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Abstract— Real-time remote manipulation requires careful
operations by a user to ensure the safety of a robot, which is
designed to follow user’s commands, against dynamic obstacles.
However, a user may give commands to a robot at the risk
of collision with dynamic obstacles due to a user’s unfamiliar
control ability or unexpected situations. In this paper, we
propose a risk-aware user command adjustment method to
avoid potential collision with dynamic obstacles. Our method
consists of a network that predicts the risk of dynamic obstacles
and another network that synthesizes commands to avoid
obstacles. Based on the predicted risk, our method decides an
adjusted command between a user command and a command
to avoid collisions. We evaluate our method in problems that
face collisions with dynamic obstacles when following given
commands and in problems with static obstacles. We show
that our method improves safety against the risk of dynamic
obstacles or follows user commands when there is no risk. We
also demonstrate the feasibility of our method using the real
fetch manipulator with seven-degrees-of-freedom.

I. INTRODUCTION

Real-time remote manipulation has been primarily used
in special sites (e.g., medical facilities or nuclear power
plants) that require sophisticated or hazardous work [1],
[2]. Recent studies [3], [4], [5] have expanded the scope
of remote manipulation to environments around us, such
as convenience stores (e.g., Telexistence1) and homes. In
environments around us, there are various obstacles, both
static and dynamic, and avoiding such obstacles is a critical
issue for safe remote manipulation.

Recent proposed inverse kinematics (IK) methods for
real-time remote manipulation, e.g., CollisionIK [6] and
RCIK [7], handle static and dynamic obstacles to find
collision-free joint configurations from consecutively given
user’s commands. These IK approaches have the character-
istic of following a user’s command, and thus the user’s
judgment on giving proper commands also plays a big role
in obstacle avoidance. However, a user makes judgments
by observing a restricted environment through a camera,
and thus there is a possibility that the user may encounter
unexpected situations for giving commands in remote ma-
nipulation (Fig. 1).

In the case of static obstacles, we can keep the safety
by naı̈vely stopping a robot, even if the user’s command
has a possibility of causing a collision. However, it is
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Fig. 1. This shows the visualization of the user monitor screen for remote
manipulation. In the visualized situation, the user gives commands (red
arrow) to the robot to move a water bottle (orange boxes) from the dotted
magenta box to the direction of the magenta arrow, and a person suddenly
appears in the camera’s field of view (blue arrow). Our method predicts
high risk of collision, which is expressed between 0 and 1, and for safe
remote manipulation, it adjusts the user’s command accordingly to move
the robot away from the obstacle (green arrow). The cells of the occupancy
grid are colored according to the z-axis value.

difficult to guarantee the safety against dynamic obstacles
with uncertain motion [8], [9]. To increase the probability
of avoiding dynamic obstacles, it is necessary to identify the
danger of dynamic obstacles in advance and take action to
avoid them. For safe remote manipulation, we aim to adjust
user’s commands to avoid obstacles according to the risk
of dynamic obstacles. Conversely, when there is no risk of
dynamic obstacles, a robot follows the user’s command so
as not to interfere with the user’s desired tasks, e.g., picking
an object on a table.
Main contributions. In this paper, we present a risk-aware
user command adjustment method to adjust risky commands
that can cause collisions with dynamic obstacles due to a
user’s unpredictability or carelessness (Fig. 1). We suggest
a risk prediction network (RPN) and an obstacle avoidance
command network (OACN) to minimize the delay of remote
operation and to handle sensor noise, which is the difficulty
of a real environment. Using two networks, our method
predicts the risk of dynamic obstacles and then adjusts a user
command to avoid obstacles depending on the predicted risk.

We model the risk of dynamic obstacles utilizing the
proximity between robot links and dynamic obstacles, and
the RPN learns the modeled risk values with consecutive
robot state and obstacle information (Sec. IV-C); we use
occupancy grids updated from sensor data in real-time to
grasp obstacle information. Based on the predicted risk from
the RPN, our method decides an adjusted command between
a user command and the output of the OACN. We train the
OACN via reinforcement learning so that the final adjusted
command avoids obstacles when the predicted risk is high,
otherwise, we follow the user’s commands (Sec. IV-B).



