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CCTV-Informed Human-Aware Robot Navigation in
Crowded Indoor Environments

Mincheul Kim1, Youngsun Kwon2, Sebin Lee1, and Sung-eui Yoon1

Abstract—Mobile robot navigation in crowded indoor en-
vironments is a challenging task due to the limited sensing
capabilities of onboard sensors. In this study, we propose a mobile
robot navigation framework that utilizes external CCTV data to
address the limitations of local sensors in a crowded environment.
This approach enables mobile robots to navigate safely and
efficiently in complex environments by encapsulating human
movements from CCTVs to anticipate the human impact on the
unclear navigational trajectory of our robot and devise human-
aware paths that mitigate collision risks and minimize social
intrusions. Further, we integrate a deep reinforcement learning
(DRL) algorithm into a generated global path to fine-tune robotic
navigation in human-populated areas, enabling the robot to
learn efficiently and socially acceptable navigation compared to
methods based solely on local sensors. Our experiments further
validate the efficiency of using CCTVs to supplement robots with
constrained sensing across varied sensor capabilities and CCTVs
configurations.

Index Terms—Human-Aware Motion Planning, Task and Mo-
tion Planning

I. INTRODUCTION

SERVICE robots are increasingly common in crowded
indoor environments such as airports, department stores,

and metro stations. However, navigating these environments
is challenging due to their large scale, dynamic conditions,
and the unpredictable behavior of humans [1] [2]. The robot’s
onboard sensors, such as LiDAR and RGB-D cameras, further
complicate the issue, as they offer only localized, limited-range
information, often missing obstacles outside their field of view
(FOV) or cannot detect obstacles behind the objects or around
corners.

While recent studies have tackled various challenges in
robot navigation, including exploration [3], limited FOV [4],
and uncertainty [5], most of these solutions rely solely on
onboard sensors, inheriting their limitations. A more promising
avenue is using external data sources like closed-circuit televi-
sion (CCTV) cameras, commonly found in the environments
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Fig. 1. In this illustration, we demonstrate our navigation framework that
complements a robot’s local sensing (indicated by the blue area) with data
from external CCTVs (shown in different colors). By processing human
movements from the CCTVs, our CCTV-informed planner generates human-
aware global paths (represented by the green dashed line) in complex and
crowded environments. This integrated approach allows the robot to navigate
efficiently and safely around dense crowds and potential obstacles.

where service robots operate. CCTVs are cost-effective, low-
maintenance, and strategically placed, offering real-time visual
data to enhance a robot’s situational awareness. For example,
the robot can avoid exploring areas with unknown dangers
or densely populated areas in advance by accessing CCTVs
information.

Previous studies, including Silva et al. [6], have focused on
predicting human movements using external cameras but have
not explored integrating these predictions with robotic naviga-
tion strategies. Our framework fills this gap by encapsulating
human movements from CCTVs to anticipate human impact
on the unclear navigational trajectory of our robot and devise
human-aware paths that mitigate collision risks and minimize
social intrusions. Further, we incorporate a deep reinforcement
learning (DRL) algorithm into our human-aware global path to
fine-tune robot navigation in human-populated areas, enabling
the robot to learn efficiently and socially acceptable navigation
compared to methods based solely on local sensors (see Fig.1).

The contributions of this study are as follows:
1) We present a unique navigation framework that uses

external CCTV data to enhance robotic navigation in crowded
and dynamic indoor environments.

2) We propose a CCTV-informed global planner that utilizes
human detected movements in CCTVs to overcome onboard
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sensor limitations and create a comprehensive environmental
view facilitating the generation of human-aware global paths.

3) We integrate a deep reinforcement learning network
onto a generated global path to learn efficiently and socially
acceptable navigation policy.

