
Learning Event-guided Exposure-agnostic
Video Frame Interpolation via Adaptive Feature Blending

Junsik Jung1, Yoonki Cho1, Woo Jae Kim1, Lin Wang2, Sung−Eui Yoon1
Korea Advanced Institute of Science and Technology1, Nanyang Technological University2

Background
Exposure-agnostic Event-guided Video Frame Interpolation 

• Restoring a sharp frame from captured frames without knowing the exposure time, using 
events as precise motion cues to restore details lost due to blur and low frame rate.

• Existing methods do not utilize temporal constraints between consecutive frames and 
events
• As a result, when the target timestamp is far from the exposure time, the model lacks reliable 
temporal reference, leading to noticeable degradation in sharpness and consistency.

Proposed Solution
• We propose a temporal-adaptive event-guided VFI framework that addresses the 
limitations of prior blind-exposure methods by explicitly modeling temporal relevance between 
features.
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Overview
• Our framework takes two blurry frames (𝐼𝐼0, 𝐼𝐼1)and the corresponding event stream, along 

with a target timestamp (𝜏𝜏), and synthesizes a sharp frame at that time (𝐼𝐼𝜏𝜏)

Target-adaptive Event Sampling Module (TES)

Target-adaptive Importance Mapping Module (TIM)
• Predicts an importance map 𝜔𝜔𝜏𝜏 that indicates how much each feature should contribute, 

based on temporal proximity and spatial relevance

• Selects events that are temporally aligned with the target timestamp and the (unknown) 
exposure time

• Produces event-conditioned feature representations for each frame
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Adaptive Feature Blending
• The final target feature is obtained by: �𝐹𝐹𝜏𝜏 = 𝜔𝜔𝜏𝜏𝐹𝐹0 + (1 −𝜔𝜔𝜏𝜏)𝐹𝐹1
• A decoder then reconstructs the target sharp frame (𝐼𝐼𝜏𝜏)

Evaluation
Quantitative comparison

Qualitative comparison

O
urs

R
EFID

U
EV

D
+TL

EB
FI

V
ID

U
E

Frame 3 Frame 7 Frame 11 Frame 15

O
urs

R
EFID

U
EV

D
+TL

EB
FI

V
ID

U
E

Frame 3 Frame 7 Frame 11 Frame 15

Analysis

Takeaways
• We propose a learnable framework that effectively incorporates temporal constrains for 

event-guided VFI under blind exposure
• Experiments show that temporal relevance is crucial for robust interpolation in real-world 

settings
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• Synthetic datasets

• Real-world dataset

• As the target timestamp 𝜏𝜏 moves closer to either exposure window, the importance map 𝜔𝜔𝜏𝜏
shifts to assign greater weight to the corresponding frames' features

• This demonstrates that our framework adaptively emphasizes temporally closer and 
spatially relevant information, ensuring stable interpolation across varying 𝜏𝜏
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