We evaluate our proposed method in environments includ-
ing dynamic obstacles varying velocities and environments
including only static obstacles (Sec. V-A). We show that
our method improves the safeness in dynamic environments
where a collision occurs when naı̈vely following given com-
mands. We also show that our RPN robustly handles sensor
noise by predicting the risk of dynamic obstacles close to
zero in static environments. Lastly, our method shows a fast
computation time of 3ms, and we verify the feasibility of our
method in real environments (Sec. V-B).

II. RELATED WORK

In this section, we introduce inverse kinematics methods
related to remote manipulation and motion planning ap-
proaches for dynamic obstacle avoidance.

A. Inverse kinematics for remote manipulation

In remote manipulation, a user can easily control a manip-
ulator by giving a command to the manipulator’s end-effector
in the Cartesian space. Accordingly, inverse kinematics (IK)
techniques have been widely used in remote manipulation to
compute a joint configuration for the user command [10],
[11], [12]. Conventional IK approaches (e.g., IKfast [13]
and Trac-IK [14]) focus on finding a joint configuration that
matches the given end-effector pose. However, to synthesize
feasible joint configurations for consecutively given user
commands, it is necessary to consider several constraints,
such as collision, continuity of joints, and kinematic singu-
larity [7].

RelaxedIK [15] handles several constraints using an
optimization-based technique and uses a neural network for
real-time remote manipulation to quickly avoid self-collision.
Extending RelaxedIK, CollisionIK [6] avoids static and dy-
namic obstacles by adding a collision avoidance term that
quickly computes the shortest distance between convexified
robot links and obstacles using the QuickHull algorithm.
However, this method has difficulty coping with sensor noise
in a real environment.

RCIK [7] also handles static and dynamic obstacles,
while overcoming the difficulty of a real environment by
utilizing deep learning with an occupancy grid via real-
time updates based on probability [16]. In addition, RCIK
accurately follows given commands through a sampling-
based IK approach. Although the high accuracy is one of the
important factors in remote manipulation, it requires a user’s
proper and fast judgment to avoid collisions of robot links,
especially related to the end-effector. Since users cannot
always make perfect decisions in a timely manner due to
carelessness or unforeseen circumstances, we aim to adjust
user commands to reduce the risk of collision for safe remote
manipulation.

B. Dynamic obstacle avoidance

Motion uncertainty of dynamic obstacles threatens safe
robot movement and makes it difficult to plan a collision-free
robot motion for reaching a target position [17]. Classical
motion planning approaches [8], [18], [19], [20] handling

dynamic obstacles perform iterative replanning in a short
time considering the sensing cycle. To overcome the short
replanning time, Vannoy et al. [8] suggest a method that
generates multiple initial trajectories to a target configuration
and then iteratively updates the trajectories. Hauser et al. [18]
present an adaptive time-stepping approach for replanning,
considering responsiveness, safety, and completeness of plan-
ning results. In addition, Park et al. [19] present GPU-
based parallel processing to accelerate optimization-based
replanning.

Recently, learning-based approaches [21], [22], [23] have
been studied to quickly replan a trajectory for reaching
a target position using a fast inference time of a neural
network. Furthermore, several works [24], [9] construct a
learning-based safety layer that iteratively checks collisions
on a planned trajectory and modifies the collision part of the
trajectory to be safe.

While these methods consider avoiding obstacles without
distinction between static and dynamic, we mainly consider
the risk of dynamic obstacles that are difficult to ensure
safety in remote manipulation. Since we can ensure safety
from static obstacles by stopping a robot, we aim to follow
user’s commands when there is no danger of dynamic
obstacles to avoid disturbing the user’s work progress, e.g.,
placing an object on the bookshelf. Hence, our method
predicts the risk of dynamic obstacles and determines the
final command between the user’s command and a command
to avoid obstacles according to the predicted risk.

