CS380: Computer Graphics Viewing Transformation

Sung-Eui Yoon (윤성의)

Course URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

KAIST

Class Objectives

- Know camera setup parameters
- Understand viewing and projection processes

Viewing Transformations

- Map points from world spaces to eye space
- Can be composed from rotations and translations

Viewing Transformations

- Goal: specify position and orientation of our camera
- Defines a coordinate frame for eye space

"Framing" the Picture

- A new camera coordinate
- Camera position at the origin
- Z-axis aligned with the view direction
- Y-axis aligned with the up direction

- More natural to think of camera as an object positioned in the world frame

Viewing Steps

- Rotate to align the two coordinate frames and, then, translate to move world space origin to camera's origin

An Intuitive Specification

- Specify three quantities:
- Eye point (e) - position of the camera
- Look-at point (p) - center of the image
- Up-vector (\vec{u}_{a}) - will be oriented upwards in the image

KAIST

Deriving the Viewing Transformation

- First compute the look-at vector and normalize

$$
\overrightarrow{\mathrm{l}}=\mathrm{p}-\mathrm{e} \quad \hat{\imath}=\frac{\hat{l}}{|\vec{I}|}
$$

- Compute right vector and normalize
- Perpendicular to the look-at and up vectors

$$
\overrightarrow{\mathbf{r}}=\overrightarrow{\boldsymbol{l}} \times \overrightarrow{\mathrm{u}}_{\mathrm{a}} \quad \hat{\mathbf{r}}=\frac{\overrightarrow{\mathbf{r}}}{|\overrightarrow{\mathrm{r}}|}
$$

- Compute up vector
- \vec{u}_{a} is only approximate direction

- Perpendicular to right and look-at vectors

$$
\hat{\mathbf{u}}=\hat{\mathbf{r}} \times \hat{\mathbf{l}}
$$

Rotation Component

- Map our vectors to the cartesian coordinate axes

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
\hat{r} & \hat{u} & -\hat{i}
\end{array}\right] R_{v}
$$

- To compute R_{v} we invert the matrix on the right
- This matrix M is orthonormal (or orthogonal) - its rows are orthonormal basis vectors: vectors mutually orthogonal and of unit length
- Then, $\mathrm{M}^{-1}=\mathrm{M}^{\top}$
- So,

$$
\mathbf{R}_{v}=\left[\begin{array}{c}
\hat{\mathbf{r}}^{\mathrm{t}} \\
\hat{\mathbf{u}}^{\mathrm{t}} \\
-\hat{\mathbf{l}}^{\mathrm{t}}
\end{array}\right]
$$

Translation Component

- The rotation that we just derived is specified about the eye point in world space
- Need to translate all world-space coordinates so that the eye point is at the origin
- Composing these transformations gives our viewing transform, V

$$
\dot{w}^{t}=\dot{e}^{t} \mathbf{R}_{v} \mathbf{T}_{-\dot{e}}
$$

$$
\mathbf{V}=\mathbf{R}_{v} \mathbf{T}_{-\dot{e}}=\left[\begin{array}{cccc}
\hat{r}_{x} & \hat{r}_{y} & \hat{r}_{z} & 0 \\
\hat{u}_{x} & \hat{u}_{y} & \hat{u}_{z} & 0 \\
-\hat{l}_{x} & -\hat{l}_{y} & -\hat{l}_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -e_{x} \\
0 & 1 & 0 & -e_{y} \\
0 & 0 & 1 & -e_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
\hat{r} & -\hat{r} \cdot \vec{e} \\
\hat{u} & -\hat{u} \cdot \vec{e} \\
-\hat{l} & \hat{l} \cdot \vec{e} \\
0 & 0
\end{array}\right]
$$

Transform a world-space point into a point in the eye-space

Viewing Transform in OpenGL

- OpenGL utility (glu) library provides a viewing transformation function:
gluLookAt (double eyex, double eyey, double eyez, double centerx, double centery, double centerz, double upx, double upy, double upz)
- Computes the same transformation that we derived and composes it with the current matrix

Example in the Skeleton Codes of PA2

```
void setCamera ()
{...
I/ initialize camera frame transforms
    for (i=0; i < cameraCount; i++ )
    {
        double* c = cameras[i];
        wld2cam.push_back(FrameXform());
        glPushMatrix();
        glLoadIdentity();
        gluLookAt(c[0],c[1],c[2], c[3],c[4],c[5], c[6],c[7],c[8]);
        glGetDoublev( GL_MODELVIEW_MATRIX, wId2cam[i].matrix() );
        gIPopMatrix();
        cam2wld.push_back(wld2cam[i].inverse());
    }
```

\}

Projections

- Map 3D points in eye space to 2D points in image space

- Two common methods
- Orthographic projection
- Perspective projection

Orthographic Projection

- Projects points along lines parallel to z-axis
- Also called parallel projection
- Used for top and side views in drafting and modeling applications
- Appears unnatural due to lack of perspective foreshortening

Notice that the parallel lines of the tiled floor remain parallel after orthographic projection!

