CS380: Computer Graphics 3D Transformation

Sung-Eui Yoon (윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/CG

KAIST

Class Objectives

- Understand the diff. between points and vectors
- Understand the frame
- Represent transformations in local and global frames
- Related chapters of my draft
- Ch. 3.3 Affine frame
- Ch. 3.4 Local and global frames
- At the last class:
- 2D transformation and homogeneous coordinate
- Idle-based animation

A Question?

- Suppose you have 2 frames and you know the coordinates of a point relative in one frame
- How would you compute the coordinate of your point relative to the other frame?
- (Generalized question to the mapping problem that we went over in the class)

Revisit: Mapping from World to Screen

Screen

Geometry

- A part of mathematics concerned with questions of size, shape, and relative positions of figures
- Coordinates are used to represent points and vectors
- We will learn that they are just a naming scheme
- The same point can be described by
 different coordinates
- Both vectors and points expressed by coordinates, but they are very different

Vector Spaces

- A vector (or llinear) space V over a scalar field S consists of a set on which the following two operators are defined and the following conditions hold:
- Two operators for vectors:
- Vector-vector addition

$$
\forall \vec{u}, \vec{v} \in V \quad \vec{u}+\vec{v} \in V
$$

-Scalar-vector multiplication

$$
\forall \vec{u} \in V, \forall a \in S \quad a \vec{u} \in V
$$

- Notation:
- Vector

$$
\begin{aligned}
& \vec{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
& =\left[\begin{array}{lll}
a & b & c
\end{array}\right]^{t}
\end{aligned}
$$

Vector Spaces

- Vector-vector addition
- Commutes and associates

$$
\vec{u}+\vec{v}=\vec{v}+\vec{u} \quad \vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}
$$

- An additive identity and an additive inverse for each vector

$$
\overrightarrow{\mathrm{u}}+\overrightarrow{\mathbf{0}}=\overrightarrow{\mathrm{u}} \quad \overrightarrow{\mathrm{u}}+(-\overrightarrow{\mathrm{u}})=\overrightarrow{\mathbf{0}}
$$

- Scalar-vector multiplication distributes

$$
(a+b) \vec{u}=a \vec{u}+b \vec{u} \quad a(\vec{u}+\vec{v})=a \vec{u}+a \vec{v}
$$

Example Vector Spaces

- Geometric vectors (directed segments)

- N-tuples of scalars

$$
\begin{array}{cc}
\vec{u}=(1,3,7)^{t} & \vec{u}+\vec{v}=(3,5,4)^{t}=\vec{w} \\
\vec{v}=(2,2,-3)^{t} & 2 \vec{u}=(2,6,14)^{t} \\
\vec{w}=(3,5,4)^{t} & -\vec{v}=(-2,-2,3)^{t}
\end{array}
$$

- We can use \mathbf{N}-tuples to represent vectors

Basis Vectors

- A vector basis is a subset of vectors from V that can be used to generate any other element in V, using just additions and scalar multiplications
- A basis set, $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$, is linearly dependent if:

$$
\exists a_{1}, a_{2}, \ldots, a_{n} \neq 0 \quad \text { such that } \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \vec{v}_{i}=0
$$

- Otherwise, the basis set is linearly independent
- A linearly independent basis set with ielements is said to span an i-dimensionalvector space

Vector Coordinates

- A linearly independent basis set can be used to uniquely name or address a vector
- This is the done by assigning the vector coordinates as follows:

$$
\begin{aligned}
& \vec{x}=\sum_{i=1}^{3} c_{i} \vec{v}_{i}=\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\vec{v}^{t} \mathbf{c}
\end{aligned}
$$

- Note: we'll use bold letters to indicate tuples of scalars that are interpreted as coordinates
- Our vectors are still abstract entities
- So how do we interpret the equation above?

Interpreting Vector Coordinates

Valid Interpretation
Equally Valid Interpretation
Remember, vectors don't have any notion of position

Points

- Conceptually, points and vectors are very different
- A point $\dot{\mathrm{p}}$ is a place in space
- A vector \vec{v} describes a direction independent of position (pay attentions notations)

How Vectors and Points Differ

- The operations of addition and multiplication by a scalar are well defined for vectors
- Addition of 2 vectors expresses the concatenation of 2 "motions"
- Multiplying a vector by some factor scales the motion
- These operations does not make sense for points