III. BACKGROUND

A. Problem definition

Our goal is to perform safe remote manipulation in en-
vironments including static and dynamic obstacles. In this
paper, we deal with real-time remote manipulation in which
a user consecutively gives a command, ∆xu ∈ R6, to the
end-effector in the Cartesian space. ∆x indicates the amount
of movement for the end-effector, and a target end-effector
pose, xu, from a user command is calculated by adding a
current end-effector pose, xcur, and ∆xu; xu = xcur +∆xu. For
xu, a real-time IK solver, such as RCIK [7], synthesizes
a joint configuration, qu, considering various constraints,
e.g., continuity of joints, collision avoidance, and kinematic
singularity. In this paper, we mainly consider a redundant
manipulator with multiple joint configurations for one end-
effector pose; a redundant manipulator has greater than six
degrees of freedom (DoF).

In real-time remote manipulation, a user’s decision-making
greatly affects the process of avoiding obstacles since a robot
is designed to follow the user command ∆xu. In the case of
static obstacles, we can maintain the safety from collisions
by naı̈vely stopping a robot, since we can check whether joint
configuration for xu is collision or not [7]. On the other hand,
it is more difficult to avoid collision with dynamic obstacles
that have even uncertain movement. Unfortunately, a user
may give commands that lead to collisions due to the user’s
unfamiliar control skills or unexpected situations. Therefore,
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Fig. 2. This shows the overall system flow of our approach.

there is a strong demand to protect a robot from risky
commands that can cause collision with dynamic obstacles.

In this paper, our problem is to cope with the danger
of dynamic obstacles where adjusting the user command is
essential. To solve our problem, we have to figure out the
risk of dynamic obstacles in advance, and adjust the user’s
commands to avoid obstacles considering the risk of dynamic
obstacles. When no risk of dynamic obstacles is expected,
we simply follow user command.

In addition, we handle the noise problem of real sensor
data to apply our method on a real environment and aim
to solve our problem as quickly as possible to reduce
the delay of real-time remote manipulation; in real-time
IK solvers [15], [6], [7], the time interval, ∆t, between
commands is within 30ms according to the sensing cycle.

B. Reinforcement Learning

We use reinforcement learning to solve our problem
by formulating our problem as Markov decision process
(MDP) defined by a tuple: (S,A,P,R,γ), where S, A, P ,
R, and γ ∈ [0,1) are the state space, the action space, a
transition function, a reward function, and a discount factor,
respectively [25]; more details can be found in Sec. IV-B.
We find an optimal policy, π∗ : S → A, that maximizes a
discounted cumulative reward, G, via the soft actor-critic
(SAC) [26] framework. G is denoted as ∑

T
t=0 γ tE[R(st ,at)+

αH(π(·|st))], where st and at are the subset of S and A,
respectively, at each time step t ∈ [0,T ], and α and H are
regulation coefficients for controlling the stochasticity of π

and the entropy of π , respectively.

IV. APPROACH

In this section, we give an overview of our method and
then describe our approach in detail.

A. Overview

To solve our problem, we present a risk-aware user com-
mand adjustment method using deep learning. We adopt
a learning-based approach to quickly adjust a risky user
command for dynamic obstacles and cope with sensor noise.
Fig. 2 shows our system flow. Our method consists of
two kinds of networks: risk prediction network (RPN) and
obstacle avoidance command network (OACN).

The RPN predicts the risk of dynamic obstacles, ρ̂ ∈
[0,1], in environments including static obstacles (Sec. IV-
C). To identify the risk of dynamic obstacles, the RPN
uses consecutive robot state information and occupancy grids
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Fig. 3. This shows the structure of obstacle avoidance command network
(OACN); note that both networks for actor and critic do not share features.
The encoder is a 3-D convolutional network following the obstacle feature
extractor of RCIK [7].

updated in real-time from sensor data. According to the
predicted risk ρ̂ , our method decides an adjusted command,
∆xa, between the user command ∆xu and a command, ∆xπ ,
generated by OACN:

∆xa = (1− ρ̂)∆xu + ρ̂∆xπ . (1)

The OACN is learned via reinforcement learning to find
an optimal ∆xπ considering the predicted risk, the user
command ∆xu, current robot state, and obstacle information
(Sec. IV-B); note that an optimal ∆xπ is computed in a way
that ∆xa gets the maximum reward. Finally, to find a joint
configuration, we give the adjusted command ∆xa to a real-
time IK solver considering collision avoidance.