II. RELATED WORK

A. Robot navigation in a crowds

Many studies investigate mobile robot navigation challenges
in crowded indoor settings. A common approach utilizes
hand-crafted rules modeling assumed human behaviors, like
reciprocal velocity [7] or social force [8]. However, these
rules can yield short-sighted paths or freezing robot actions
in dynamic environments and easily fall into local optima in
complex spaces like long hallways. To address the limitations
of traditional algorithms, deep reinforcement learning (DRL)
for navigation has gained much attention. Chen et al. [9]
proposed DRL-based crowd navigation with an attention
mechanism. Everett et al. [10] handled variable humans via
LSTM. Liu et al. [11] used a structural-RNN to model robot-
human interactions. However, DRL-based navigation tends
to be myopic, requires tedious training, and depends on the
training environment [12]. Further, many DRL-based methods
still rely solely on local sensor inputs, thus remaining unaware
of the surroundings beyond their detection range, unable to
take proactive risk-averse actions. In contrast, we propose a
novel approach leveraging external CCTVs to provide compre-
hensive spatial awareness derived from CCTVs, allowing for
predictive path planning and efficient movement in crowded
indoor spaces.

B. Hierarchical path planning

Hierarchical planners are researched for long-term naviga-
tion given spatial constraints in indoor environments. They
combine a global planner generating paths based on prior spa-
tial knowledge using search methods like A* [13] or RRT [14]
and a local planner that follows the path while avoiding ob-
served obstacles. Kastner et al. [15] proposed an intermediate
planner connecting the global and DRL navigation planners
via a waypoint generator. [16] used reinforcement learning to
follow global path waypoints for navigation around people.
However, previous works assumed that the environment is
fully known in advance or that planners immediately reflect
environmental changes, which is invalid in crowded indoor
settings. To address these issues, we propose a global planner
utilizing sparse CCTV data to generate adaptable global paths
integrated with a DRL-based local planner, enabling dynamic
updates to the global understanding of the environment and
leading to more adaptive path planning.

C. Using CCTVs for robot navigation

Recently, video surveillance systems like CCTVs have been
applied to tasks like person re-identification, crowd detection,
abnormality identification, and event detection. The study [17]
detects groups violating social distancing via CCTVs and dis-
patches a robot to warn them. [6] predicted future motion flows

from temporal CCTV data. Ravankar et al. [18] solve dead-
lock situations in crowded alleys using CCTV observations
and graph-based priority queue allocation. Related work [19]
proposed vision-based localization and path planning using
external surveillance cameras indoors. However, it focused on
austere environments without considering dynamic obstacles
like crowds. In contrast, we propose a navigation framework
that integrates CCTV data with human movement analytics
to enable human-aware robot navigation even in crowded
environments.

III. METHODOLOGY

We propose a framework enabling mobile robots to effi-
ciently and safely navigate crowded indoor environments by
integrating external CCTV data to overcome the limitations of
onboard sensors. First, we describe a CCTV-informed global
planner that models the individual space of humans observed
from CCTV data, and generate human-aware global paths by
incorporating social cost consideration (Sec. III-A). Next, we
explain our deep reinforcement learning-based local planner
incorporating the global path (Sec. III-B). Fig. 2 provides an
overview of the framework.

A. CCTV-Informed global planner

This component generates a human-aware global robot path
by incorporating prior static obstacle map data and observed
human data from CCTVs into a path planning algorithm. It
considers the modeled individual spaces and estimated social
costs of observed human to produce collision-free, socially
acceptable paths.

Human identification from CCTVs Within the framework
of our CCTV-informed global planner, the initial step involves
the integration of human detection from CCTVs. We identify
humans within CCTV images by utilizing the YOLO [20],
assigning unique IDs and calculating their positions and ve-
locities. This process serves as a preliminary stage, aiding in
the translation of observed 3D human movements into 2D map
locations through homography transformation [21].

Fused map representation. We define a fused cost map,
mFC , for the CCTV-Informed global path planning, con-
structed by aggregating the global occupancy map, mGO,
and the individual space map, mIS , representing the detected
humans.

The global occupancy map, mGO, is a fixed-resolution
grid map encoding static environment structure and obstacles.
We assume the robot is already given information about the
current environment, such as the global structure and static
obstacles. The individual space map, mIS , contains occu-
pied spaces modeled from the observed human movements.
Previous studies have represented people as predetermined
shapes like circles [22] or grid cells [23]. However, these sim-
plistic representations are inadequate for capturing humans’
complex behaviors and intentions, degrading robot navigation
performance. To enable better navigation, we model dynamic
individual spaces analyzable for path planning by examining
observed human movement.
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Fig. 2. We propose a hierarchical path planning framework that leverages information from external CCTVs to compensate for the limited local sensor view
of robots. The CCTV-informed global planner models individual spaces based on the movements of humans identified from CCTVs and combines this with
the prior global occupancy map. It then generates a human-aware global path based on a fused cost map that incorporates social costs reflecting the impact of
human movements on the robot. The DRL-based local planner uses the global path as a guide to learn a navigation policy that efficiently and safely reaches
the goal.