Making Sense of Points

- Some operations do malke sense for points
- Compute a vector that describes the motion from one point to another:

$$
\dot{p}-\dot{q}=\vec{v}
$$

- Find a new point that is some vector away from a given point:

$$
\dot{q}+\vec{v}=\dot{p}
$$

A Basis for Points

- Key distinction between vectors and points: points are absolute, vectors are relative
- Vector space is completely defined by a set of basis vectors
- The space that points live in requires the specification of an absolute origin

$$
p=0+\sum_{i} \nabla_{i} c_{i}=\left[\begin{array}{llll}
\nabla_{1} & \nabla_{2} & \nabla_{3} & 0
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
1
\end{array}\right]
$$

Notice how 4 scalars (one of which is 1) are required to identify a 3D point

Frames

- Points live in Affinne spaces
- Affine-basis-sets are called frames or Special Euclidean group of three, SE (3)

$$
f^{t}=\left[\begin{array}{llll}
\nabla_{1} & \nabla_{2} & \nabla_{3} & 0
\end{array}\right]
$$

- Frames can describe vectors as well as points

$$
\dot{p}=\left[\begin{array}{llll}
\nabla_{1} & \nabla_{2} & \nabla_{3} & 0
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
1
\end{array}\right] \quad \bar{x}=\left[\begin{array}{llll}
\nabla_{1} & \nabla_{2} & \nabla_{3} & 0
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
0
\end{array}\right]
$$

Pictures of Frames

- Graphically, we will distinguish between vector bases and affine bases (frames) using the following convention

Three vectors

A vector basis

KAIST

A Consistent Model

- Behavior of affine frame coordinates is completely consistent with our intuition
- Subtracting two points yields a vector
- Adding a vector to a point produces a point
- If you multiply a vector by a scalar you still get a vector
- Scaling points gives a nonsense $4^{\text {th }}$ coordinate element in most cases
$\left[\begin{array}{c}a_{1} \\ a_{2} \\ a_{3} \\ 1\end{array}\right]-\left[\begin{array}{c}b_{1} \\ b_{2} \\ b_{3} \\ 1\end{array}\right]=\left[\begin{array}{c}a_{1}-b_{1} \\ a_{2}-b_{2} \\ a_{3}-b_{3} \\ 0\end{array}\right]$
$\left[\begin{array}{c}a_{1} \\ a_{2} \\ a_{3} \\ 1\end{array}\right]+\left[\begin{array}{c}v_{1} \\ v_{2} \\ v_{3} \\ 0\end{array}\right]=\left[\begin{array}{c}a_{1}+v_{1} \\ a_{2}+v_{2} \\ a_{3}+v_{3} \\ 1\end{array}\right]$

Homogeneous Coordinates

- Notice why we introduce homogeneous coordinates, based on simple logical arguments
- Remember that coordinates are not geometric; they are just scales for basis elements
- Thus, you should not be bothered by the fact that our coordinates suddenly have 4 numbers
- 3D homogeneous coordinates refer to an affine frame with its 3 basis vectors and origin point
- 4 coordinates make sense in this aspect
- 4th coordinate can have one of two values, [0,1], indicating if whether the coordinates name a vector or a point

Affine Combinations

- There are certain situations where it makes sense to scale and add points
- Suppose you have two points, one scaled by a_{1} and the other scaled by \boldsymbol{a}_{2}
- If we restrict the sum of these alphas, $a_{1}+a_{2}=1$, we can assure that the result will have 1 as it's 4th coordinate value

$$
\alpha_{1}\left[\begin{array}{c}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3} \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3} \\
1
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1} \mathrm{a}_{1}+\alpha_{2} \mathrm{~b}_{1} \\
\alpha_{1} \mathrm{a}_{2}+\alpha_{2} \mathrm{~b}_{2} \\
\alpha_{1} \mathrm{a}_{3}+\alpha_{2} \mathrm{~b}_{3} \\
\alpha_{1}+\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1} \mathrm{a}_{1}+\alpha_{2} \mathrm{~b}_{1} \\
\alpha_{1} \mathrm{a}_{2}+\alpha_{2} \mathrm{~b}_{2} \\
\alpha_{1} \mathrm{a}_{3}+\alpha_{2} \mathrm{~b}_{3} \\
1
\end{array}\right] \quad \begin{aligned}
& \text { But, is it a } \\
& \text { point? }
\end{aligned}
$$

Affine Combinations

- Can be thought of as a constrained-scaled addition
- Defines all points that share the line connecting our two initial points

- Can be extended to 3, 4, or any number of points (e.g., barycentric coordinates)

