
CS380: Computer GraphicsCS380: Computer Graphics
Modeling Transformations

Sung-Eui Yoon
(윤성의)(윤성의)

C URLCourse URL:
http://sglab.kaist.ac.kr/~sungeui/CG/

Class ObjectivesClass Objectives
Know the classic data processing steps● Know the classic data processing steps,
rendering pipeline, for rendering primitives

●Understand 3D translations and rotations●Understand 3D translations and rotations

2

OutlineOutline
Where are we going?●Where are we going?
● Sneak peek at the rendering pipeline

Vector algebra● Vector algebra
●Modeling transformation
● Viewing transformation
● Projections

3

The Classic Rendering PipelineThe Classic Rendering Pipeline
●Object primitives defined by●Object primitives defined by

vertices fed in at the top
● Pixels come out in the display at● Pixels come out in the display at

the bottom
● Commonly have multiple● Commonly have multiple

primitives in various stages of
rendering

4

Modeling TransformsModeling Transforms
● Start with 3D models defined in● Start with 3D models defined in

modeling spaces with their own
modeling frames: t

n
t
2

t
1 m,...,m,m

● Modeling transformations orient models
within a common coordinate frame
called world space twcalled world space,
● All objects, light sources, and the camera

live in world space

tw

● Trivial rejection
attempts to
eliminateeliminate
objects that
cannot possibly

5

be seen
● An optimization

IlluminationIllumination
● Illuminate potentially visible objects● Illuminate potentially visible objects
● Final rendered color is determined by

object’s orientation, its materialobject s orientation, its material
properties, and the light sources in the
scene

6

Viewing TransformationsViewing Transformations
●Maps points from world space to●Maps points from world space to

eye space:
Vtt we

● Viewing position is transformed to
the origin
Vi i di i i i d l● Viewing direction is oriented along
some axis

7

Clipping and ProjectionClipping and Projection
● We specify a volume called a viewing● We specify a volume called a viewing

frustum
● Map the view frustum to the unit cube● Map the view frustum to the unit cube
● Clip objects against the view volume,

thereby eliminating geometry not visible inthereby eliminating geometry not visible in
the image

● Project objects j j
into two-dimensions

● Transform from
eye space to
normalized device
coordinates

8

coordinates

Rasterization and DisplayRasterization and Display
● Transform normalized device● Transform normalized device

coordinates to screen space
● Rasterization converts objects pixels● Rasterization converts objects pixels

- Almost every step in the rendering
pipeline involves a change of coordinatepipeline involves a change of coordinate
systems!
- Transformations are central to
understanding 3D computer graphics

9

But, this is a architectural
overview of a recent GPU (Fermi)overview of a recent GPU (Fermi)

U ifi d● Unified
architecture
Highly parallel● Highly parallel

● Support CUDA
(general(general
language)

● Wide memory● Wide memory
bandwidth

10

But, this is a architectural
overview of a recent GPUoverview of a recent GPU

11

Recent CPU Chips (Intel’s Core
i7 processors)i7 processors)

12

Vector AlgebraVector Algebra
We already saw vector addition and●We already saw vector addition and
multiplications by a scalar

●Will study three kinds of vector●Will study three kinds of vector
multiplications
● Dot product () - returns a scalar● Dot product () returns a scalar
● Cross product (×) - returns a vector
● Tensor product () - returns a matrixp ()

13

Dot Product ()Dot Product ()
bb

 s
b
b
b

0aaababas,
b
b
b

0aaababa y

x

zyx
Ty

x

zyx
T

1
b

,

0
b z

zyx
z

zyx

●Returns a scalar s
●Geometric interpretations s:p

●
● Length of projected onto

cosθbaba
b bb

and or vice versa
● Distance of from the origin

in the direction of

a
θ

a
b

a

14

in the direction of a
cosθb

a

Cross Product (×)Cross Product (×)
b00

0b
0ca

c
b
b
b

00
0a0a
0aa0

ba y

x

xz

yz

0cb
0
b

0000
00aa zxy

● Return a vector that is perpendicular to both

d i d di h i h h d l

 xyyxzxxzyzzy babababababac

c a
and , oriented according to the right-hand rule

● The matrix is called the skew-symmetric matrix of
b

a

15

Cross Product (×)Cross Product (×)
A mnemonic device for remembering the● A mnemonic device for remembering the
cross-product

