CS380: Computer Graphics 2D Imaging and Transformation

Sung-Eui Yoon (윤성의)

Course URL:
http://sgvr.kaist.ac.kr/~sungeui/CG

Announcements

- Lab class (video) related to OpenGL and PA sometime in this week
- Check KLMS regularly

Class Objectives

- Write down simple 2D transformation matrixes
- Understand the homogeneous coordinates and its benefits
- Know OpenGL-transformation related API
- Implement idle-based animation method
- Covered in 3.2 2D Transformation of my book
- At last time:
- OpenGL structure with event-based programming (e.g., callback functions)
- Went over codes of PA1 (Julia set)

2D Geometric Transforms

- Functions to map
points from one place to another
- Geometric transforms can be applied to
- Drawing primitives (points, lines, conics, triangles)
- Pixel coordinates of an image

Demo

KAIST

Translation

- Translations have the following form:

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{x +} \mathbf{t}_{\mathbf{x}} \\
& \mathbf{y}^{\prime}=\mathbf{y}+\mathbf{t}_{\mathbf{y}}
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

- inverse function: undoes the translation:

$$
\begin{aligned}
& \mathbf{x}=\mathbf{x}^{\prime}-\mathbf{t}_{\mathrm{x}} \\
& \mathbf{y}=\mathbf{y}^{\prime}-\mathbf{t}_{\mathbf{y}}
\end{aligned}
$$

- identity: leaves every point unchanged

$$
\begin{aligned}
& x^{\prime}=x+0 \\
& \mathbf{y}^{\prime}=\mathbf{y + 0}
\end{aligned}
$$

2D Rotations

- Another group - rotation about the origin:

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=R\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
R^{-1}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
R_{\theta=0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Rotations in Series

- We want to rotate the object 30 degree and, then, 60 degree

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\cos (60) & -\sin (60) \\
\sin (60) & \cos (60)
\end{array}\right]\left[\begin{array}{cc}
\cos (30) & -\sin (30) \\
\sin (30) & \cos (30)
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

$$
\begin{gathered}
L^{L} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\cos (90) \\
\sin (90) \\
\sin (90) \\
\cos (90)
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

We can merge multiple rotations into one rotation matrix

Euclidean Transforms

- Euclidean group
- Translations + rotations
- Rigid body transforms
- Properties:
- Preserve distances

- Preserve angles
- How do you represent these functions?

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{c}
t_{x} \\
t_{y}
\end{array}\right]
$$

Problems with this Form

- Translation and rotation considered separately
- Typically we perform a series of rotations and translations to place objects in world space
- It's inconvenient and inefficient in the previous form
- Inverse transform involves multiple steps
- How can we address it?
- How can we represent the translation as a matrix multiplication?

Homogeneous Coordinates

- Consider our 2D plane as a subspace within 3D

(x, y)

(x, y, z)

Matrix Multiplications and Homogeneous Coordinates

- Can use any planar subspace that does not contain the origin
- Assume our 2D space lies on the 3D plane $z=1$
- Now we can express all Euclidean transforms in matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Scaling

- S is a scaling factor

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Example: World Space to NDC

$$
\begin{aligned}
& \frac{x_{n}-(-1)}{1-(-1)}=\frac{x_{w}-(w .1}{w . r-w . l} \\
& x_{n}=2 \frac{x_{w}-(w . l)}{w . r-w . l}-1 \\
& x_{n}=A x_{w}+B \\
& A=\frac{2}{w \cdot r-w . l}, B=-\frac{w . r+w . l}{w . r-w . l}
\end{aligned}
$$

Example: World Space to NDC

- Now, it can be accomplished via a matrix multiplication
- Also, conceptually simple

$$
\left[\begin{array}{c}
x_{n} \\
y_{n} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\frac{2}{w \cdot r-w \cdot l} & 0 & -\frac{w \cdot r+w \cdot l}{w \cdot r-w \cdot l} \\
0 & \frac{2}{w \cdot t-w \cdot b} & -\frac{w \cdot t+w \cdot b}{w \cdot t-w \cdot b} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{w} \\
y_{w} \\
1
\end{array}\right]
$$

Shearing

- Push things sideways
- Shear along x-axis

- Shear along y-axis

Reflection

- Reflection about x-axis

- Reflection about y-axis

Composition of 2D Transformation

- Quite common to apply more than one transformations to an object
- E.g., $\mathbf{v}_{2}=\operatorname{Sv}_{1}, \mathbf{v}_{3}=R v_{2}$, where S and R are scaling and Rotation matrix
- Then, we can use the following representation:
- $v_{3}=R\left(S v_{1}\right)$ or
- $\mathbf{v}_{3}=($ RS $) \mathbf{v}_{1}$
- why?
(associative)

Transformation Order

- Order of transforms is very important
- Why?