B. User command adjustment

We decide an adjusted command ∆xa by combining a user
command ∆xu and a command ∆xπ generated by the OACN
according to the predicted risk ρ̂ (Eq. 1). We learn the OACN
through reinforcement learning so that ∆xa avoids obstacles
at high ρ̂ and follows a user’s command at low ρ̂ . To achieve
the desired ∆xa, we introduce our MDP setup based on ρ̂ .

We learn our policy π , as the OACN, to maximize a
discounted cumulative reward G for ∆xa. Our policy π

generates at ∈ R6 from the current state st (Fig. 3), and we
synthesize ∆xπ from at :

∆xπ = diag(λλλ pos,λλλ ori)at , (2)

where each element of at has a value between −1 to 1, and
diag(λλλ pos,λλλ ori) is a diagonal matrix to control the amount
of movement of the end-effector during the short ∆t; we
set λλλ pos and λλλ ori to [0.01,0.01,0.01] and [0.05,0.05,0.05],
respectively.

We define st as a tuple: (ρ̂,∆xu,x
pos
q ,zenv), where xpos

q ∈
Rd×3 is the 3-dimensional (D) position for d joints, and zenv
is an obstacle feature compressed from an occupancy grid,
O. We extract zenv from a pre-trained encoder, which is part
of the variational autoencoder (VAE) [27].
Risk-based reward function. We introduce our reward
function based on the predicted risk ρ̂ to synthesize the
desired ∆xa. We define the reward function so that when
ρ̂ is high, ∆xa moves away from obstacles, and when ρ̂ is
low, ∆xa gets closer to ∆xu:

R=

{
(1− ρ̂)Rmatch + ρ̂Robs, if IK solution exists,
R f ail , otherwise,

(3)
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Fig. 4. This shows our risk prediction network (RPN) for dynamic
obstacles. The RPN recurrently takes joint positions xpos

q and an occupancy
grid difference ∆O. We apply VoxNet [28] to extract the feature of an
occupancy grid difference ∆O. Furthermore, we utilize the gate recurrent
unit (GRU) [29] to preserve previous robot state and obstacle information.

where Rmatch is to match ∆xu, and Robs is to avoid obstacles.
When there is no IK solution for ∆xa due to collision or
inaccessibility, we set R to R f ail ; we set R f ail to −10.

We compute Rmatch and Robs by comparing ∆xu and ∆xa.
Considering ∆t, the difference between ∆xu and ∆xa is very
small. To amplify the difference, we apply a normalization
function to Rmatch and Robs. Also, it can control the relative
importance of the two terms. We design a normalization
function in the form of a cubic function: F(v,www) = w0(w1v+
w2)

3. Although the value of a cubic function can increase
infinitely, we can amplify the value to a limited range, since
the difference between ∆xu and ∆xa is bounded.

Robs indicates whether the end-effector pose xa from ∆xa
is further away from obstacles than xu from ∆xu:

Robs = F(distxa −distxu ,wwwobs), (4)

where dist is a distance between obstacles and the end-
effector; we set wwwobs to [1/3,200,0]. We simply use the
distance with the end-effector instead of the whole arm. This
is because a collision-free IK solver [6], [7] has already taken
into account a distance between the whole arm and obstacles.
Furthermore, the distance for the whole arm makes it difficult
to converge the policy π since it is not constant due to the
various solutions for a given command.