The individual space model is illustrated in Fig. 3(a). Each
human i in the scene is defined by a position hi = (xi, yi),
a velocity vi, and an orientation θi. To quantify the area
occupied by each human referred to as the individual space
ISi, we adopt the personal space model [24] [25] as a 2D
asymmetric Gaussian distribution. Specifically, ISi(x, y) is
given by an exponential function of the form as

ISi(x, y) = e−(A(x−xi)
2+2B(x−xi)(y−yi)+C(y−yi)

2), (1)

where A, B, and C serve as the coefficients that regulate the
geometric configuration of the individual space and are defined
as

A(θi) =
cos2(θi)

2σ2
+

sin2(θi)

2σ2
s

,

B(θi) =
sin(2θi)

4σ2
− sin(2θi)

4σ2
s

,

C(θi) =
sin2(θi)

2σ2
+

cos2(θi)

2σ2
s

.

(2)

The value of σ is determined by the facing orientation θi and
can assume one of two variances: the front variance σh or the
rear variance σr. The respective values for σh, σs, and σr are
defined as σh = max(2vi, 0.5), σs =

2
3σh, and σr = 1

2σh.
Finally, the individual spaces for all observed humans are

collectively represented in an individual space map mIS , as
depicted in Fig. 3(c).

Global path planner with social cost This component
produces a human-aware global path that is both collision-free
and socially acceptable. It leverages precomputed individual
spaces obtained from CCTVs information and incorporates a
social cost function into the path planning process.

We propose using a variant of A* algorithm [13] with a
new cost function as follows:

F (n) = G(n) +H(n) + SIS(n), (3)

where n represents a grid cell in the fused cost map mFC .
G(n) is the cost from the start point to n, H(n) is a heuristic
function that is a conservative approximation of the remaining
cost to the goal (e.g., the Euclidean distance), and SIS(n)
denotes our newly-introduced social cost function.
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Fig. 3. These figures demonstrate the key elements of the CCTV-Informed
global planner. (a) displaces an individual space (IS) centered at (0, 0)
with orientation θ = 235◦ and velocity v = 3m/s. (b) depicts an indoor
environment with a robot and moving humans. The robot’s sensing range is
in semi-transparent blue. People on CCTV and their movements are labeled
in red. (c) shows an individual space map mIS integrating all ISs, enclosed
by red curves. (d) shows calculated human-aware global path (green dots) by
our CCTV-Informed global planner using a fused cost map mFC . Regions
in mIS assigned social costs from SIS (numbers below IS labels).

The social cost function, SIS , quantifies the impact of
human movement on the robot’s path-planning decisions. For
this, we introduce a metric called the Intention Alignment
Score (τj):

τj =
v⃗r→g · v⃗r→hj

|v⃗r→g||v⃗r→hj
|
, (4)

where v⃗r→g represents the robot’s “intention” , defined as a
goal-oriented vector from its current position towards its goal.
v⃗r→hj

refers to the relative velocity vector of the j-th human
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compared to the robot. The higher the τj , the more closely
the v⃗r→hj aligns with the robot’s intention v⃗r→g . A high τj
implies that the robot is more likely to avoid collisions and
other negative interactions, and humans are more likely to feel
comfortable and safe around the robot.

Based on τj , we define our social cost function SIS(n):

SIS(n) =

{
γ1(1− τj), if n ∈ ISj

0, else,
(5)

where γ1 is a weight factor set to 0.5, and ISj is the j-th
human’s individual space in mIS .

Fig. 3(d) shows a human-aware global path where obstacles
block the robot’s view of its goal and humans. Utilizing CCTV
data, the robot obtains the movements of humans 1, 2, and
3. High SIS costs, driven by humans 2 and 3, discourage
the right-side corridor path. Instead, the robot selects a path
through the central corridor near human 1, as its movement
aligns with the robot’s intention, yielding a lower SIS cost.
This path ensures efficient and safe navigation to the goal.

