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Abstract— A quadruped robot faces balancing challenges on
a six-degrees-of-freedom moving platform, like subways, buses,
airplanes, and yachts, due to independent platform motions and
resultant diverse inertia forces on the robot. To alleviate these
challenges, we present the Learning-based Active Stabilization
on Moving Platforms (LAS-MP), featuring a self-balancing
policy and system state estimators. The policy adaptively adjusts
the robot’s posture in response to the platform’s motion. The
estimators infer robot and platform states based on propriocep-
tive sensor data. For a systematic training scheme across various
platform motions, we introduce platform trajectory generation
and scheduling methods. Our evaluation demonstrates superior
balancing performance across multiple metrics compared to
three baselines. Furthermore, we conduct a detailed analysis of
the LAS-MP, including ablation studies and evaluation of the
estimators, to validate the effectiveness of each component.

I. INTRODUCTION

Quadruped robots have become essential in various real-
world applications, such as rescue missions and surveillance,
thanks to their adeptness at navigating diverse terrains [1],
[2]. A crucial aspect of their deployment is the ability to
maintain stability and balance while traversing different types
of terrain, including rough and slippery surfaces. To do that,
significant progress has been made in various ways, includ-
ing Reinforcement Learning (RL)-based control strategies,
terrain property estimation, foot-terrain interaction analysis,
and adaptive mechanical foot designs (refer to Sec. II-A).

On the other hand, as quadruped robots are increasingly
deployed in inhabited environments, they have opportuni-
ties to utilize transportation platforms like subways, buses,
yachts, airplanes, and conveyors for efficient navigation.
However, robots in non-inertial reference frames (e.g., mov-
ing platforms) encounter distinct balancing challenges com-
pared to those on terrains which are inertial systems. As an
example, we can first imagine fictitious inertial forces ex-
perienced by passengers in accelerating or turning vehicles.
In addition, the absence of prior knowledge about platform
movements further complicates prompt reaction to the forces
to maintain balance. These challenges highlight the need for
advanced control strategies to swiftly adapt to continuously
changing platform motions to ensure a balance of the robot.

Thus, our goal is to ensure that quadruped robots main-
tain balance and avoid falling off moving platforms even
with limited space, as illustrated in Fig. 1. Achieving this
requires timely and adaptive postural adjustments based on
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Fig. 1. An illustration demonstrating a balancing process of a quadruped
robot on a moving platform exhibiting six-degrees-of-freedom motions.

an understanding of platform movements. To the best of our
knowledge, we believe this work is the first effort to ad-
dress the challenges associated with six-degrees-of-freedom
(DoF) and unknown platform motions in three-dimensional
space across the fields of quadrupedal locomotion and self-
balancing research (refer to Sec. II-B, II-C). As the number
of dimensions of the platform’s motions increases, the robot
encounters a broader array of inertial forces, complicating
the balancing task, as further detailed in Sec. III-A.

Main Contributions. We introduce the Learning-based
Active Stabilization method on Moving Platforms (LAS-MP),
designed for adaptive posture adjustment in response to 6-
DoF platform motions. This method features a self-balancing
policy and system state estimators developed via RL with
system identification (refer to Sec. II-D). The estimators infer
system states related to the robot and platform (e.g., veloci-
ties) alongside the robot’s intrinsic properties (e.g., friction),
utilizing historical proprioceptive sensor data. These inferred
states improve the situational awareness of the policy in non-
inertial frames, facilitating adaptive balancing on moving
platforms. In addition, we augment the policy with an align-
ment command, derived from the robot and platform states
via feature engineering, which provides explicit velocity
guidance to the policy so that it converges better solutions.

To train the policy in environments consisting of diverse
platform motions, we introduce platform trajectory genera-
tors based on basis-splines (B-splines) [3]. Furthermore, we
present a curriculum and scheduling process to progressively
escalate task complexity for successful policy learning.

In experiments, we show that the LAS-MP enhances the
balancing performance across various platform movements,
outperforming three other baselines. We also indicate that
baseline systems, which are competent in balancing on rough
and stationary terrains, struggle on moving platforms. In
addition, we carry out ablation studies to elucidate the impact



of explicitly estimating the robot and platform states and the
effectiveness of the alignment command.

II. RELATED WORK

A. Quadrupedal Locomotion on Various Terrains
Despite advancements in quadrupedal locomotion on di-

verse terrains, traditional model-based methods encounter
challenges in model accuracy, uncertainty, and adaptabil-
ity [4]–[6]. Recent deep Reinforcement Learning (RL) offers
promising solutions to these challenges [7]–[14]. However,
RL methods still face limitations in handling various physical
properties of the terrains, such as friction and restitution,
when relying solely on geometrical sensor data. Thus, re-
searchers have devised specialized strategies tailored to elas-
tic [15], soft [16]–[18], and slippery [19]–[21] terrains, in-
cluding foot-terrain interaction modeling and abnormal state
detection. In addition, some RL studies [13], [14] simulate
virtual external forces on robots to boost the robustness of the
locomotion policy. However, these stability challenges only
partially resemble the range of perturbations from moving
platforms. Thus, we focus on ensuring the robot’s safety on
the platform in the face of active platform movements.