Rmatch represents the difference between ∆xu and ∆xa:

Rmatch = F(epos +λmatcheori,wwwmatch), (5)

where epos and eori are the position and orientation error [14]
between ∆xa and ∆xu, and λmatch is a constant to calibrate
different units of position (m) and orientation (rad); we set
wwwmatch to [−1,100,−2] and λmatch to 0.17, as used in [12];

C. Risk prediction for dynamic obstacles

We aim to quickly predict the risk of dynamic obstacles in
environments that contain both static and dynamic obstacles.
To this end, we model the risk of dynamic obstacles, ρ , and
present a risk prediction network (RPN) that learns ρ from
consecutive robot state and obstacle information (Fig. 4).
To figure out dynamic obstacles, the RPN recurrently takes
an occupancy grid difference, ∆O, between Ot and Ot−1,
motivated by the work of Villegas et al. [30] as the optical
flow estimation method using an image difference.

Ideally, using the occupancy grid difference would remove
the information on static obstacles, but in reality, it is difficult
to obtain information on dynamic obstacles due to sensor
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Fig. 5. (a) shows an example of a randomly generated obstacle environ-
ment. Gray boxes are static obstacles, and the orange box is a dynamic
obstacle. The green arrow indicates the moving direction of the dynamic
obstacle. (b) shows the occupancy grid difference ∆O between Ot and Ot−1
constructed from sensor data for (a). Each cell in O is represented as 1
if there is an obstacle or 0 otherwise. Therefore, in the occupancy grid
difference, 1 (blue boxes) and −1 (red boxes) indicates newly detected and
disappeared obstacles, respectively. From the occupancy grid difference, we
can see the moving direction of the dynamic obstacle, but the noise data
due to sensor noise occurs near static obstacles (dotted black circles).

noise. Even though an occupancy grid O is updated by the
probabilistic rule to reduce sensor noise, it cannot completely
eliminate sensor noise near static obstacles (Fig. 5). There-
fore, we learn the RPN from a dataset including sensor noises
to cope with the sensor noises; we give the Gaussian noise
to sensor data and set the standard deviation to 0.008.
Modeling of the risk for dynamic obstacles. Most of the
approaches [31], [32], [6] dealing with dynamic obstacles
have used a distance between a robot and the obstacles and
considered their moving direction and velocity. Inspired by
these methods, we model the risk of dynamic obstacles ρ

as the proximity, proxdyn
q , between robot links and dynamic

obstacles, and its amount of change. proxdyn
q is computed

from the distance between spheres surrounding the robot
links and dynamic obstacles [33], [12]. When a robot is close
to dynamic obstacles, proxdyn

q has a large value. The risk of
dynamic obstacles ρ is represented as:

ρ = σ

(
max

(
proxdyn

qt +λρ

N

∑
i=1

(proxdyn
qt−i+1

− proxdyn
qt−i

)/i,0
))

,

(6)
where λρ is a weight for the change of proxdyn

q , and N is the
number of commands to consider changes in proxdyn

q ; we set
λρ to 2.0 and N to 3. Also, σ(v) = tanh(v) is to represent ρ

between 0 to 1 for easily computing ∆xa between ∆xu and
∆xπ (Eq. 1).

D. Training details

We train the OACN via reinforcement learning using the
SAC [26] algorithm and the RPN via supervised learning by
gathering learning data during the training of the OACN.
We prepare three kinds of obstacle scenes, including 1)
static obstacles, 2) dynamic obstacles, and 3) both static and
dynamic obstacles.

Each scene has box-shaped obstacles with random sizes
and positions and has no more than five fixed obstacles and
no more than two dynamic obstacles (Fig. 5(a)). Dynamic
obstacles have velocity between 0.4m/s and 0.9m/s. The
velocity of the end-effector is less than 0.57m/s considering
λpos and the short ∆t; we set ∆t to 30ms in simulation
environments, considering the sensing cycle.



To recognize obstacles, we construct an occupancy grid
O in real-time using the SuperRay [16]; the resolution of O
is 0.05m and the size of O is 40× 40× 40. Also, we used
the extended sensing range to recognize the entire obstacle
in the Gazebo simulator [34].