Our global path planner recalculates its path at fixed inter-
vals (set as every 2 timesteps), efficiently adapting to environ-
mental changes. This ensures both computational efficiency
and the selection of socially acceptable paths aligned with
human movements.

B. Deep reinforcement learning based local planner

This component uses a deep reinforcement learning network
to achieve robust mobile robot navigation. The navigation pol-
icy is optimized using a deep reinforcement learning algorithm
considering the robot’s observation, state, and the human-
aware global path planned in Sec. III-A.

Network architecture. Our DRL-based local planner net-
work is shown in Fig. 4. Below is the system architecture with
details:

• State space: The state at each discrete timestep t com-
prises three primary elements. Initially, Lt represents
sensor data as a vector of 20 minimum readings from
cone-shaped bins aggregating 3D point-cloud sensor in-
puts. Additionally, the goal state gt and the robot state
rt include the robot’s relative position and orientation
toward its goal alongside its current velocities. Lastly,
Wt denotes waypoints in polar coordinates, derived from
a human-aware global path from Sec. III-A to enhance
decision-making under constrained or unclear local sen-
sor conditions.

• Action space: A non-holonomic mobile robot’s motion
involves linear velocity (vt) and angular velocity (ωt),
both of which are limited. vt ranges from 0 to a maximum
of vmax, while ωt ranges from wmin to wmax.

• Training detail: The network is modeled by Soft Actor-
Critic (SAC) algorithm [26] and trained for 1 × 108

timesteps using a learning rate of 3×10−4. It incorporates
a discount factor (γ) of 0.99, a replay buffer of 1× 106,
and a batch size 512. The target update coefficient (τ ) is
set to 0.05, automatically tuning the entropy coefficient
(α) to balance exploration and exploitation effectively.
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Fig. 4. This figure illustrates a neural network architecture used for deep
reinforcement learning (DRL) to develop a navigation policy for a robot. The
network takes as input sensor data, a goal state, a robot state, and waypoints
from a human-aware global path. It processes these inputs to output an action
as linear and angular velocity commands.

Reward function for global guidance. The human-aware
global path is critical in compensating for the limited sensors
of a robot in order for it to reach its goal in complex and
crowded environments. In this context, we introduce a reward
function to enhance the robot’s ability to navigate towards its
goal. This function incorporates waypoints from the global
path, aiding the robot’s adaptation to environmental changes.
We designed the reward function as follows:

rt = Rt
nav +Rt

wpt, (6)

Rt
nav =


rg, if dtr,g < ηD

rc, if collision
dt−1
r,g − dtr,g, otherwise,

(7)

where the navigation reward, Rnav , is determined as follows:
a positive reward rg is given when the robot’s distance to the
goal, dr,g , is below the threshold ηD set as 0.3 meters. A
collision incurs a negative reward rc. Otherwise, the reward
encourages the robot to move closer to the goal. During
training, rewards for goal achievement and collision were set
at +100 and -100, respectively.

The waypoint reward, Rt
wpt, encourages the robot to closely

align with the global path, thereby improving navigation
performance. First, we identify a subset of waypoints as valid
from the waypoint set Wt closer to the goal than the robot’s
current position. This ensures that the waypoint reward only
influences the robot’s navigation behavior in a way consistent
with its goal. Then, the waypoint reward is determined by
measuring the change in distance (∆dr,wpt) between the robot
and each valid waypoint from time t− 1 to t, formalized as:

Rt
wpt =

γ2
Nwpt

Nwpt∑
i=1

∆dr,wptm , (8)

where Nwpt is the number of valid waypoints, and
∆dr,wptm = dt−1

r,wptm −dtr,wptm denotes the change in distance
to the i−th valid waypoints between consecutive time frames.
γ2 is the weight factor taking a value of 2 if dtr,wptm > dt−1

r,wptm
and 1 otherwise. This weight factor influences the magnitude
of the reward and determines whether the robot is attracted to
or repelled by each valid waypoint.
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IV. EXPERIMENT

A. Implementation detail

To validate our approach, we employed a combination of
two simulators: Gazebo [27] and PedSim [28]. The gazebo
simulated a 3D indoor environment with strategically po-
sitioned CCTVs monitoring extensive areas and high-traffic
locations. PedSim simulated crowd behavior, challenging robot
navigation with local sensors and emphasizing the need for
external sources like CCTVs. Scenarios included detouring
congested areas, moving with pedestrian flows, and resembling
complex real-world warehouses, detailed in Fig. 5. Our robot,
a p3dx-pioneer equipped with a Velodyne-HDL32 LiDAR,
captured data over a 180◦ field with a maximum range of
10m. Each episode randomly assigned start and goal locations,
ending upon collision, goal attainment, or after 500 timesteps.

