# CS380: Computer Graphics Triangle Rasterization 

## Sung-Eui Yoon (윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

## KAIST

## Class Objectives (Ch. 8)

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms


## Coordinate Systems



## Primitive Rasterization

- Rasterization converts vertex representation to pixel representation

- Coverage determination
- Computes which pixels (samples) belong to a primitive
- Parameter interpolation
- Computes parameters at covered pixels from parameters associated with primitive vertices,IST


## Coverage Determination

- Coverage is a 2D sampling problem
- Possible coverage criteria:
- Distance of the primitive to sample point (often used with lines)
- Percent coverage of a pixel (used to be popular)
- Sample is inside the primitive (assuming it is closed)



## Why Triangles?

- Triangles are simple
- Simple representation for a surface element ( 3 points or 3 edge equations)
- Triangles are linear (makes computations


$$
\begin{aligned}
& \mathrm{T}=\left(\dot{v}_{0}, \dot{v}_{1}, \dot{v}_{2}\right) \\
& \mathrm{T}=\left(\mathrm{e}_{0}, \mathrm{e}_{1}, \mathrm{e}_{2}\right)
\end{aligned}
$$

## Why Triangles?

- Triangles are convex
- What does it mean to be a convex?


An object is convex if and only if any line segment connecting two points on ts boundary is contained entirely within the object or one of its boundaries

## Why Triangles?

- Triangles are convex
- Why is convexity important?
- Regardless of a triangle's orientation on the screen a given scan line will contain only a single segment or span of that triangle
- Simplify rasterization processes


## Why Triangles?

- Arbitrary polygons can be decomposed into triangles

- Decomposing a convex n-sided polygon is trivial
- Suppose the polygon has ordered vertices $\left\{v_{0}, v_{1}, \ldots v_{n}\right\}$
- It can be decomposed into triangles $\left\{\left(\mathbf{v}_{0}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)\right.$, $\left.\left\{v_{0}, v_{2}, v_{3}\right),\left(v_{0}, v_{i}, v_{i+1}\right), \ldots\left(v_{0}, v_{n-1}, v_{n}\right)\right\}$
- Decomposing a non-convex polygon is non-trivial
- Sometimes have to introduce new vertices


## Why Triangles?

- Triangles can approximate any 2-dimensional shape (or 3D surface)
- Polygons are a locally linear (planar) approximation
- I mprove the quality of fit by increasing the number edges or faces



## Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time; also called edge walk method
- Rasterize spans between edges



## Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges



## Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges



## Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges



## Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges



## Scanline Triangle Rasterizer

- Walk along edges and process one scanline at a time
- Rasterize spans between edges



## Scanline Rasterization

- Advantages:
- Can be made quite fast
- Low memory usage for small scenes
- Do not need full 2D z-buffer (can use 1D zbuffer on the scanline)
- Disadvantages:
- Does not scale well to large scenes
- Lots of special cases


## Rasterizing with Edge Equations

- Compute edge equations from vertices
- Compute interpolation equations from vertex parameters
- Traverse pixels evaluating the edge equations
- Draw pixels for which all edge equations are positive
- I nterpolate parameters at pixels



## Edge Equation Coefficients

- The cross product between 2 homogeneous points generates the line between them

- A pixel at ( $x, y$ ) is "inside" an edge if $E(x, y)>0$


## Shared Edges

- Suppose two triangles share an edge. Which covers the pixel when the edge passes through the sample $(E(x, y)=0)$ ?
- Both
- Pixel color becomes dependent on order of triangle rendering

- Creates problems when rendering transparent objects "double hitting"
- Neither
- Missing pixels create holes in otherwise solid surface
- We need a consistent tie-breaker!


## Shared Edges

- A common tie-breaker:

$$
\text { bool } t= \begin{cases}A>0 & \text { if } A \neq 0 \\ B>0 & \text { ot herwise }\end{cases}
$$



- Coverage determination becomes if( $E(x, y)>0| |(E(x, y)==0 \& \& t))$ pixel is covered


## Shared Vertices



- Use "inclusion direction" as a tie breaker
- Any direction can be used

- Snap vertices to subpixel grid and displace so that no vertex can be at the pixel center


## Interpolating Parameters

- Specify a parameter, say redness (r) at each vertex of the triangle
- Linear interpolation creates a planar function


$$
r(x, y)=A x+B y+C
$$

## Solving for Linear Interpolation Equations

- Given the redness of the three vertices, we can set up the following linear system:

$$
\left[\begin{array}{lll}
r_{0} & r_{1} & r_{2}
\end{array}\right]=\left[\begin{array}{lll}
A_{r} & B_{r} & C_{r}
\end{array}\right]\left[\begin{array}{ccc}
y_{0} & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { with the solution: } \\
& {\left[\begin{array}{lll}
A_{r} & B_{r} & C_{r}
\end{array}\right]=\left[\begin{array}{lll}
r_{0} & r_{1} & r_{2}
\end{array}\right] \frac{\left[\begin{array}{lll}
\left(y_{1}-y_{2}\right) & \left(x_{2}-x_{1}\right) & \left(x_{1} y_{2}-x_{2} y_{1}\right) \\
\left(y_{0}-y_{2}\right) & \left(x_{2}-x_{0}\right) & \left(x_{0} y_{2}-x_{2} y_{0}\right) \\
\left(y_{0}-y_{1}\right) & \left(x_{1}-x_{0}\right) & \left(x_{0} y_{1}-x_{1} y_{0}\right)
\end{array}\right]}{\operatorname{det}\left[\begin{array}{rrr}
x_{0} & x_{1} & x_{2} \\
y_{0} & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right]} \text { KAIST }}
\end{aligned}
$$

