)}$

Basic Quaternion Operations

- \mathbf{q} is a unit quaternion if $\mathbf{N (q) = 1}$
- Then $\mathbf{q}^{-\mathbf{1}}=\mathbf{q}^{*}$
- Identity
- $[1,(0,0,0)]$ for multiplication
- $[0,(0,0,0)]$ for addition

Rotations using Quaternions

- Suppose that you want to rotate a vector/point v with q
- Then, the rotated v^{\prime}
- $\mathrm{v}^{\prime}=\mathrm{q} \mathrm{rq}^{-1}$, where $\mathrm{r}=[0, \mathrm{v}]$)
- Compositing rotations
- R = R2 R1 (rotation R1 followed by rotation R2)

Quaternion to Rotation Matrix

- $\mathbf{Q}=\mathbf{w}+\mathbf{x i}+\mathbf{y j}+\mathbf{z k}$
$\bullet R_{m}=\left|\begin{array}{lll}1-2 y^{2}-2 z^{2} & 2 x y-2 w z & 2 x z+2 w y \\ 2 x y+2 w z & 1-2 x^{2}-2 z^{2} & 2 y z-2 w x \\ 2 x z-2 w y & 2 y z+2 w x & 1-2 x^{2}-2 y^{2}\end{array}\right|$
- We can also convert a rotation matrix to a quaternion

Advantage of Quaternions

- More efficient and readable way to generate arbitrary rotations
- Less storage than 4×4 matrix
- Numerically more stable than 4×4 matrix (e.g., no drifting issue)
- Easier for smooth rotation

Class Objectives were:

- Know the classic data processing steps, rendering pipeline, for rendering primitives
- Understand 3D translations and rotations

PA2: Simple Animation \& Transformation

OpenGL: Display Lists

- Display lists
- A group of OpenGL commands stored for later executions
- Can be optimized in the graphics hardware
- Thus, can show higher performance
- Ver. 4.3: Vertex Array Object is much better
- Immediate mode
- Causes commands to be executed immediately

An Example

```
void drawCow()
{
    if (frame == 0)
    {
        cow = new WaveFrontOBJ( "cow.obj" );
        cowID = glGenLists(1);
        gINewList(cowID, GL_COMPILE);
        cow->Draw();
        gIEndList();
    }
    gICallList(cowID);
}
```


API for Display Lists

Gluint gIGenLists (range)

- generate a continuous set of empty display lists
void glNewList (list, mode) \& glEndList ()
: specify the beginning and end of a display list
void gICallLists (list)
: execute the specified display list

OpenGL: Getting Information from OpenGL

```
void main( int argc, char* argv[] )
{
    int rv,gv,bv;
    glGetIntegerv(GL_RED_BITS,&rv);
    glGetIntegerv(GL_GREEN_BITS,&gv);
    glGetIntegerv(GL_BLUE_BITS,&bv);
    printf( "Pixel colors = %d : %d : %d\n", rv, gv, bv );
}
```

void display () \{
gIGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
\}

Homework

- Watch SIGGRAPH Videos
- Go over the next lecture slides

Next Time

- Viewing transformations