B. Quadrupedal Locomotion on Moving Platforms
Focusing on operations on moving platforms, recent loco-

motion research advances traditional model-based controllers
and gait planners by integrating platform motions into the
analytical models [22], [23]. However, their applicability to
diverse platform motions is limited by several assumptions,
such as known platform motions with negligible horizon-
tal acceleration, constant body height, negligible angular
momentum, and fixed walking cycles with three contact
points. These studies explored 2-DoF platform movements
featuring sinusoidal pitching and vertical motions, emulating
the vessel movements in regular sea waves. In contrast, our
research investigates more complex scenarios with 6-DoF
platform motions without imposing constraints on the robot
and platform’s motions. Furthermore, our method operates
without prior knowledge of the underlying platform motions,
estimating them through state estimators from historical
proprioceptive sensor data to adapt to the platform motions.

C. Quadrupedal Self-balancing on Moving Platforms
Rather than the locomotion, other researchers have con-

centrated on enhancing the postural stabilization of the robot
on tilting platforms [24]–[27]. A recent RL-based approach
formed an optimal self-balancing policy using table-based
RL, integrating kinematic equations but neglecting physical
factors like gravity and contact dynamics [26]. A subsequent
study solved a continuous optimization problem, employing
a parameterized stochastic policy with a physics simula-
tion [27]. While these studies are somewhat in line with
our objectives and methods, they experimented on platforms
exhibiting 2-DoF (in roll and pitch) and 3-DoF (in z, roll,
and pitch) motions with an 8-DoF quadruped robot. In con-
trast, our research advances to more challenging scenarios,
featuring 6-DoF (in x, y, z, roll, pitch, and yaw) platform
motions with a 12-DoF quadruped robot for experiments.

D. Privileged Learning and System Identification

System parameters, also known as privileged information
in simulations, are pivotal for learning complex skills using
RL [13], [28]. Asymmetric structures facilitate the training
of actors by providing critics with the parameters [8], [29].
Moreover, actors can leverage the parameters by incorpo-
rating the system identification process into the RL frame-
work. Upon deployments, actors should infer the privileged
parameters via online optimization [30]–[33] or estimators.
Estimators can predict the parameters from sensor data in
three ways: their original form [34], [35], latent vectors [9],
[11], [36]–[38], or a hybrid way [13]. Adopting the hybrid
representation, we deploy two state estimators: one explicitly
estimates the robot and platform states in their original form,
and the other implicitly infers the intrinsic properties of the
robot within a low-dimensional space. These estimations give
actors clear situational awareness and domain adaptability,
leading to improved balancing performance. Furthermore, we
introduce alignment commands, derived by modulating robot
and platform states, for enhanced convergence of the policy.

III. LEARNING-BASED ACTIVE STABILIZATION METHOD
ON MOVING PLATFORMS (LAS-MP)

We present the LAS-MP, an advanced controller enabling
quadruped robots to maintain balance against 6-DoF platform
motions without falling off or toppling on the platform.
Below, we discuss the challenges in self-balancing problems
on moving platforms along with motivations for the LAS-MP,
followed by a detailed explanation of each component.

A. Challenges and Motivations

Designing controllers for quadruped robots presents inher-
ent challenges due to their nonlinear, time-varying dynamics
encompassing multiple DoF and mechanical constraints [22].
Maintaining balance on moving platforms further demands
rapid and suitable responses to external forces on the robot.

Platform motions, represented by continuously changing
velocity, expose robots to various forces, including inertia
and interaction forces. When platforms simultaneously ex-
hibit both translational and rotational motions, the variety of
forces increases. For example, according to Newton’s laws
of motion, horizontal acceleration induces inertial forces on
the robot, sharp turns lead to centrifugal forces, and the
platform’s rotational motion introduces additional inertial
forces around the axis of rotation, like Coriolis, Euler, and
centrifugal forces. In addition, interactions through contacts
between the robot and the platform generate normal and
frictional forces. Thus, upward platform motions can apply
vertical reaction forces at contact points, potentially pro-
pelling the robot into a flying phase where it loses contact
with the platform. These forces heighten the risk of falling
off or toppling on the platform unless using a sophisticated
algorithm, equipping with a range of motor skills such as
soft landings, contact maintenance, foot-slip prevention, and
adaptive postural adjustments for weight redistribution.

Meanwhile, the lack of information on platform motions
causes delayed responses to the forces, requiring more space
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Fig. 2. Overall framework of the Learning-based Active Stabilization method on Moving Platforms (LAS-MP). It consists of four key components: (1)
parallelized simulation environments for moving platforms, (2) a platform trajectory generator with a scheduling mechanism for managing task complexity
progression, (3) a reinforcement learning (RL) algorithm for policy optimization, and (4) a self-balancing policy with two state estimators. To leverage the
privileged information in policy learning, we concurrently train the self-balancing policy with the two system state estimators in a single phase by employing
the Regularized Online Adaptation (ROA) method [13]. To clearly differentiate components utilized in training or evaluation phases, we designate yellow
for training components and purple for evaluation components. A combination of both colors represents components involved in both phases.
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Fig. 3. This figure visually presents the notations used in the descriptions,
such as the coordinate frames for the body B, platform P , and world W . It
also illustrates estimated robot and platform states, including contact states
ĉee and linear velocities of the body v̂B
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velocities are visualized after conversion to the platform frame for clarity.

to regain balance or leading to non-recoverable states. This
is particularly critical with spatial constraints on platforms.

