CS380: Computer Graphics 2D Imaging and Transformation

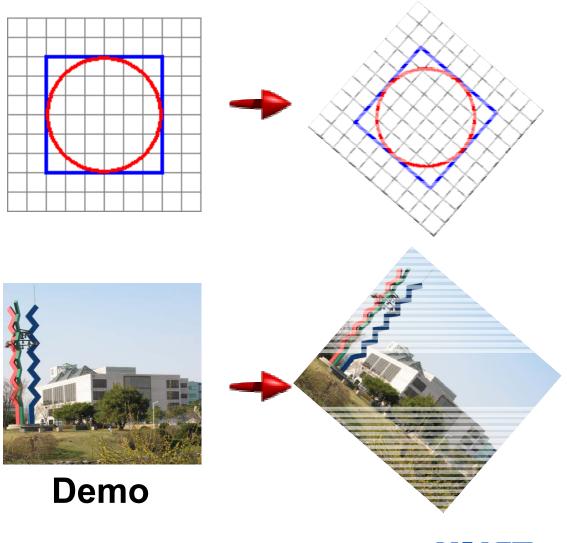
Sung-Eui Yoon (윤성의)

Course URL:

http://sgvr.kaist.ac.kr/~sungeui/CG

Announcements

- Lab class (video) related to OpenGL and PA sometime in this week
 - Check KLMS regularly


Class Objectives

- Write down simple 2D transformation matrixes
 - Understand the homogeneous coordinates and its benefits
- Know OpenGL-transformation related API
 - Implement idle-based animation method
- Covered in 3.2 2D Transformation of my book
- At last time:
 - OpenGL structure with event-based programming (e.g., callback functions)
 - Went over codes of PA1 (Julia set)

2D Geometric Transforms

- Functions to map points from one place to another
- Geometric transforms can be applied to
 - Drawing primitives (points, lines, conics, triangles)
 - Pixel coordinates of an image

Translation

Translations have the following form:

$$\mathbf{x'} = \mathbf{x} + \mathbf{t_x}$$
 $\mathbf{y'} = \mathbf{y} + \mathbf{t_y}$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

• inverse function: undoes the translation:

$$x = x' - t_x$$

 $y = y' - t_y$

identity: leaves every point unchanged

$$x' = x + 0$$
$$y' = y + 0$$

2D Rotations

Another group - rotation about the origin:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = R \begin{bmatrix} x \\ y \end{bmatrix}$$

$$R^{-1} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

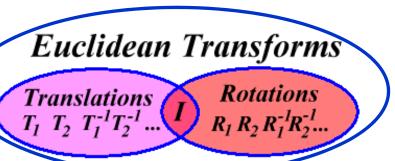
$$R_{\theta=0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Rotations in Series

 We want to rotate the object 30 degree and, then, 60 degree

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(60) - \sin(60) \\ \sin(60) \cos(60) \end{bmatrix} \begin{bmatrix} \cos(30) - \sin(30) \\ \sin(30) \cos(30) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

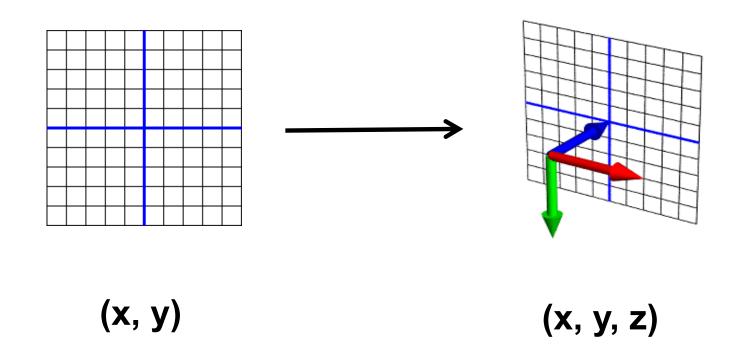
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(90) - \sin(90) \\ \sin(90) \cos(90) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$


We can merge multiple rotations into one rotation matrix

Euclidean Transforms

- Euclidean group
 - Translations + rotations
 - Rigid body transforms
- Properties:
 - Preserve distances
 - Preserve angles
 - How do you represent these functions?