We set user commands to move a robot from a random
start configuration, qs, to a random goal pose, xg, since it
is difficult for a user to give commands by intervening the
learning process. We decide a user command by considering
simple linear movement; note that the case where a user
command is not feasible, we do not use it to learn our
networks. Each scene is terminated when a robot reaches
xg, or there is no IK solution for ∆xa due to collision or
inaccessibility.

As one command means one step, we train the OACN
during one million steps with 1× 10−5 learning rate, 4096
batch size, 106 replay buffer size, γ = 0.99, and 0.995 polyak
for target network update. We update the OACN 100 times
every 1,000 steps using the Adam optimizer [35].

We construct the RPN dataset with 60,000 groups, and
each group consists of 16 consecutive joint positions, occu-
pancy grids, and ρs. We train the RPN during 100 epochs
using the adam optimizer with 1×10−5 learning rate and the
mean square error (MSE) loss. In addition, we use the ten
thousand occupancy grids to train the encoder of the OACN.
We train the VAE [27] for the pre-trained encoder with the
same condition as the RPN.

V. EXPERIMENTS

In this section, we describe our experimental setting and
discuss our experimental results. Our experiments are tested
on a machine equipped with a 3.60 GHz Intel i7-9700 K CPU
and an RTX 2080 Ti graphics card. In these experiments, we
use the Fetch manipulator with 7-DoF.

A. Evaluation

To evaluate our method, we prepare two kinds of environ-
ments one consisting of both static and dynamic obstacles
and the other consisting of only static obstacles. In each
environment, we construct 1,000 problems with different
configuration of obstacles and commands (Fig. 5(a)); the
generation method of obstacles and commands is the same
as making the training scenes (Sec. IV-D).

In the environments including both static and dynamic
obstacles, we measure the success rate of avoiding dynamic
obstacles at different velocities of dynamic obstacles. For
reliable evaluation, we extract 1,000 problems that cause
collisions with dynamic obstacles when following given
commands. In contrast, in the environments including only
static obstacles, we extract 1,000 problems where there is
no collision with obstacles when following given command.
In these problems, we measure whether the RPN predicts
the risk of dynamic obstacles close to zero handling sensor
noise that occurs near static obstacles; note that sensor data
for obstacles in all problems include sensor noise.

Table I shows the results of RCIK [7] and our method
on the various problems. RCIK is our baseline approach

TABLE I
RESULTS IN TWO KINDS OF OBSTACLE ENVIRONMENTS: BOTH STATIC

AND DYNAMIC OBSTACLES, AND ONLY STATIC OBSTACLES.

Static and dynamic obs. Static obs.

Velocity range [0.4, [0.5, [0.6, [0.7, [0.8,
-

of dynamic obs. (m/s) 0.5) 0.6) 0.7) 0.8) 0.9]

Success rate (%) Command error (mean, std)

RCIK [7] 0 -

Ours 93 86 83 78 74 6.6 ×10−5, 8.1 ×10−5

Command error: difference between ∆xu and ∆xa (epos +λmatcheori).

TABLE II
THE MEAN AND STANDARD DEVIATION OF DIFFERENCE BETWEEN ρ

COMPUTED FROM EQ. 6 AND ρ̂ PREDICTED BY THE RPN.

|ρ - ρ̂| No obs. Static obs. Dynamic obs. Both

Mean 3.85 ×10−3 8.44 ×10−3 5.89 ×10−2 6.69 ×10−2

Std 3.57 ×10−3 3.21 ×10−2 8.65 ×10−2 1.03 ×10−1

and is used in our method to find a joint configuration for
a given command. Since RCIK is a method of finding a
joint configuration for a given command with high accu-
racy, we can verify that our method appropriately adjusts
user commands according to the risk of dynamic obstacles.
Accordingly, RCIK fails on all problems involving dynamic
obstacles that are set up to collide with dynamic obstacles
when following given commands.