To mitigate these challenges, we introduce the LAS-MP.
In physics simulations, we generate diverse platform motions
and apply RL to develop the necessary motor skills. We also
enhance situational awareness of the policy by inferring robot
and platform states in real time using system state estimators,
trained via the system identification process, enabling quick
and adaptive postural adjustments in the non-inertial frames.
Fig. 2 demonstrates a schematic of the LAS-MP.

B. Variable Notation

We first introduce the variable notations to elaborate on the
LAS-MP. As illustrated in Fig. 3, the locations of the robot
and platform are determined by their body B and platform P
frames, located at their respective center of mass. Our nota-
tion adopts superscripts for coordinate frames and subscripts
for specific entities. For instance, pW

⟨·⟩,[·] ∈ R3 denotes the
position within the world coordinate frame W , where ⟨·⟩ can
be body, plf, or eei and [·] indicates specific elements in a
variable if used. For brevity, plf and eei refer to the platform
and each leg’s end-effector with i ranging from 0 to 3. v and
v̇ ∈ R3 indicate linear velocity and acceleration, while ϕ and

ω ∈ R3 represent Euler angles and angular velocity. q, q̇, and
q̈ ∈ R12 denote joint positions, velocities, and accelerations
of the quadruped robot, respectively. Feet contact states and
forces are represented as cee = [c0, c1, c2, c3] ∈ B4 and
fee = [f0,f1,f2,f3] ∈ R4×3. ξ is assigned to the 6-DoF
platform trajectory with a total duration of T . Lastly, we use
·̂ to indicate estimated values in the subsequent descriptions.

C. Problem Formulation of RL

Our objective of RL is to develop a policy that embodies
multiple motor skills required for maintaining balance with
minimal deviations on moving platforms. We formulate the
self-balancing problem as a Partially Observable Markov
Decision Process (POMDP) due to the agent’s restricted
accessibility to privileged system parameters. The POMDP
is composed of a 7-tuple (S,O,A,F ,R,Q0, γ), where each
element is the state space S, the observation space O⊂S,
the action space A, the transition function F : S × A→S ,
the reward function R : S × A→R, the initial state distri-
bution Q0, and the discount factor γ ∈ [0, 1). The system
parameters, denoted as X ⊂ S , comprise elements that are
not directly observable through proprioceptive sensors, such
as platform velocities and feet friction coefficients. For the
initial states for each episode s0 ∼ Q0, we position the robot
at the center of the platform with a random yaw angle within
a [−180◦, 180◦] range. We then find a skillful self-balancing
policy πθ that maximizes the expected sum of discounted
rewards over various platform movements:

J(πθ) = E ξtrain∼Ξtrain

[
E(s,a)∼ρπθ

s0∼Q0

[
T∑
t=0

γtR(st,at)

]]
, (1)

where Ξtrain is a training set of platform trajectories ξtrain and
ρπθ

is a state-action visitation probability given a stochastic
policy πθ. In the following description, we detail how RL is
implemented in the LAS-MP, covering architectures, reward
functions, training environments, and technical details.



D. Learning Self-balancing Policy

We employ the Regularized Online Adaptation [13] as a
privileged learning approach to combine policy optimization
and system identification process into a single phase, instead
of the two-stage student-teacher approaches [9], [28]. This
enables the utilization of the privileged system parameters X
during training in simulation, replacing them with real-time
estimates from state estimators upon deployments for eval-
uations. Thus, the LAS-MP is composed of a self-balancing
policy and two system state estimators, as shown in Fig. 2.

1) Self-balancing Policy: Our policy πθ features an actor
backbone bθ and an encoder hθ, where θ is network parame-
ters. The actor backbone, bθ : O×Xexp ×Limp ×se(2) → A,
calculates the action a ∈ A, which is joint displacements
∆q, at each timestep. The action is combined with nominal
joint values, yielding target positions, qtarget = ∆q+qnominal,
for the Proportional Derivative (PD) controllers [39]. For
notational clarity, we omit the notation of t here and after.