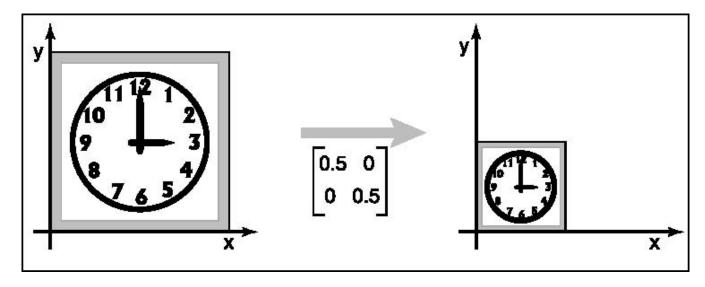
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$


Problems with this Form

- Translation and rotation considered separately
 - Typically we perform a series of rotations and translations to place objects in world space
 - It's inconvenient and inefficient in the previous form
 - Inverse transform involves multiple steps
- How can we address it?
 - How can we represent the translation as a matrix multiplication?

Homogeneous Coordinates

Consider our 2D plane as a subspace within 3D


Matrix Multiplications and Homogeneous Coordinates

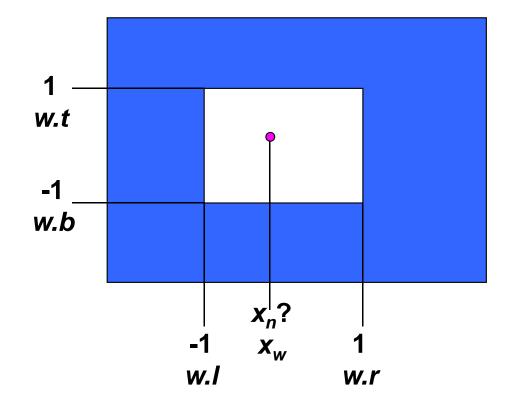
- Can use any planar subspace that does not contain the origin
- Assume our 2D space lies on the 3D plane z = 1
 - Now we can express all Euclidean transforms in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & t_x \\ \sin \theta & \cos \theta & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scaling

S is a scaling factor

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



Example: World Space to NDC

$$\frac{x_n - (-1)}{1 - (-1)} = \frac{x_w - (w.1)}{w.r - w.1}$$

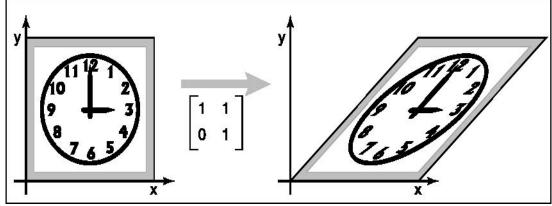
$$x_n = 2 \frac{x_w - (w.1)}{w.r - w.1} - 1$$

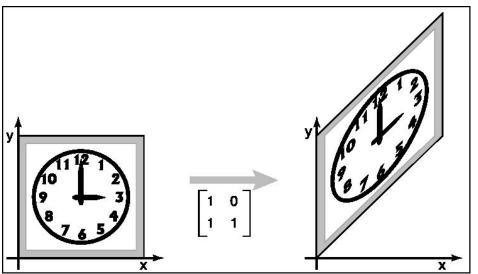
$$x_n = Ax_w + B$$

$$A = \frac{2}{w.r-w.l}, B = -\frac{w.r+w.l}{w.r-w.l}$$

Example: World Space to NDC

- Now, it can be accomplished via a matrix multiplication
 - Also, conceptually simple