16

Modeling TransformationsModeling Transformations
Vast majority of transformations are● Vast majority of transformations are
modeling transforms

●Generally fall into one of two classes●Generally fall into one of two classes
● Transforms that move parts within the model

ttt

● Transforms that relate a local model’s frame to

cMcc t
1

t
1

t
1 mmm

Transforms that relate a local model s frame to
the scene’s world frame

cMcc tt
1

t
1 wmm

●Usually, Euclidean transforms, 3D rigid-

cMcc 11

17

●Usually, Euclidean transforms, 3D rigid
body transforms, are needed

TranslationsTranslations
Translate points by adding offsets to their● Translate points by adding offsets to their
coordinates

t010
t001 x

ttt

t100
t010

Twhere
cwTcmcm
cmTcmcm

z

y
ttt

ttt

 1000

● The effect of this translation:

18

3D Rotations3D Rotations
More complicated than 2D rotations●More complicated than 2D rotations
● Rotate objects along a rotation axis

● Several approaches● Several approaches
● Compose three canonical rotations about the

axes
● Quaternions

19

Geometry of a RotationGeometry of a Rotation

N t l b i f t ti f t b t●Natural basis for rotation of a vector about
a specified axis:

20

Geometry of a RotationGeometry of a Rotation

21

Tensor Product ()Tensor Product ()

● Creates a matrix that when applied to a
vector return scaled by the project ofac c

22

vector return scaled by the project of
onto

c
b

Tensor Product ()Tensor Product ()
Useful when b●Useful when

● The matrix is called
the symmetric matrix of

ab
aa

athe symmetric matrix of
● We shall denote this A

a

)(caa

23
)(

)(

caa

caa

Sanity CheckSanity Check
Consider a rotation by about the x axis● Consider a rotation by about the x-axis

 i
0100
0000

)1(
0000
0001

0010
0001

0000
0000

)
0
1

(

R t t sin

0000
0010

)cos1(

0000
0000

cos

0000
0100

1000
0000

),

0
0

(

Rotate

0sincos0
0001

 1000
0cossin0

● You can check it in any computer graphics
book, but you don’t need to memorize it

24

book, but you don t need to memorize it

Rotation using Affine
TransformationTransformation

â

t
s

a
x

1
0

ˆ
t

obxa

1

s

x b

ˆ
t
s

b
t

1
0

ˆ Robxa x

t
Assume that these basis
vectors are normalized

25

1vectors are normalized

QuaternionQuaternion
Developed by W Hamilton in 1843●Developed by W. Hamilton in 1843
● Based on complex numbers

● Two popular notations for a quaternion, q
i j k h i2 j2 k2 ijk 1● w + xi + yj + zk, where i2= j2= k2= ijk = -1

● [w, v], where w is a scalar and v is a vector

● Conversion from the axis, v, and angle, t
● q = [cos (t/2) sin (t/2) v]● q = [cos (t/2), sin (t/2) v]
● Can represent rotation

26

Basic Quaternion OperationsBasic Quaternion Operations
Addition● Addition
● q + q´ = [w + w´, v + v´]
Multiplication● Multiplication
● qq´ = [ww´ - v · v´, v x v´ + wv´ +w´v]

Conj gate● Conjugate
● q* = [w, -v]

N●Norm
● N(q) = w2 + x2 + y2+ z2

I● Inverse
● q-1 = q* / N(q)