The input of the actor backbone bθ consists of the obser-
vation o ∈ O, explicit system parameters xexp ∈ Xexp,
an implicit latent vector limp ∈ Limp, and an alignment
command ualn ∈ se(2). The observation is a concatenation
of proprioceptive sensor data and the previous action, o =
[v̇B

body,ω
B
body,ϕ

B
body,xy, q, q̇,at−1]. For the privileged system

parameters X , we categorize them into two subgroups:
explicit and implicit ones, Xexp and Ximp. The explicit system
parameters xexp ∈ Xexp include foot contacts and body
linear velocity, and platform’s linear and angular velocities,
xexp = [cee,v

B
body,v

B
plf,ω

B
plf]. This input allows the policy to

recognize the motions of the reference frame, enabling adap-
tive postural adjustments in response to platform motions.
The implicit system parameters ximp ∈ Ximp, representing
intrinsic properties of the robot, consist of four coefficients:
ximp = [body mass, shifted center of mass (CoM), contact
friction, stiffness and damping of joints], encoded into the
latent vector limp by the encoder hθ : Ximp → Limp. This
vector helps the policy adapt to different intrinsic properties
in deployments [9]. The last input, the alignment command
ualn=[vB

plf,xy−vB
body,xy, ω

B
plf,z−ωB

body,z], is engineered to indicate
the robot’s relative velocity to the platform. This functions
as a body velocity command, guiding the policy to correct
misalignment between the robot and the platform.

2) System State Estimators: In deployments, since priv-
ileged information is inaccessible, we substitute the input
elements of the actor backbone related to the privileged
information with real-time estimates derived from the history
of observations, oH = [ot−1, ...,ot−H ] ∈ OH . To realize
that, we employ explicit and implicit state estimators. The
explicit estimator, hexp

ψ : OH →Xexp, estimates the explicit
system parameter, x̂exp = [ĉee, v̂

B
body, v̂

B
plf, ω̂

B
plf], as depicted

in Fig. 3. We then adopt the estimated explicit parameters to
generate the inferred alignment command, ûaln = [v̂B

plf,xy −
v̂B

body,xy, ω̂
B
plf,z − ωB

body,z]. For the z-directional body angular
velocity ωB

body,z, we use the measured value by accessible
inertial measurement unit (IMU) sensors. The implicit state
estimator, himp

ψ : OH → Limp, estimates the implicit latent

TABLE I. Reward Function of RL: R = Rtask +Rreg

(Please refer to the description in Sec. III-D.3 for more details.)

Reward Function Expression
Task Reward: Rtask =

∑4
k=0 r

task
k

rtask
0 −k0 1collision(q,p

P
body,ϕ

P
body)

rtask
1 k1 exp(−||pP

body,xy||2 / k2)
rtask
2 k3 exp(−||ualn||2 / k4)
rtask
3 k5 exp(−||ϕW

body,xy||2 / k6)
rtask
4 k7 exp(−||pPbody,z − hbody

des ||2 / k8)
Regularization Reward: Rreg =

∑6
k=0 r

reg
k

r
reg
0 −(k9 ||τ − τt−1||2 + k10 ||a− at−1||2)
r

reg
1 −(k11 ||τ ||2 + k12 ||q̇||2 + k13 ||q̈||2)
r

reg
2 −k14

∑11
j=0 max(τj q̇j , 0.0)

r
reg
3 −k15

∑3
i=0 max(||fi||2 − ftol, 0.0)

r
reg
4 −k16

∑3
i=0(t

swing
i − t

swing
des )(ci (1− ci,t−1))

r
reg
5 −k17

∑3
i=0(t

contact
i − tcontact

des )((1− ci) ci,t−1)

r
reg
6 −k18

∑3
i=0(||vP

eei ,xy − (ωP
plf ,z p

P
eei ,xy + vP

plf ,xy)||2)
• 1: an indicator function, k0,1,...,18: non-negative coefficients
• h

body
des : a desired body height, ftol: a maximum tolerated contact force

• t
swing
des : a desired contact duration, tcontact

des : a desired swing duration

vector l̂imp which represents the inferred intrinsic properties
of the robot. The network parameters of the state estimators,
denoted as ψ, are trained concurrently with the RL objective
function (Eq. 1) using Mean Squared Error (MSE) losses:

Lexp
MSE = ||x̂exp − xexp||22, (2)

Limp
MSE = ||l̂imp − sg[limp]||22 + λ||sg[l̂imp]− limp||22, (3)

where sg[·] is a stop gradient operator and λ is a Lagrangian
multiplier. The first term in each loss function is for regres-
sion of each estimator, while the second term of Eq. 3 aims
for regularization of the encoder hθ within the policy πθ.

3) Reward Function: To develop the essential motor skills
using RL for self-balancing tasks on moving platforms, we
design the reward function combining task and regularization
rewards, represented as R = Rtask +Rreg. TABLE I shows
the detailed composition of each reward function.

We form the task reward Rtask =
∑4
k=0 r

task
k to encompass

the necessary aspects of solving the task. The rtask
0 penalizes

collisions to ensure safety, the rtask
1 minimizes positional

deviations to prevent falls, the rtask
2 aligns the robot’s motion

with the platform, and the rtask
3 reduces body tilt for postural

stabilization. The rtask
4 ensures that the robot maintains its

desired body height to preserve its functionality, such as
locomotion and manipulation, rather than just lying down.

Adhering to only the task reward might lead the agent into
local minima, resulting in unnatural motion and excessive
power usage [18], [35]. To mitigate this, we adopt the regu-
larization reward Rreg =

∑6
k=0 r

reg
k . The rreg

0 and rreg
1 reduce

jerky robot motion, and the rreg
2 lessens power consumption.

