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Background

Exposure-agnostic Event-guided Video Frame Interpolation

» Restoring a sharp frame from captured frames without knowing the exposure time, using
events as precise motion cues to restore details lost due to blur and low frame rate.
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Motivation

time

«——> Known & fixed exposure time

< ? > Unknown & varying exposure time

« Existing methods do not utilize temporal constraints between consecutive frames and

events

« As aresult, when the target timestamp is far from the exposure time, the model lacks reliable

temporal reference, leading to noticeable degradation in sharpness and consistency.

Proposed Solution

« We propose a temporal-adaptive event-guided VFI framework that addresses the

limitations of prior blind-exposure methods by explicitly modeling temporal relevance between

features.
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Overview

« Our framework takes two blurry frames (I,, I, )and the corresponding event stream, along

with a target timestamp (7), and synthesizes a sharp frame at that ti
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Target-adaptive Event Sampling Module (TES)
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[ [ : Event Encoder
D : Frame Encoder

l:l : Decoder
: Cross-modal Fusion

« Selects events that are temporally aligned with the target timestamp and the (unknown)

exposure time
* Produces event-conditioned feature representations for each frame
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Target-adaptive Importance Mapping Module (TIM

)

« Predicts an importance map w, that indicates how much each feature should contribute,

based on temporal proximity and spatial relevance
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Adaptive Feature Blending

» The final target feature is obtained by: F, = w.Fy + (1 — w,)F;
» A decoder then reconstructs the target sharp frame (I,)
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Learning Event-guided Exposure-agnostic

Video Frame Interpolation via Adaptive Feature Blending
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Quantitative comparison
» Synthetic datasets
Method PSNR 1/ SSIM 1/ LPIPS |
GoPro-10]) 9+1 5+5 1+9 RandEx
NAFnet [4]+RIFE [11] 23.15/70.736/0.164 21.82/70.665/0.188 18.78 /0.520/0.282 21.05/0.633/0.219
UTI [49] 23.84/70.805/0.205 23.2570.77170.166 20.95/70.640/0.170 22.1770.71470.189
VIDUE [34] 25.3770.818/0.181 26.24 /7 0.835/70.145 2476/ 0.764 7/ 0.146 25.86/0.819/0.152
UEVD [16]+TL [41] 23.40/70.720/70.194 23.31/0.75570.161 26.33/0.866/0.103 23.51/70.75770.164
EVDI [47] 28.18/0.898 /0.052 27.77370.884 /0.067 26.07/0.834 /7 0.084 27.51/70.87770.071
REFID [40] 31.08/0.939/70.077 31.2870.941/70.071 30.27/70.927 /0.078 31.03/0.938 /0.074
EBFI [44] 31.067/0.942/0.072 31.087/0.940/0.071 30.32/0.921/0.087 30.89/0.936/0.075
Ours 33.22/0.960/ 0.050 33.61/0.963/0.042 32.87/0.954/0.048 33.39/0.961/ 0.045
HighREV-10|)
NAFnet [4]+RIFE [11] 25.09/0.805/0.446 2490/ 0.87470.401 26.07/0.897/0.361 25.20/0.844 7 0.402
UTI [49] 26.2270.834/0.371 26.15/70.821/70.395 26.51/70.851/70.395 26.19/0.831/0.398
VIDUE [34] 26.65/70.84770.375 27.4370.860/0.367 25.31/70.841/70.387 26.76 /0.850/0.373
UEVD [16]+TL [41] 26.02/0.844/0.399 27.4170.85470.378 27.7770.861/70.337 27.4370.854/70.373
EVDI [47] 30.26/0.910/70.278 29.7570.896/0.277 27.01/70.839/70.292 20.25/70.887/70.273
REFID [40] 33.60/0.937/0.306 34.18/7/0.938 /0.296 33.38/0.928 /0.260 33.91/0.936/0.292
EBFI [44] 28.23/0.898 /0.362 27.84/70.887/0.342 26.25/0.855/70.279 27.55/70.882/0.333
Ours 35.73/0.948/0.263 36.27/0.949/ 0.250 35.45/70.942/0.248 36.02/0.947 / 0.253
Qualitative comparison
 Real-world dataset
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* As the target timestamp © moves closer to either exposure window, the importance map w;

shifts to assign greater weight to the corresponding frames' features
« This demonstrates that our framework adaptively emphasizes temporally closer and

spatially relevant information, ensuring stable interpolation across varying t
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« We propose a learnable framework that effectively incorporates temporal constrains for
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Takeaways

event-guided VFI| under blind exposure
« Experiments show that temporal relevance is crucial for robust interpolation in real-world
settings
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