Robot

CCTV 1

Congested area
CCTV 2

CCTV 3

(a) Congestion

CCTV 3
1

2 73

5

6
4

CCTV 2

CCTV 1

Robot

(b) Circulation

Robot

CCTV 2
CCTV 3

Entrance

Entrance

Entrance

CCTV 1

(c) Warehouse

Fig. 5. This figure summarizes the three evaluation scenarios: congestion
with people beyond the robot’s sensor, circulation with human flows, and a
warehouse with diverse human groups and multiple goals.

B. Baselines and evaluation metrics

We compared our model with representative local sensor-
based methods for robot navigation, including DWA [29],
adapted DRL [3], and the recent socially-aware DRL-VO [30].
Our proposed method is CIGP-DRL (CCTV-informed global
planner with deep reinforcement learning), while CIGP-DWA
sequentially follows paths generated by CIGP. An ablated
model, SimpleGP-DRL, combines DRL with a primary A*-
based global planner without considering individual space and
social costs.

Evaluation metrics included navigation quality metrics like
success rate (SR), average velocity (Vavg), and heading change

TABLE I
NAVIGATION RESULTS IN CONGESTION AND CIRCULATION SCENARIOS

SHOW THE BEST AND SECOND-BEST PERFORMANCES.

Scenarios Method SR(↑) Vavg(↑) ωavg(↓) ITR(↓) SD(↑)

Congestion

DWA [29] 68.0 0.83 0.67 0.16 2.38
DRL [3] 69.0 0.69 0.47 0.18 2.19

DRL-VO [30] 73.0 0.77 0.49 0.13 2.47
CIGP-DWA 69.0 0.77 0.40 0.15 2.18

SimpleGP-DRL 75.0 0.89 0.56 0.17 2.24
CIGP-DRL (ours) 79.0 0.88 0.46 0.14 2.74

Circulation

DWA [29] 39.0 0.68 0.35 0.22 1.23
DRL [3] 68.0 0.78 0.59 0.15 1.61

DRL-VO [30] 69.0 0.63 0.46 0.12 2.26
CIGP-DWA 53.0 0.79 0.46 0.19 1.21

SimpleGP-DRL 64.0 0.81 0.49 0.18 1.61
CIGP-DRL (ours) 74.0 0.88 0.45 0.12 2.10

smoothness (ωavg), and social awareness metrics such as
intrusion time ratio (ITR) and social distance (SD) used in
[31] [32] [33]. All metrics were assessed across 100 episodes
to evaluate navigation performance.

C. Experiment result

Congestion scenario. The quantitative analysis of conges-
tion scenarios presented in Tab. I demonstrates that CIGP-
DRL surpasses local sensor-based methods in terms of success
rate and achieving faster and smoother movement. This under-
scores the effectiveness of CCTV-informed global planning
for robot navigation. While DRL-VO exhibits superior social
awareness performance, CIGP-DRL competes closely, demon-
strating its capability to balance navigation efficiency with
social considerations. The results highlight the importance of
leveraging external CCTVs data to overcome the limitations
of local sensor-based navigation approaches.

The qualitative navigation results of the congestion scenario
are shown in Fig. 6. DRL struggled in dense crowds, as local
sensors failed to detect suddenly appearing humans, leading
to collisions due to insufficient reaction time (Fig. 6(a)).
SimpleGP-DRL followed its global path without adapting to
real-time crowd movements, leading to potential collisions in
crowded areas (Fig. 6(b)). DRL-VO aimed to maintain safe
distances but frequently opted for longer paths, compromising
navigation efficiency with slower speeds (Fig. 6(c)). Our
CIGP-DRL, utilizing CCTVs data, navigated around crowds
efficiently and safely by adjusting its path in response to real-
time congestion, showcasing superior navigation in crowded
settings (Fig. 6(d)). This highlights the importance of in-
tegrating external data sources for improved navigation in
environments where the robot’s sensor detection capabilities
are limited.