The rreg
3 aims to regulate the magnitude of contact forces, and

the rreg
4 and rreg

5 discourage frequent contact and lifting of
the feet. Foot replacements should be performed only when
required to get a re-balance to prevent deviations caused by
the platform’s independent movements. Lastly, we propose
the rreg

6 to penalize the foot slip on the moving platform by
taking the underlying platform’s motions into account.



TABLE II. Training and Testing Parameter Ranges

Parameters Training Range Testing Range
Implicit System Parameters ximp

Body mass (kg) U(4.0, 5.0) U(3.5, 5.5)

Shifted CoM (m) U(−0.2, 0.2)3 U(−0.25, 0.25)3

Contact friction U(0.8, 1.2) U(0.7, 1.3)

Stiffness (Kp) U(36, 44)12 U(32, 48)12

Damping (Kd) U(0.8, 1.2)12 U(0.6, 1.4)12

Platform Trajectory ξ

Number of waypoints [5, 6, ..., 15] [4, 5, ..., 16]

Stiffness (Kp) U(1.0, 1.5)6 U(0.5, 2.0)6

Damping (Kd) U(0.02, 0.03)6 U(0.01, 0.04)6

• U(·, ·): an uniform distribution

4) Training Environments: We formed parallel simulation
environments for efficient data collection during the training
phase; each environment consisted of a quadruped robot and
a box-shaped moving platform as agents. Each episode starts
by positioning the robot on the platform according to the
initial state distribution Q0. To improve generalization for
varying intrinsic properties of the robot, the intrinsic param-
eters ximp are randomly sampled as described in TABLE II.

To realize platform motions, we parameterized the shape
of the platform with [width, length, height] (unit: m), and the
PD controllers are used to track the 6-DoF training platform
trajectories ξtrain ∈ Ξtrain. We diversified platform motions by
equipping each environment with trajectory generators and
randomizing controller parameters for every episode. These
generators craft a training set of platform trajectories Ξtrain
utilizing B-spline interpolation [3] with randomly chosen
waypoints in the ranges: x and y: [−1.0, 1.0] m, z: [0.0, 5.0]
m, roll and pitch: [−0.7, 0.7] rad, and yaw: [−2.6, 2.6] rad,
respectively. Each trajectory spans for T = 10 s.

Figure 4 shows translational platform trajectory examples
and provides statistical analysis for the Ξtrain. Adding more
waypoints while maintaining a constant duration of 10 s led
to increased path lengths and higher speeds on average.
Rapid direction changes at high speeds posed significant
balancing challenges for the robot, especially at the early
stages of training, hindering the collection of meaningful
data for policy training. To successfully train the policy, we
adopted curriculum learning methods [9], [13], [40], setting
task complexity based on the number of waypoints as shown
in TABLE II. A scheduler then incrementally escalates the
task level after achieving an 80% success rate at each level.

5) Training Details: We adopted the Proximal Policy
Optimization [41] with ROA regularization [13], aiming to
maximize the RL objective function (Eq. 1) and minimize
the regression and regularization losses (Eq. 2, 3). The actor
backbone bθ is constructed using a four-layer Multi-Layer
Perceptron (MLP) network, while the encoder hθ is imple-
mented as a two-layer MLP. Concurrently, both the explicit
and implicit state estimators, hexp

ψ and himp
ψ , are designed

with a two-layer 1D Convolutional Neural Network (CNN)
in between two one-layer MLPs. The stochastic policy πθ is
conceptualized as a diagonal Gaussian distribution, wherein
the mean value is generated by the actor backbone bθ with a
parameterized standard deviation θstd ∈ R12. Then, actions

Training Platform Trajectory Examples (trajectory duration: 10 seconds)

[m]

[m]

[m]
1.0

1.0
0.0

Z

X
Y

0.5

-1.0

-1.0

5

• Avg. length [m]:
• Avg. speed [m/s]:

-1• Avg. curvature [m ]:

10 15

3.48 (± 0.72)
0.35 (± 0.07)

277.1 (± 87.2)

6.61 (± 0.97)

145.0 (± 30.3)
0.66 (± 0.11)

9.73 (± 1.16)

98.1 (± 16.3)
0.97 (± 0.12)

• Number of waypoints:

[m]

[m]

[m]
1.0

1.0
0.0

Z

X
Y

0.5

-1.0

-1.0

[m]

[m]

[m]
1.0

1.0
0.0

Z

X
Y

0.5

-1.0

-1.0

Fig. 4. Examples of training platform trajectories Ξtrain in translational space
and their statistical analysis. A similar trend is observed in rotational space.

are sampled following the distribution, a ∼ N (bθ,θstd).
We empirically found the best performing reward coeffi-

cients k0,...,18 as [10.0, 3.0, 1.2, 2.0, 0.3, 1.0, 0.2, 4.0, 0.1,
10−7, 10−4, 10−4, 10−7, 10−6, 10−5, 0.01, 2.0, 3.0, 0.05].
We also set the parameters H , λ, hbody

des , ftol, t
swing
des , and tcontact

des
as 20, 0.2, 0.37m, 50N, 0.1 s, and 0.5 s, respectively.

