Image Completion with Intrinsic Reflectance Guidance

Soomin Kim Taeyoung Kim Min H. Kim Sung-Eui Yoon KAIST

Motivation & Goal

- Scene illumination often causes color changes in the same materials in the image
- Many patch-based image completion methods are based on color information, so it often fails to find appropriate source patches due to illumination
- **Goal**: Utilize intrinsic reflectance to guide source patches along with color information.

(b) Lee et al. [2016]

(c) Ours (reflectance layer)

Our Approach

- 1. Extract intrinsic reflectance
 - Intrinsic decomposition decomposes an image to reflectance (albedo) and shading (illumination)
 - Utilize only reflectance as illumination-invariant features
- 2. Build an image pyramid and fill the hole from the coarse to fine levels
- 3. Find candidate patches using a reflectance guided similarity function

$$E(p) = \sum_{Q_{I_k}, Q_{R_k} \in S_k} \min\{E_{coherence}(P_{I_k}, Q_{I_k}) + E_{guidance}(P_{R_k}, Q_{R_k})\}.$$

- The similarity function contains both image term and reflectance term

P: patch Q: candidate patch I_k, R_k: kthlevel of image and reflectance

$$E_{coherence}(P_{I_k}, Q_{I_k}) = \alpha_k C(P_{I_k}, Q_{I_k}) + \gamma C(\nabla^2 P_{I_k}, \nabla^2 Q_{I_k})$$

$$E_{guidance}(P_{R_k}, Q_{R_k}) = \beta_k C(P_{R_k}, Q_{R_k})$$

- Adaptive reflectance weight for each level

$$\beta_k = \beta - \Delta \text{ and } \alpha_k = \alpha + \Delta,$$

$$\Delta = \beta \times \frac{k-1}{N-1} \times \frac{\sigma_R}{\sigma_L},$$

Coarse level: more weight on reflectance Fine level: more weight on image color

- 4. Reconstruct the image and reflectance with found source patches
 - Weighted sum of source patches according to similarity

$$D_{I|R}(p,q) = (1 - \gamma)C(P_{I|R}, Q_{I|R}) + \gamma C(\nabla^2 P_{I|R}, \nabla^2 Q_{I|R})$$

Result

Scenes with significant illumination variation

Commonly tested scenes

Conclusion

We have presented an reflectance-guided image completion method, which can handle a wide variety of images that include significant illumination variation.

References

Soheil Darabi, Eli Shechtman, Connelly Barnes, Dan B Goldman, and Pradeep Sen. Image melding: Combining inconsistent images using patch-based synthesis. ACM Trans. Graph., 31(4):82–1, 2012. Jia-Bin Huang, Sing Bing Kang, Narendra Ahuja, and Johannes Kopf. Image completion using planar structure guidance. ACM Transactions on Graphics (TOG), 33(4): 129, 2014.

Joo Ho Lee, Inchang Choi, and Min H. Kim. Laplacian patch-based image synthesis. In Proc. IEEE (CVPR 2016)