## Triangle Area

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \operatorname{det}\left[\begin{array}{rrr}
x_{0} & x_{1} & x_{2} \\
y_{0} & y_{1} & y_{2} \\
1 & 1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left(\left(x_{1} y_{2}-x_{2} y_{1}\right)-\left(x_{0} y_{2}-x_{2} y_{0}\right)+\left(x_{0} y_{1}-x_{1} y_{0}\right)\right) \\
& =\frac{1}{2}\left(C_{0}+C_{1}+C_{2}\right)
\end{aligned}
$$

- Area $=0$ means that the triangle is not visible
- Area < $\mathbf{0}$ means the triangle is back facing:
- Reject triangle if performing back-face culling
- Otherwise, flip edge equations by multiplying by -1


## Interpolation Equation

- The parameter plane equation is just a linear combination of the edge equations

$$
\left[\begin{array}{lll}
A_{r} & B_{r} & C_{1}
\end{array}\right]=\frac{1}{2 \cdot \operatorname{area}}\left[\begin{array}{lll}
r_{0} & r_{1} & r_{2}
\end{array}\right]\left[\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2}
\end{array}\right]
$$

## Z-Buffering

- When rendering multiple triangles we need to determine which triangles are visible
- Use z-buffer to resolve visibility
- Stores the depth at each pixel
- Initialize z-buffer to $\mathbf{1}$ (far value)
- Post-perspective $z$ values lie between 0 and 1
- Linearly interpolate depth ( $z_{\text {tri }}$ ) across triangles
- If $z_{\text {tri }}(x, y)<z B u f f e r[x][y]$
write to pixel at ( $x, y$ )
zBuffer $[x][y]=z_{\text {tri }}(x, y)$


A simple three dimensional scene


## Traversing Pixels

- Free to traverse pixels
- Edge and interpolation equations can be computed at any point
- Try to minimize work

- Restrict traversal to primitive bounding box
- Hierarchical traversal
- Knock out tiles of pixels (say 4x4) at a time
- Test corners of tiles against equations
-Test individual pixels of tiles not entirely inside or outside



## Incremental Algorithms

- Some computation can be saved by updating the edge and interpolation equations incrementally:

$$
\begin{aligned}
E(x, y) & =A x+B y+C \\
E(x+\Delta, y) & =A(x+\Delta)+B y+C \\
& =E(x, y)+A \cdot \Delta \\
E(x, y+\Delta) & =A x+B(y+\Delta)+C \\
& =E(x, y)+B \cdot \Delta
\end{aligned}
$$

- Equations can be updated with a single addition!


## Triangle Setup

- Compute edge equations
- 3 cross products
- Compute triangle area
- A few additions
- Cull zero area and back-facing triangles and/ or flip edge equations
- Compute interpolation equations
- Matrix/ vector product per parameter


## Massive Models

## 100,000,000 primitives

 1,000,000 pixels100 visible primitives/ pixel

- Cost to render a single triangle
- Specify 3 vertices
- Compute 3 edge equations
- Evaluate equations one


St. Mathew models consisting of about 400M triangles (Michelangelo Project)

## Multi-Resolution or Levels-ofDetail (LOD) Techniques

- Basic idea
- Render with fewer triangles when model is farther from viewer

- Methods
- Polygonal simplification


## Polygonal Simplification

- Method for reducing the polygon count of mesh



## Static LODs

- Pre-compute discrete simplified meshes
- Switch between them at runtime
- Has very low LOD selection overhead



## Dynamic Simplification

- Provides smooth and varying LODs over the mesh [Hoppe 97]
$1^{\text {st }}$ person's view $3^{\text {rd }}$ person's view


Play video

## View-Dependent Rendering [Yoon et al., SIG 05]



30 Pixels of
error
Pentium 4

GeForce Go 6800 Ultra

1GB RAM

## Double Eagle Tanker

 82 Million triangles
## What if there are so many objects?



From "cars", a Pixar movie
KAIST

## What if there are so many objects?



## Stochastic Simplification of Aggregate Detail Cook et al., ACM SIGGRAPH 2007



Figure 2: Distant views of the plant from Figure 1 with close-ups below: (a) unsimplified, (b) with $90 \%$ of its leaves excluded, (c) with area correction, (d) with area and contrast correction.

## Occlusion Culling with Occlusion Queries

- Render objects visible in previous frame
- Known as occlusion representation or occlusion



## Occlusion Culling with Occlusion Queries

- Turn off color and depth writes
- Render object bounding boxes with occlusion queries
- An occlusion query returns



## Occlusion Culling with Occlusion Queries

- Re-enable color writes
- Render newly visible objects



## Class Objectives were:

- Understand triangle rasterization using edge-equations
- Understand mechanics for parameter interpolations
- Realize benefits of incremental algorithms


## Next Time

- Illumination and shading
- Texture mapping


## Homework

- Go over the next lecture slides before the class
- Watch 2 SI GGRAPH videos and submit your summaries before every Tue. class
- Send an email to cs380ta@gmail.com
- J ust one paragraph for each summary


## Any Questions?

- Come up with one question on what we have discussed in the class and submit at the end of the class
- 1 for already answered questions
- 2 for typical questions
- 3 for questions with thoughts or that surprised me
- Submit at least four times during the whole semester