Orthographic Projection

- The projection matrix for orthographic projection is very simple

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- Next step is to convert points to NDC

View Volume and Normalized Device Coordinates

- Define a view volume
- Compose projection with a scale and a translation that maps eye coordinates to normalized device coordinates

Orthographic Projections to NDC

Some sanity checks:

Scale the z coordinate in exactly the same way .Technically, this coordinate is not part of the projection. But, we will use this value of z for other purposes

$$
\begin{aligned}
& X=\text { left } \Rightarrow X^{\prime}=\frac{2 \cdot l e f t}{\text { right }- \text { left }}-\frac{\text { right }+ \text { left }}{\text { right -left }}=--\frac{\text { right-left }}{\text { right-left }}=-1 \\
& x=\text { right } \Rightarrow X^{\prime}=\frac{2 \cdot \text { right }}{\text { right }- \text { eft }}-\frac{\text { right }+ \text { left }}{\text { right-left }}=\frac{\text { right-left }}{\text { right-left }}=1
\end{aligned}
$$

Orthographic Projection in OpenGL

- This matrix is constructed by the following OpenGL call:
void glOrtho(double left, double right, double bottom, double top, double near, double far);
- 2D version (another GL utility function): void gluOrtho2D(double left, GLdouble right, double bottom, GLdouble top);
, which is just a call to glOrtho() with near =-1 and far = 1

Perspective Projection

- Artists (Donatello, Brunelleschi, Durer, and Da Vinci) during the renaissance discovered the importance of perspective for making images appear realistic
- Perspective causes objects nearer to the viewer to appear larger than the same object would appear farther away
- Homogenous coordinates allow perspective projections using linear operators

Signs of Perspective

- Lines in projective space always intersect at a point

Perspective Projection

$$
y_{s}=d \frac{y}{z}
$$

Perspective Projection Matrix

- The simplest transform for perspective projection is:

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

- We divide by w to make the fourth coordinate 1
- In this example, w=z
- Therefore, $x^{\prime}=x / z, y^{\prime}=y / z, z^{\prime}=0$

Normalized Perspective

- As in the orthographic case, we map to normalized device coordinates

NDC Perspective Matrix

$\left[\begin{array}{c}W X^{\prime} \\ W^{\prime} \\ \mathbf{W Z}^{\prime} \\ \mathbf{w}\end{array}\right]=\left[\begin{array}{cccc}\frac{2 \cdot n e a r}{\text { right-left }} & 0 & \frac{-(\text { right }+ \text { left })}{\text { right-left }} & 0 \\ 0 & \frac{2 \cdot n e a r}{\text { top-bottom }} & \frac{-(\text { top }+ \text { bottom })}{\text { top-bottom }} & 0 \\ 0 & 0 & \frac{\text { far }+ \text { near }}{\text { far-near }} & \frac{-2 \cdot f a r \cdot n e a r}{\text { far }- \text { near }} \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

- The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

$$
\begin{aligned}
& X=\text { left } \\
& z=\text { near }
\end{aligned} \Rightarrow X^{\prime}=\frac{\frac{2 \cdot n e a r \cdot l \text { left }}{\text { right-left }}-\frac{\text { near(right +left })}{\text { right-left }}}{\text { near }}=\frac{- \text { near }}{\text { near }}=-1
$$

NDC Perspective Matrix

$\left[\begin{array}{c}W X^{\prime} \\ w y^{\prime} \\ w Z^{\prime} \\ w\end{array}\right]=\left[\begin{array}{cccc}\frac{2 \cdot n e a r}{\text { right-left }} & 0 & \frac{-(\text { right }+ \text { left })}{\text { right-left }} & 0 \\ 0 & \frac{2 \cdot n e a r}{\text { top-bottom }} & \frac{-(\text { top }+ \text { bottom })}{\text { top-bottom }} & 0 \\ 0 & 0 & \frac{\text { far }+ \text { near }}{\text { far-near }} & \frac{-2 \cdot \text { far near }}{\text { far }- \text { near }} \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

- The values of left, right, top, and bottom are specified at the near depth. Let's try some sanity checks:

$$
\begin{aligned}
& z=f a r \Rightarrow Z^{\prime}=\frac{\text { far } \frac{\text { far }+ \text { near }}{\text { far-near }}+\frac{-2 \cdot f a r-n e a r}{\text { far-near }}}{\text { far }}=\frac{\frac{\text { far }(\text { far }- \text { near })}{\text { (ar-near })}}{\text { far }}=1
\end{aligned}
$$

Perspective in OpenGL

- OpenGL provides the following function to define perspective transformations:

void glFrustum(double left, double right, double bottom, double top, double near, double far);

- Some think that using gIFrustum() is nonintuitive. So OpenGL provides a function with simpler, but less general capabilities
void gluPerspective(double vertfov, double aspect, double near, double far);

gluPerspective()

Simple"cameralike" model
Can only specify symmetric frustums

- Substituting the extents into glFrustum()

gluPerspective()

Simple "cameralike" model

Can only specify

 symmetric frustums- Substituting the extents into glFrustum()

$$
\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w z^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{cccc}
\frac{c o t v e r f i o v)}{\text { aspect }} & 0 & 0 & 0 \\
0 & \left.C O T \frac{\text { verffov }}{2}\right) & 0 & 0 \\
0 & 0 & \frac{\text { far +near }}{\text { far-near }} & \frac{-2 \text { f.far.near }}{\text { far-near }} \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Example in the Skeleton Codes of PA2

```
void reshape( int w, int h)
{
    width = w; height = h;
    glViewport(0, 0, width, height);
    gIMatrixMode(GL_PROJECTION); I/ Select The Projection Matrix
    glLoadIdentity(); II Reset The Projection Matrix
    I/ Define perspective projection frustum
    double aspect = width/double(height);
    gluPerspective(45, aspect, 1, 1024);
    glMatrixMode(GL_MODELVIEW); Il Select The Modelview Matrix
    gILoadIdentity(); Il Reset The Projection Matrix
}

\section*{Class Objectives were:}
- Know camera setup parameters
- Understand viewing and projection processes

\section*{Reading Assignment}
- Read the chapter "Data Structure for Graphics"

\section*{PA3}

- PA2: perform the transformation at the modeling space
- PA3: perform the transformation at the viewing space

\section*{Next Time}
- I nteraction```