We utilized the Isaac Gym [42] to operate 8, 192 simu-
lation environments in parallel. As a quadruped robot, we
adopted a Unitree A1 [43], which weights 11.74 kg and has
dimensions of 48 cm in length, 32 cm in width, and 37
cm in height at the nominal standing configuration qnominal.
Additionally, we configured the shape of the platforms as
[2.0, 2.0, 0.2] m. The total training consisted of 4, 000 itera-
tions, with each iteration processing data equivalent to 0.24 s.
This equates to 96 trajectories ξtrain per environment, which
is about 0.8 million trajectories Ξtrain when summed across
all environments. The overall training required about 2 hours
and 30 minutes, executed on a standard desktop configuration
with an Intel i9-9900K CPU and an RTX 4090 GPU.

IV. EXPERIMENTAL RESULTS

The major advantage of the LAS-MP lies in its balancing
proficiency across various platform motions. In experiments,
to corroborate the proficiency, we compare the LAS-MP with
three other baseline methods. We also perform ablation stud-
ies to validate the impacts of platform state estimation using
explicit estimators (EE) and of alignment commands (AC).
Lastly, we assess the system state estimators to demonstrate
their feasibility in inferring system states using a history of
proprioceptive sensor data.

A. Evaluation of Balancing Performance

1) Experimental Setup: We aim to evaluate the balancing
and domain adaptation capabilities across diverse platform
motions and robot intrinsic properties, using a broader range
of parameters than those used in training, as shown in
TABLE II. To this end, we created an evaluation benchmark
set Ξeval consisting of 10, 000 evaluation platform trajectories
ξeval, following the same procedure in Sec. III-D.4 with the
random number of waypoints within the testing range. This
benchmark statistically shows a length of 7.12 m, a speed
of 0.69 m/s, and a curvature of 132.6 m−1 on average in
translational space. Fig. 5 displays an evaluation episode of
the LAS-MP alongside 6-DoF platform movements examples.
We also prepared 1,024 quadruped robots having different
intrinsic properties for each robot.
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Fig. 5. Snapshots undergoing an evaluation process of the LAS-MP, captured with a fixed camera in the world coordinate frame W .

TABLE III. Balancing Performance on Evaluation Benchmark Set Ξeval consisting of 10, 000 Evaluation Platform Trajectories ξeval

Method
Constraint violation rate Deviations from initial pose

Power (W) ↓
Collision (%*) ↓ Height (%*) ↓ Position (m) ↓ Rotation (rad) ↓

LAS-MP (ours) 0.029 (±0.03) 0.009 (±0.01) 0.366 (±0.01) 0.071 (±0.01) 2.904 (±0.45)

Stand Still 0.612 (±0.29) 0.142 (±0.07) 0.394 (±0.04) 0.182 (±0.07) 1.031 (±0.17)
Rough-Static Policy (R-S Policy) [13] 0.922 (±0.12) 0.232 (±0.07) 0.478 (±0.06) 0.241 (±0.05) 8.121 (±2.86)
R-S Policy w/ Oracle Command 0.891 (±0.18) 0.198 (±0.01) 0.452 (±0.05) 0.201 (±0.04) 7.817 (±2.95)

Ablation Study • %*: a normalized percentage in the range of [0.0, 1.0]

w/o Alignment Command (AC) 0.287 (±0.27) 0.327 (±0.12) 0.367 (±0.05) 0.195 (±0.08) 4.658 (±1.55)
w/o EE{PLV, PAV} & w/o AC 0.634 (±0.37) 0.454 (±0.29) 0.376 (±0.04) 0.122 (±0.06) 3.388 (±0.83)
w/o EE & w/o AC 0.359 (±0.13) 0.534 (±0.16) 0.496 (±0.03) 0.159 (±0.04) 6.614 (±2.63)
w/o EE & w/o AC & w/ History Obs. 0.314 (±0.19) 0.525 (±0.29) 0.456 (±0.07) 0.177 (±0.09) 6.139 (±4.36)

• EE: Explicit Estimator, PLV: Platform Linear Velocity, PAV: Platform Angular Velocity, Obs.: Observations

For evaluation, we organized four metrics: (1) the collision
rate on the body and limbs excepting the end-effectors (i.e.,
feet), (2) the rate of height constraint violations beyond the
± 0.1 m range from the desired body height hbody

des , (3) the
deviations from initial poses, and (4) the power consumption.
Note that we consider falling off the platform as a collision,
and height constraint violations and deviations are measured
up until the first collision happens.

To demonstrate the effectiveness of our active stabilization
method, we prepared the following baselines for comparison:
• LAS-MP (ours): It is our proposed method in Sec. III.
• Stand Still: It keeps the robot in a standing posture by

setting the nominal configuration qnominal as the target of
the PD controller.

• Rough-Static Policy (R-S Policy) [13]: It is a robust lo-
comotion policy trained on static and rough terrains with
push perturbations on the body. While structurally similar
to our method, having explicit and implicit estimators, it
does not consider the platform states. Also, the policy is
not trained on the moving platform environments. In the
experiments, x, y, and yaw velocity commands are set to
zero, reflecting the assumption that no prior knowledge
is given about the platform’s movements.