27

Basic Quaternion OperationsBasic Quaternion Operations
q is a unit quaternion if N(q) 1● q is a unit quaternion if N(q)= 1
● Then q-1 = q*

● Identity
[1 (0 0 0)] f lti li ti● [1, (0, 0, 0)] for multiplication

● [0, (0, 0, 0)] for addition

28

Rotations using QuaternionsRotations using Quaternions
Suppose that you want to rotate a● Suppose that you want to rotate a
vector/point v

● Then the rotated v’● Then, the rotated v
● v´ = q r q-1, where r = [0, v])

● But, what is q?
Notice that q is a unit quaternion● Notice that q is a unit quaternion

● Compositing rotations● Compositing rotations
● R = R2 R1 (rotation R1 followed by rotation

R2)

29

R2)

ExampleExample
Rotate by degree a along x axis:●Rotate by degree a along x axis:
qx = [cos (a/2), sin(a/2) (1, 0, 0)]

30

Quaternion to Rotation MatrixQuaternion to Rotation Matrix
Q w + xi + yj + zk●Q = w + xi + yj + zk

●Rm =| 1-2y2-2z2 2yz+2wx 2xz-2wy |
| 2xy 2wz 1 2x2 2z2 2yz 2wx || 2xy-2wz 1-2x2-2z2 2yz-2wx |
| 2xz+2wy 2yz-2wx 1-2x2-2y2|

●We can also convert a rotation matrix to a
quaternionquaternion

31

Advantage of QuaternionsAdvantage of Quaternions
More efficient way to generate arbitrary●More efficient way to generate arbitrary
rotations

● Less storage than 4 x 4 matrix● Less storage than 4 x 4 matrix
● Easier for smooth rotation

N i ll t bl th 4 4 t i●Numerically more stable than 4x4 matrix
(e.g., no drifting issue)
More readable●More readable

32

Class Objectives were:Class Objectives were:
Know the classic data processing steps● Know the classic data processing steps,
rendering pipeline, for rendering primitives

●Understand 3D translations and rotations●Understand 3D translations and rotations

33

PA2: Simple Animation &
TransformationTransformation

34

OpenGL: Display ListsOpenGL: Display Lists
Display lists●Display lists
● A group of OpenGL commands stored for later

executionsexecutions
● Can be optimized in the graphics hardware
● Thus, can show higher performanceThus, can show higher performance

● Immediate modeImmediate mode
● Causes commends to be executed immediately

35

An ExampleAn Example

void drawCow()
{
if (frame == 0)if (frame 0)
{
cow = new WaveFrontOBJ("cow.obj");
cowID = glGenLists(1);cowID = glGenLists(1);
glNewList(cowID, GL_COMPILE);
cow->Draw();

lE dLi t()glEndList();
}

..
glCallList(cowID);
..

36

}

API for Display ListsAPI for Display Lists

Gluint glGenLists (range)
- generate a continuous set of empty display lists g p y p y

void glNewList (list, mode) & glEndList ()
f f: specify the beginning and end of a display list

void glCallLists (list)
: execute the specified display list

37

OpenGL: Getting Information
from OpenGLfrom OpenGL
void main(int argc, char* argv[])void main(int argc, char argv[])
{
…
int rv gv bv;int rv,gv,bv;
glGetIntegerv(GL_RED_BITS,&rv);
glGetIntegerv(GL_GREEN_BITS,&gv);

lG tI t (GL BLUE BITS &b)glGetIntegerv(GL_BLUE_BITS,&bv);
printf("Pixel colors = %d : %d : %d\n", rv, gv, bv);
….

}

void display () {y () {
..
glGetDoublev(GL_MODELVIEW_MATRIX, cow2wld.matrix());
..

38

..
}

HomeworkHomework
Read:●Read:
● Sec. 6: Viewing

●Watch SIGGRAPH Videos
Go o e the ne t lect e slides●Go over the next lecture slides

39

Next TimeNext Time
Viewing transformations● Viewing transformations

40