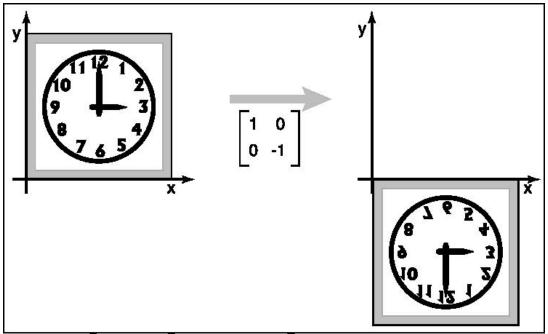

$$\begin{bmatrix} x_n \\ y_n \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{w.r-w.l} & 0 & -\frac{w.r+w.l}{w.r-w.l} \\ 0 & \frac{2}{w.t-w.b} & -\frac{w.t+w.b}{w.t-w.b} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ 1 \end{bmatrix}$$

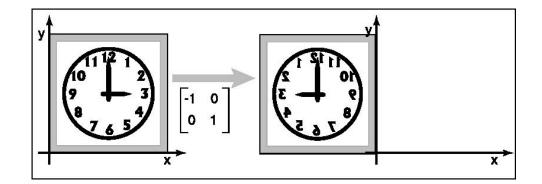


Shearing

- Push things sideways
- Shear along x-axis

Shear along y-axis

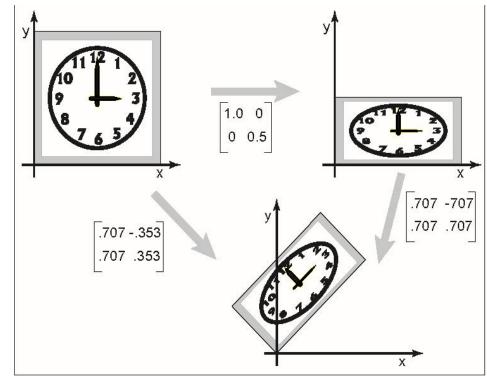




Reflection

Reflection about x-axis

Reflection about y-axis

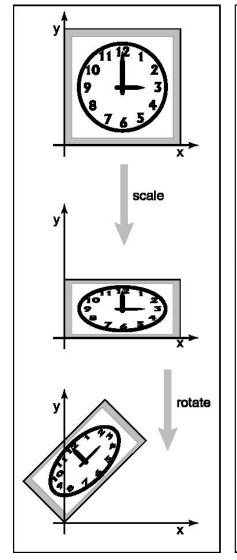


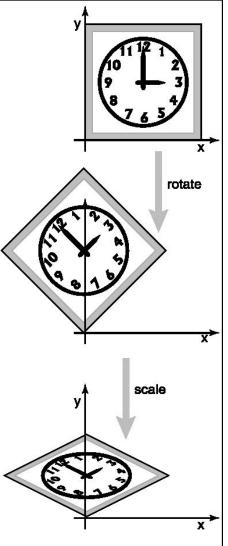
Composition of 2D Transformation

- Quite common to apply more than one transformations to an object
 - E.g., $v_2 = Sv_{1,} v_3 = Rv_{2,}$ where S and R are scaling and Rotation matrix

 Then, we can use the following representation:

- $v_3 = R(Sv_1)$ or
- $v_3 = (RS)v_1$
- why? (associative)





Transformation Order

Order of transforms is very important

• Why?

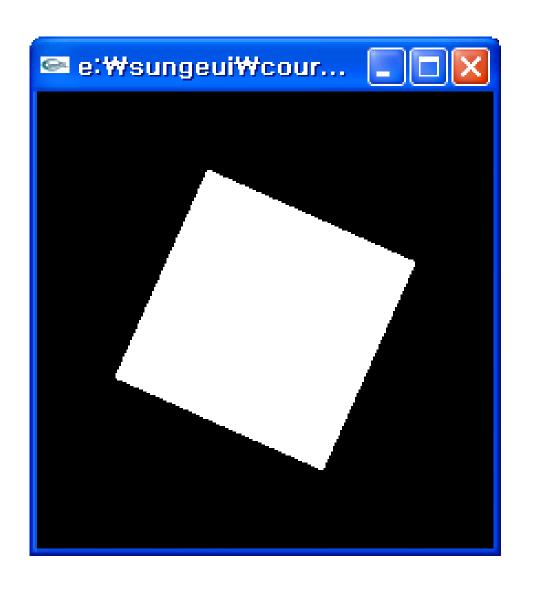
Affine Transformations

 Transformed points (x', y') have the following form:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Combinations of translations, rotations, scaling, reflection, shears
- Properties
 - Parallel lines are preserved
 - Finite points map to finite points