KAIST

Affine Transformations

- Transformed points (x^{\prime}, y^{\prime}) have the following form:

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Combinations of translations, rotations, scaling, reflection, shears
- Properties
- Parallel lines are preserved
- Finite points map to finite points

Rigid-Body Transforms in OpenGL

gITranslate (tx, ty, tz);
gIRotate (anglelnDegrees, axisX, axisY, axisZ); gIScale(sx, sy, sz);

OpenGL uses matrix format internally.

- glm (Ver. 4.3) stands for OpenGL Mathematics

OpenGL Example - Rectangle Animation (double.c)

Demo

Main Display Function

void display(void) $\quad M_{I}$: initial matrix
$\{$
gIClear(GL_COLOR_BUFFER_BIT);
gIPushMatrix();
glRotatef(spin, 0.0, 0.0, 1.0); $\quad M_{R}$ glColor3f(1.0, 1.0, 1.0); gIRectf(-25.0, -25.0, 25.0, 25.0); v
gIPopMatrix(); $\quad M_{I}$
glutSwapBuffers();
\}

Frame Buffer

- Contains an image for the final visualization
- Color buffer, depth buffer, etc.
- Buffer initialization
- gIClear(GL_COLOR_BUFFER_BIT);
- glClearColor (..);
- Buffer creation
- glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
- Buffer swap
- glutSwapBuffers();

Matrix Stacks

- OpenGL maintains matrix stacks
- Provides pop and push operations
- Convenient for transformation operations
- glMatrixMode() sets the current stack - GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE
- gIPushMatrix() and gIPopMatrix() are used to manipulate the stacks

OpenGL Matrix Operations

gITranslate(tx, ty, tz)
gIRotate(angleInDegrees, axis X, axis Y, axisZ) gIMultMatrix(*arrayOf16InColumnMajorOrder) $\left\{\begin{array}{c}\text { Concatenate } \\ \text { with the } \\ \text { current matrix }\end{array}\right.$
gILoadMatrix (*arrayOf16InColumnMajorOrder) glLoadldentity()

Overwrite the current matrix

Matrix Specification in OpenGL

- Column-major ordering

$$
M=\left[\begin{array}{llll}
m_{1} & m_{5} & m_{9} & m_{13} \\
m_{2} & m_{6} & m_{10} & m_{14} \\
m_{3} & m_{7} & m_{11} & m_{15} \\
m_{4} & m_{8} & m_{12} & m_{16}
\end{array}\right]
$$

- Reverse to the typical C-convention (e.g., m [i][j] : row i \& column j)
- Better to declare m [16]
- Also, glLoadTransportMatrix*() \& glMultTransposeMatrix*() are available

Animation

- It consists of "redraw" and "swap"
- It's desirable to provide more than 30 frames per second (fps) for interactive applications
- We will look at an animation example based on idle-callback function

Idle-based Animation

void mouse(int button, int state, int x, int y)
$\{$
switch (button) \{
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN)
glutldleFunc (spinDisplay);
break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN) glutldleFunc (NULL); break;
void spinDisplay(void)
\{
spin = spin + 2.0;
if (spin > 360.0)
spin = spin - 360.0;
glutPostRedisplay();

Class Objectives were:

- Write down simple 2D transformation matrixes
- Understand the homogeneous coordinates and its benefits
- Know OpenGL-transformation related API
- Implement idle-based animation method

Homework

- Go over the next lecture slides before the class
- Watch 2 SIGGRAPH videos and submit your summaries before every Tue. class
- Submit online
- Just one paragraph for each summary

Example:
Title: XXX XXXX XXXX
Abstract: this video is about accelerating the performance of ray tracing. To achieve its goal, they design a new technique for reordering rays, since by doing so, they can improve the ray coherence and thus improve the overall performance.

Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
- 1 for already answered or typical questions
- 2 for questions with thoughts or that surprised me
- Submit 2 times during the whole semester

Next Time

- 3D transformations