Circulation scenario. Another quantitative navigation re-
sults from the circulation scenario are presented in Tab. I.
CIGP-DRL achieved the highest navigation performance and
demonstrated safety comparable to DRL-VO. This highlights
the effectiveness of our CCTV-informed planning approach,
which outperforms local sensor-based methods and competes
closely with DRL-VO in maintaining safe human distances,
enhancing navigation quality and social awareness in dynamic
environments.

For example, in Fig. 6(e), DRL struggled to avoid humans
behind a central obstacle due to limited sensor range, failing
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Fig. 6. Trajectory comparisons of different methods under the experimental scenario. The ”S” represents the robot’s and the human’s starting point, and the
star represents the robot’s goal. The blue circles show the robot’s position at 30-timestep intervals, and the empty circles of different colors show the human’s
position. The human’s trajectory, as seen by the CCTV, is shown as a solid line, and the trajectory of the unseen area is shown as a dotted line. For more
details, please see the video.

to predict movements and maintain safe distances, resulting
in inefficient navigation. In Fig. 6(f), SimpleGP-DRL collided
with humans because its rigid global path did not factor in
the movement of people obstructed by the central obstacle.
DRL-VO exhibits inefficient navigation performance by overly
cautious behavior towards approaching humans, leading to
detours and avoidance actions that result in a less efficient
path (Fig. 6(g)). In contrast, CIGP-DRL, initially similar to
SimpleGP-DRL, proactively adjusts its path based on the
social cost calculated from information obtained from CCTV-
3, thereby avoiding northward-moving humans. This method
underscores the contribution of using external CCTVs data for
risk assessment and proactive path optimization, ensuring safe
and efficient navigation.

Warehouse scenario. Fig. 5(c) showcases a simulated ware-
house designed to reflect real-world complexities, including
diverse obstacles and humans. The robot’s objective involved
navigating multiple subgoals toward a final destination, chal-
lenging its adaptability to environmental changes and hu-
man interactions. It faced real-world-like scenarios of human-
obstructed paths, requiring quick directional adjustments for
goal alignment, and necessitated robust navigation amid fre-
quent sensor blockages.

Tab. II demonstrates that our CIGP-DRL significantly out-
performed local-sensor based DRL regarding navigation per-
formance and safety. Specifically, Fig. 7(a) and 7(b) compare
the responses to scenarios where humans obstructed passage
to subgoal 1 without a detour path available. Relying solely

on local sensors, DRL struggled with avoiding humans as
immediate obstacles but failed to anticipate and evade further
humans, leading to collisions. In contrast, at a reduced social
cost, CIGP-DRL recalculates a global path through the crowd
based on the movement direction of humans blocking the
passage. This strategy ensures that the robot navigates in
alignment with human movements, thereby facilitating a more
efficient path, as depicted in Fig.8(a).

Upon reaching subgoal 2, the robot faced the challenge of
significantly adjusting its path to the final goal, as shown in
Fig. 7(c) and 7(d). Limited by its dependence on the sensor,
DRL struggled to alter its course to avoid collisions, especially
with unpredictably moving humans beyond its sensor range.
Conversely, CIGP-DRL, leveraging CCTV data for global
path planning, enabled smooth path adjustments and avoided
potential human approaches, overcoming sensor limitations
and ensuring progress toward the final goal.

TABLE II
NAVIGATION RESULTS IN THE WAREHOUSE SCENARIO. THE BEST

PERFORMANCE IS DENOTED IN BOLD.