Rigid-Body Transforms in OpenGL


```
glTranslate (tx, ty, tz);
glRotate (angleInDegrees, axisX, axisY, axisZ);
glScale(sx, sy, sz);
```

OpenGL uses matrix format internally.

- glm (Ver. 4.3) stands for OpenGL Mathematics

OpenGL Example – Rectangle Animation (double.c)

Demo

Main Display Function

```
void display(void) M_I: initial matrix
 glClear(GL_COLOR_BUFFER_BIT);
 glPushMatrix();
                                  M_R
 glRotatef(spin, 0.0, 0.0, 1.0);
 glColor3f(1.0, 1.0, 1.0);
 glRectf(-25.0, -25.0, 25.0, 25.0); \nu
 glPopMatrix();
 glutSwapBuffers();
```


Frame Buffer

- Contains an image for the final visualization
- Color buffer, depth buffer, etc.
- Buffer initialization
 - glClear(GL_COLOR_BUFFER_BIT);
 - glClearColor (..);
- Buffer creation
 - glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
- Buffer swap
 - glutSwapBuffers();

Matrix Stacks

- OpenGL maintains matrix stacks
 - Provides pop and push operations
 - Convenient for transformation operations
- glMatrixMode() sets the current stack
 - GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE
- glPushMatrix() and glPopMatrix() are used to manipulate the stacks

OpenGL Matrix Operations

```
glTranslate(tx, ty, tz)
glRotate(angleInDegrees, axisX, axisY, axisZ)
glMultMatrix(*arrayOf16InColumnMajorOrder)
```

Concatenate with the current matrix

glLoadMatrix (*arrayOf16InColumnMajorOrder) glLoadIdentity() Overwrite the current matrix

Matrix Specification in OpenGL

Column-major ordering

$$M = \begin{bmatrix} m_1 & m_5 & m_9 & m_{13} \\ m_2 & m_6 & m_{10} & m_{14} \\ m_3 & m_7 & m_{11} & m_{15} \\ m_4 & m_8 & m_{12} & m_{16} \end{bmatrix}$$

- Reverse to the typical C-convention (e.g., m [i][j] : row i & column j)
- Better to declare m [16]
- Also, glLoadTransportMatrix*() & glMultTransposeMatrix*() are available

Animation

It consists of "redraw" and "swap"

 It's desirable to provide more than 30 frames per second (fps) for interactive applications

 We will look at an animation example based on idle-callback function

Idle-based Animation

```
void mouse(int button, int state, int x, int y)
 switch (button) {
   case GLUT LEFT BUTTON:
     if (state == GLUT_DOWN)
      glutIdleFunc (spinDisplay);
     break;
   case GLUT_RIGHT_BUTTON:
     if (state == GLUT DOWN)
      glutIdleFunc (NULL);
                                           void spinDisplay(void)
     break;
                                            spin = spin + 2.0;
                                            if (spin > 360.0)
                                              spin = spin - 360.0;
                                            glutPostRedisplay();
```

Class Objectives were:

- Write down simple 2D transformation matrixes
- Understand the homogeneous coordinates and its benefits
- Know OpenGL-transformation related API
- Implement idle-based animation method

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class
 - Submit online
 - Just one paragraph for each summary

Example:

Title: XXX XXXX XXXX

Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
 - 1 for already answered or typical questions
 - 2 for questions with thoughts or that surprised me

Submit 2 times during the whole semester

Next Time

3D transformations