• R-S Policy w/ Oracle Command: It is designed to aug-
ment the R-S Policy with Oracle information, such as
positional information of the robot and platform in the
world coordinate frame W . The policy takes the velocity
commands, aimed toward the center of the platform, as
input. It helps the robot align with the platform move-
ments and compensate for deviations via locomotion.

We prepared the Stand Still to verify if the intrinsic structural
stability of four-legged robots is adequate for maintaining
balance on moving platforms without active adjustments. In
addition, we explored the R-S Policy to determine if policies

trained exclusively in static environments can sustain balance
on dynamically moving platforms.

2) Experimental Result: TABLE III shows the balancing
performance of each method on the Ξeval benchmark set. The
LAS-MP stands out with superior balancing performance,
showing minimal constraint violations and deviations. On
the other hand, the Stand Still shows the least power usage
with a reasonable height constraint violation rate, since it
remains the standing posture. However, its high collision rate
indicates its inadequacy in maintaining balance on the mov-
ing platforms, showing the necessity for advanced balancing
strategies. Furthermore, the Rough-Static Policy exhibits the
highest collision rate, and even with the Oracle information,
only limited improvement is observed. This result indicates
the existence of distinct requirements for getting the balance
on moving platforms compared to static environments.

B. Ablation Study

We carried out ablation studies to assess the efficacy of
platform state estimation via the explicit estimator (EE) and
of the alignment command (AC) within the LAS-MP. Note
that in this experiment, we kept the environment setting and
learning process consistent with the approach outlined in
Sec. III, varying only in the model architecture. TABLE III
shows the balancing performance of each architecture. In
the w/o Alignment Command (AC) case, it shows the policy
converged to a local minimum without the AC, indicating
a performance drop compared to the LAS-MP. It represents
the AC helps the policy converge to a better local minimum
by explicitly extracting task-relevant features. As mentioned
in [44], feature engineering is crucial for policy learning.
In the w/o EE{PLV, PAV} & w/o AC study, we adjusted
the explicit estimator (EE) only to infer the robot-related
states, excluding the platform linear velocity (PLV) and the



TABLE IV. Prediction Accuracy of Explicit (hexp
ψ ) and Implicit (himp

ψ ) State Estimators within the LAS-MP on the Ξeval Benchmark Set

h
exp
ψ : ||x̂exp,i − xexp,i||1(i = [0, 1, ..., 12]) h

imp
ψ :

Foot Contacts ∈ R4 Body Linear Velocity ∈ R3 Platform Linear Velocity ∈ R3 Platform Angular Velocity ∈ R3 ||l̂imp − limp||2
0.074 0.077 0.081 0.090 0.035 0.047 0.038 0.040 0.051 0.035 0.027 0.028 0.016 0.0059

(±0.019) (±0.012) (±0.008) (±0.016) (±0.005) (±0.005) (±0.002) (±0.005) (±0.005) (±0.002) (±0.003) (±0.003) (±0.002) (±0.0018)
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Fig. 6. This figure presents the predicted x̂exp (depicted as red dotted lines)
and ground-truth xexp (shown as blue solid lines) values for each explicit
parameter over the course of an evaluation episode spanning 10 sec.

platform angular velocity (PAV). This is the same with the
R-S Policy [13] but trained on moving platform environ-
ments. However, it shows higher constraint violation rates.
The robot’s linear velocity alone, influenced by both robot
and platform motions, failed to provide a clear situation
awareness in non-inertia frames, introducing noise into the
decision-making process. In the w/o EE & w/o AC case,
we completely omitted the usage of the explicit estimator.
Interestingly, it shows improved performance in the collision
rate with high power consumption. The converged policy
developed a jumping strategy to effectively ignore the di-
verse disturbances from platforms moving in any direction.
However, this naturally led to the increased height constraint

True Body Linear Velocity

True Platfrom Linear Velocity

•

••

••

•
•
•

•
•

•
•

•Estimated foot contacts: 

Foot height

Estimated Body Linear Velocity

Estimated Platform Linear Velocity

{Red: contact, Blue: not contact}

Fig. 7. Snapshots, captured during the evaluation of the LAS-MP, show the
estimated states from the explicit estimator. To clearly display each velocity,
we draw them by moving a certain distance along the z-axis from the center
of both the robot and the platform in the world coordinate frame W .

violation rate, power usage, and positional deviation. Lastly,
in the case of w/o EE & w/o AC & w/ History Obs., aiming
for a fair comparison, we utilized historical proprioceptive
sensor data as input for the policy. This resulted in a slight
improvement in overall balancing performance. Nonetheless,
the policy still converged to the same jumping strategy.

C. Analysis of State Estimators

We further examined the accuracy of estimation results of
each estimator within the LAS-MP. TABLE IV shows the
prediction accuracy of the explicit (hexp

ψ ) and implicit (himp
ψ )

estimators. Accuracy is measured by ||x̂exp,i − xexp,i||1 for
each explicit parameter i = [0, 1, ..., 12] and ||l̂imp−limp||2 for
implicit parameters. The explicit estimator shows quite low
prediction errors for each parameter, indicating it can regress
the robot and platform states using historical proprioceptive
data. The accuracy of the implicit estimator also exhibits its
ability to identify the robot’s intrinsic properties during the
balancing act. Fig. 6 and 7 display estimation results of the
explicit estimator hexp

ψ on some representative situations.
For a more intuitive understanding of the experimental

results, please refer to the supplementary video.