Affine Transformations

- We can apply transformations to points using matrix
- Need to use 4 by 4 matrices since our basis set has four components
- Also, limit ourselves to transforms that preserve the integrity of our points and vectors; point to point, vector to vector

$$
\dot{p}=\left[\begin{array}{llll}
\nabla_{1} & \nabla_{2} & \nabla_{3} & \dot{0}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
1
\end{array}\right] \Rightarrow \dot{p}^{\prime}=\left[\begin{array}{llll}
\nabla_{1} & \nabla_{2} & \nabla_{3} & 0
\end{array}\right]\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{4} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
1
\end{array}\right]
$$

- This subset of matrices is called the affine subset

An Example

Composing Transformations

- Represent a series of transformations
- E.g., want to translate with \mathbf{T} and, then, rotate with \mathbf{R}
- Then, the series is represented by:

$$
\dot{\mathrm{p}}=\dot{\mathrm{w}}^{\mathrm{t}} \mathrm{c} \Rightarrow \dot{\mathrm{p}}^{\prime}=\dot{\mathrm{w}}^{\mathrm{t}} \mathrm{RTc}=\dot{\mathrm{w}}^{\mathrm{t}}(\mathrm{R}(\mathrm{Tc}))=\dot{\mathrm{w}}^{\mathrm{t}}\left(\mathrm{Rc}^{\prime}\right)=\dot{\mathrm{w}}^{\mathrm{t}} \mathrm{c}^{\prime \prime}
$$

- Each step in the process can be considered as a change of coordinates
- Alternatively, we could have considered the same sequence of operations as:
$\dot{\mathrm{p}}=\dot{\mathrm{w}}^{\mathrm{t}} \mathrm{c} \Rightarrow \dot{\mathrm{p}}^{\prime}=\dot{\mathrm{w}}^{\mathrm{t}} \mathrm{RTc}=\left(\left(\dot{\mathrm{w}}^{\mathrm{t}} \mathrm{R}\right) \mathrm{T}\right) \mathrm{c}=\left(\dot{\mathrm{m}}^{\mathrm{t}} \mathrm{T}\right) \mathrm{c}=\dot{\mathrm{e}}^{\mathrm{t}} \mathrm{c}$, , where each step is considered as a change of basis

An Example

- These are alternate interpretations of the same transformations
- The left and right sequence are considered as a transformation about a global frame and local frames

Same Point in Different Frames

- Suppose you have 2 frames and you know the coordinates of a point relative in one frame
- How would you compute the coordinate of your point relative to the other frame?

$$
\dot{p}=\dot{w}^{t} \mathbf{c}=\dot{z}^{t} ?
$$

- Suppose that my two frames are related by the transform S as shown below:

$$
\dot{z}^{t}=\dot{w}^{t} \mathbf{S} \quad \text { and } \quad \dot{w}^{t}=\dot{z}^{t} \mathbf{S}^{-1}
$$

- Then, the coordinate for the point in second frame is simply:

$$
\dot{p}=\dot{w}^{t} \mathbf{c}=\dot{z}^{t} \mathbf{S}^{-1} \mathbf{c}=\dot{z}^{t}\left(\mathbf{S}^{-1} \mathbf{c}\right)=\dot{z}^{t} \mathbf{d}
$$

 frame

Revisit: Mapping from World to Screen

Screen

Class Objectives were:

- Understand the diff. between points and vectors
- Understand the frame
- Represent transformations in local and global frames

Quiz Assignment

- Write down your answer on a paper and send its captured image

Next Time

- Modeling and viewing transformations

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
- 1 for already answered or typical questions
- 2 for questions with thoughts or that surprised me
- Submit two times during the whole semester

Additional slides

Scalar Fields

- A scalar field S is a set on which addition (+) and multiplication (•) are defined and following conditions hold:
- S is closed for addition and multiplication

$$
\forall a, b \in S \quad a+b \in S \quad a \cdot b \in S
$$

- These operators commute, associate, and distribute

$$
\begin{gathered}
\forall a, b, c \in S \\
a+b=b+a \quad a \cdot b=b \cdot a \\
a+(b+c)=(a+b)+c \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
a \cdot(b+c)=a \cdot b+a \cdot c
\end{gathered}
$$

Scalar Fields - cont'd

- A scalar field S is a set on which addition (+) and multiplication (•) are defined and following conditions hold:
- Both operators have a unique identity element

$$
a+0=a, \quad a \cdot 1=a
$$

- Each element has a unique inverse under both operators

$$
a+(-a)=0, \quad a \cdot a^{-1}=1
$$

Examples of Scalar Fields

- Real numbers
- Complex numbers (given the standard definitions for addition and multiplication)
- Rational numbers
- Notation: we will represent scalars by lower case letters
a, b, c, \ldots are scalar variables