On the other hand, our method achieves a maximum
success rate of 93% and a minimum of 74% throughout
different velocity ranges of dynamic obstacles; the tested
dynamic obstacles are all faster than the maximum velocity
of the end-effector in the uniaxial direction, 0.33m/s. These
results indicate that our method can improve the collision
avoidance rate by adjusting the given commands at risk of the
collision to avoid obstacles in advance based on ρ̂ (Fig. 6(a)),
even though the success rate decreases as the velocity of
dynamic obstacles increases.

As shown in the Fig. 6, when the dynamic obstacle is
moving away from the manipulator or absent, our method
shows accurately following given commands by predicting a
low ρ̂ . Consequently, the difference between ∆xu and ∆xa is
less than 0.0001 on average in 1,000 different static environ-
ments (Table I). This result is thanks to the RPN predicting
a low ρ̂ by robustly handling sensor noise (Table II).

For a more detailed analysis of the RPN, we prepare a
validation set of 2,000 groups each for different types of
obstacles: no obstacles, only static obstacles, only dynamic
obstacles, and both static and dynamic obstacles. Each group
contains 16 consecutive joint positions, occupancy grids,
and ρs calculated using Eq. 6; when there are no obstacles
and only static obstacles, ρs are all zero. We measure the
difference between ρ and ρ̂ predicted by the RPN.

Table II shows the mean and standard deviation (std) of
the difference in the validation set. It shows the largest mean
difference of 0.067 and standard deviation of 0.1 in the
environment including both static and dynamic obstacles.
These are quite small numbers and indicate that the RPN
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copes with the noisy sensor data by predicting a near-zero ρ̂ in a static environment.
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Fig. 7. These figures show tested problems in a real environment. Red
arrow and blue arrow indicate the moving direction of the user commands
and a person, respectively. In both problems, there is a risk of collision since
the moving direction of the user commands and the person intersect. (a) is
that the user gives commands to the robot to pick the black water bottle
(red dotted box) and the person moves to pick the green water bottle (blue
dotted box). (b) is that the user gives commands to the robot to transfer the
water bottle and the person suddenly appears from behind the robot.

can predict a value close to ρ we model. Moreover, the low
difference in the environment containing only static obstacles
(0.008) supports that the RPN can robustly cope with noisy
sensor data.

In conclusion, we demonstrate through various experi-
ments that our method can increase safety from dynamic
obstacles by adjusting a user command to avoid obstacles
based on the risk prediction for dynamic obstacles.

B. Real robot test

We tested our method using the real fetch manipulator
to verify the feasibility of our method in a real world. In
our test environment, mimicking a remote manipulation task
environment, the user observes the robot state and obstacles,
and gives commands to the robot using a keyboard. For the
observation, we installed a camera over the head to check a
wide range and additionally used a camera mounted on the
robot head (Fig. 1).

As shown in the Fig. 7, we tested our method in situations

where the user transmits the commands with a risk of
collision to the robot without recognizing the movement of
a person, since the person suddenly appears in the camera’s
field of view. In these experiments, we showed that our
method can predict the risk of dynamic obstacles from real
sensing data and adjust the user commands at risk of collision
in a safe direction. Our detailed experimental results can be
seen in the attached video.

In addition, we measure the computation time of our
method. Our OACN and RPN takes about 0.6ms and 1.0ms,
respectively, and RCIK takes about 28.5ms on average. As a
result, the computation time of our method is about 32ms on
average including other computational processes, e.g., GPU
allocation (1.5ms). Accordingly, our method can improve
safety without much delay by adjusting the user’s command
with approximately 3ms additional time.

VI. CONCLUSION

In this paper, we proposed a risk-aware user command
adjustment method to avoid the risk of dynamic obstacles
for safe remote manipulation. Our method predicts the risk
of dynamic obstacles and adjusts a user command to avoid
collisions with obstacles according to the predicted risk. We
showed the feasibility of our method towards safe remote
manipulation through various experiments in simulation and
real robot experiments. In future work, we would like to
enhance the basis of risk judgment by adding semantic
information about dynamic obstacles beyond considering the
accessibility of dynamic obstacles using simple sensor data.
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