V. CONCLUSION

We have presented the Learning-based Active Stabilization
Method on Moving Platforms (LAS-MP). Through a series of
experiments, we have demonstrated that the LAS-MP signifi-
cantly enhances balancing performance on moving platforms
exhibiting 6-DoF movements. In addition, experiments have
shown that disturbances generated by dynamically moving
platforms present a potential safety risk to the baseline sys-
tems. In future works, we will extend this work to real-world
experiments to verify the feasibility. In addition, although
the LAS-MP aligns the robot motions with those of the
platform by generating instantaneous alignment commands,
it lacks a mechanism to correct already established steady-
state deviations. Therefore, we plan to localize the center
of the platform and reduce deviations via locomotion by
utilizing exteroceptive sensor data.



ACKNOWLEDGMENTS

This work was supported by grants from the Korea government (MSIT),
including the Institute of Information & communications Technology Plan-
ning & Evaluation (IITP) grant (No. RS-2023-00237965) and the National
Research Foundation of Korea (NRF) grant (No. RS-2023-00208506).

REFERENCES

[1] D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Gunther,
M. Tranzatto, P. Fankhauser, and M. Hutter, “Advances in real-world
applications for legged robots”, Journal of Field Robotics, vol. 35,
no. 8, pp. 1311–1326, 2018.

[2] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat,
C. Cadena, M. Hutter, et al., “The current state and future outlook
of rescue robotics”, Journal of Field Robotics, vol. 36, no. 7, pp.
1171–1191, 2019.

[3] G. D Knott, Interpolating cubic splines, vol. 18, Springer Science &
Business Media, 1999.

[4] P. Fankhauser, M. Bjelonic, C. D. Bellicoso, T. Miki, and M. Hutter,
“Robust rough-terrain locomotion with a quadrupedal robot”, in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 5761–5768.

[5] C. Mastalli, W. Merkt, G. Xin, J. Shim, M. Mistry, I. Havoutis, and
S. Vijayakumar, “Agile maneuvers in legged robots: a predictive
control approach”, arXiv preprint arXiv:2203.07554, 2022.

[6] G. Lu, T. Chen, X. Rong, G. Zhang, J. Bi, J. Cao, H. Jiang, and Y. Li,
“Whole-body motion planning and control of a quadruped robot for
challenging terrain”, Journal of Field Robotics, pp. 1657–1677, 2023.

[7] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Rloc: Terrain-aware legged locomotion using reinforcement learning
and optimal control”, IEEE Transactions on Robotics (T-RO), vol. 38,
no. 5, pp. 2908–2927, 2022.

[8] I. M. A. Nahrendra, B. Yu, and H. Myung, “Dreamwaq: Learning
robust quadrupedal locomotion with implicit terrain imagination via
deep reinforcement learning”, in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2023,
pp. 5078–5084.

[9] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots”, in Proceedings of the Robotics: Science
and Systems (RSS), 2021.

[10] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision”, in Proceedings of the
Conference on Robot Learning (CoRL). PMLR, 2023, pp. 403–415.

[11] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain”, Science
Robotics, vol. 5, no. 47, pp. eabc5986, 2020.

[12] N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter, “Advanced skills by
learning locomotion and local navigation end-to-end”, in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 2497–2503.

[13] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots”, arXiv preprint arXiv:2309.14341, 2023.

[14] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning”, in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[15] T. Kim and S. Lee, “Quadruped locomotion on non-rigid terrain using
reinforcement learning”, arXiv preprint arXiv:2107.02955, 2021.

[16] S. Fahmi, M. Focchi, A. Radulescu, G. Fink, V. Barasuol, and
C. Semini, “Stance: Locomotion adaptation over soft terrain”, IEEE
Transactions on Robotics (T-RO), vol. 36, no. 2, pp. 443–457, 2020.

[17] C. Yao, G. Shi, Y. Ge, Z. Zhu, and Z. Jia, “Predict the physics-
informed terrain properties over deformable soils using sensorized foot
for quadruped robots”, in Proceedings of the International Conference
on Advanced Robotics and Mechatronics. IEEE, 2023, pp. 330–335.

[18] S. Choi, G. Ji, J. Park, H. Kim, J. Mun, J. Lee, and J Hwangbo,
“Learning quadrupedal locomotion on deformable terrain”, Science
Robotics, vol. 8, no. 74, pp. eade2256, 2023.

[19] F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Bellicoso, and M. Hutter,
“Dynamic locomotion on slippery ground”, IEEE Robotics and
Automation Letters (RA-L), vol. 4, no. 4, pp. 4170–4176, 2019.

[20] M. Focchi, V. Barasuol, M. Frigerio, D. Caldwell, and C. Semini, “Slip
detection and recovery for quadruped robots”, Robotics Research:, vol.
2, pp. 185–199, 2018.
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