Scenarios Method SR(↑) Vavg(↑) ωavg(↓) ITR(↓) SD(↑)

Warehouse DRL [3] 3.0 0.73 0.80 0.09 0.68
CIGP-DRL (ours) 33.0 0.84 0.66 0.17 0.77

D. Evaluating Sensor Compensation and Scalability with
CCTV Integration

1) CCTVs compensation for sensor variability: We con-
ducted experiments to assess how our method uses high-level
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Fig. 7. Trajectory evolution comparisons of different methods in challenging
situations within the warehouse scenario. As the robot moves towards subgoal
1, its path is blocked by the crowd (Obstruction). Upon reaching subgoal 1,
the robot has to navigate through the crowd and make a sharp path transition
to pass through subgoal 2 en route to the final goal (Transition).

external information to offset the constraints of local sensors.
The evaluation was set in the circular scenario (Fig. 5(b)), fo-
cusing on sensor limitations amidst varied human movements.
We compared DRL [3], reliant solely on local sensors, against
our CIGP-DRL, incorporating a human-aware global path. We
varied the robot’s sensing range from 10 meters down to 2
meters.

The results are shown in Fig. 9. As the sensor range
decreased, DRL’s success rate and travel time deteriorated
significantly, reflecting the challenges posed by limited data
access. However, our CIGP-DRL retained robust performance,
confirming its effectiveness in tapping external data to coun-
teract local sensor shortcomings.

2) Scalability with varied CCTVs Inputs: Through the
systematic adjustment of CCTV configurations from none to
omnipresent coverage in the circulation scenario, this study
investigates how varying levels of environmental uncertainty
affect our CIGP-DRL framework’s performance, marking a
transition from complete uncertainty to full environmental
awareness.

Findings in Tab. III reveal a significant correlation between
increased environmental information from CCTV data and
improved navigation performance, highlighting our method’s
capacity to adaptively reduce navigational uncertainties and
enhance efficacy as environmental clarity escalates, thereby
demonstrating its robust scalability and effectiveness across
varying degrees of environmental uncertainty.

Fig. 9. Evaluation of DRL and CIGP-DRL results according to different robot
sensor ranges in the circulation scenario. The bar plot shows the success rate,
and the line plot shows the navigation time in case of success. CIGP-DRL,
which utilizes a human-aware global path, achieves a higher success rate and
lower navigation time than local-sensor based DRL.

TABLE III
NAVIGATION RESULTS WITH DIFFERENT CCTVS SETUP.

Number of CCTVs 0 1 2 3 ∞
Success rate (SR) 64.0 68.0 70.0 74.0 81.0

V. LIMITATIONS AND FUTURE WORK

This section identifies our study’s limitations and future
research directions. Key challenges include the diminished
effectiveness of our method in dense crowds, such as in
busy transit hubs or emergency evacuations, where occlusions
and complex group dynamics hinder individual tracking. Our
simulations may not fully capture the stochastic nature of
human behavior, leading to potentially unrealistic predictions.
Future efforts will aim to validate our method using advanced
simulations or real-world data, improve global path planning
through analysis of group movement patterns [34], and develop
risk assessment models for unexplored areas [35] [36]. We will
also enhance real-time data processing and develop strategies
for optimal CCTV placement to maximize environmental
coverage.

VI. CONCLUSION

In this study, we introduce a mobile navigation framework
that leverages external CCTV data, addressing the constraints
of local sensors in crowded indoor environments. Our CCTV-
Informed global planner employs social costs to calculate
human-aware global paths that circumvent unseen risks like
congestion. This social cost is derived from the individual
spaces formed from human movement and the alignment of the
robot’s intentions with those of humans. A deep reinforcement
learning model then incorporates this global path with the
robot’s state to deduce an optimal navigation policy. Empir-
ically, our approach outperforms predominantly local sensor-
dependent methods, both quantitatively and qualitatively. Our
experiments further validate the efficiency of using CCTVs
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Fig. 8. Navigation results of CIGP-DRL in a warehouse environment are as follows: (a) despite the pathway to subgoal 1 being obstructed by the crowd, the
robot navigates by utilizing a global path that considers the direction of the crowd’s movement, obtained from CCTVs, thereby allowing it to follow behind
the crowd. (b) from subgoal 2 to the final goal, despite the need for abrupt direction changes, the robot executes smooth transitions using the global path and
moves along a preemptive detour path, considering the risk of approaching humans.

to supplement robots with constrained sensing across varied
sensor capabilities and CCTV configurations.

Building on the discussions and future work outlined, future
research will concentrate on enhancing the navigation strategy
with different human behavior modeling and extending the
framework’s applicability to real-world scenarios.
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