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Abstract—In this article, we present a novel localization method
for multiple sources in indoor environments. Our approach can
estimate different propagation paths, including the reflection and
diffraction paths of sound waves based on a backward ray tracing
technique. To estimate diffraction propagation paths, we combine
a ray tracing algorithm with a uniform theory of diffraction model
by exploiting the diffraction properties as propagation paths bend
around the wedges of obstacles. We reconstruct the 3-D environ-
ments and wedges of obstacles in the precomputation phase and uti-
lize these outcomes to generate primary, reflection, and diffraction
acoustic rays in the runtime phase. We localize multiple sources
when identifying the convergence regions of these acoustic rays
based on Monte Carlo localization (MCL). Our approach supports
not only stationary but also moving sources of human speech and
clapping sounds. Our approach can also handle nonline-of-sight
(NLOS) sources and distinguish between active and inactive source
states. We evaluated and analyzed our algorithm in multiple sce-
narios containing obstacles and NLOS sources. Our approach can
localize moving sources with the average of distance errors of
0.65 and 0.74 m in single and multiple source cases, respectively,
in rooms, 7 m by 7 m in size with a height of 3 m; errors are
measured according to the L2 distance between the estimated and
actual source positions. We observed a 130% improvement of the
localization accuracy over the prior work (J.-M. Valin et al.).

Index Terms—Localization, recognition, robot audition, sound
source localization (SSL).

I. INTRODUCTION

A S MOBILE robots are increasingly applied in various
areas, there is considerable interest in developing new and

improved methods for localization. The main goal of localization
methods is to compute the current location of the mobile robot
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with respect to its environment. These techniques commonly
assume that a map of the environment is given, and different
sensors on the robot are used to estimate its position and orien-
tation in the environment. Some commonly used sensors include
GPS, charge-coupled device, and depth cameras, acoustic types,
among others.

Recently, there have been growing attention and new ap-
proaches to the use of acoustic sensors for the localization
of active sound sources, including sonar signal processing for
underwater localization and microphone arrays for indoor and
outdoor scenes. The recent use of smart microphones in com-
modity or Internet of Things devices (e.g., Amazon Alexa) has
triggered interest in better acoustic localization methods [2], [3].

Localization methods with acoustic sensors work by utilizing
various properties of sound waves. Sound waves emitted from
a source are transmitted through a medium and reach the lis-
tener or microphone directly or after undergoing different wave
interactions, such as reflection, interference, diffraction, and
scattering.

Some of the earliest work on sound source localization (SSL)
makes use of the time difference of arrival (TDOA) at the
receiver [4]–[7]. There have been many beamforming [8], [9]
and subspace-based methods [10]–[12] related to localizing a
sound source. These methods only exploit the direct sound and
its direction, i.e., the direction of arrival (DoA) of the sound,
at the receiver and do not take into account reflections or other
wave effects. As a result, they do not provide sufficient accuracy
of SSL for many applications.

Recent techniques have been proposed to localize positions
of sound sources. Some techniques localize the positions under
constraints accumulating the incoming sensor data, correspond-
ing to the DoA of direct sound, measured from different loca-
tions and orientations [13]–[15]. Other techniques have tried to
localize moving sources with intermittent sound signals using
a filtering process [1], [16], [17]. However, they only consider
information of direct sounds and assume that there is no obstacle
between a microphone array and a sound source. Many sound
sources can also be mobile, i.e., a moving source, and they
may not be directly in the line of sight (LOS) of the listener,
known as a nonline-of-sight (NLOS) source, due to obstruction
by obstacles. Therefore, in the NLOS source case, there may
not be much of a contribution in terms of direct sound, and the
accuracy of these method can deteriorate.

There have been efforts to model reflection sound in addition
to direct sound based on ray tracing techniques [18]–[20]. They
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approximate the direct and reflection propagation paths of sound
using acoustic rays generated by a ray tracing technique, and
the source positions are estimated from computing intersections
of acoustic rays. These methods are efficient in localizing the
NLOS source by modeling reflection propagation paths. How-
ever, they assume that there is only one sound source, and,
thus, additional process should be necessary to identify multiple
source positions among many intersections. Moreover, the time
to calculate the intersections increases as the number of acoustic
rays increases; the time complexity of computing intersections
isO(N2)whereN is the number of acoustic rays. In our tests, 75
acoustic rays have been produced in a single frame on average.
It is difficult to compute every intersection of acoustic rays in
real time.

The ray tracing technique, a type of geometric acoustic tech-
niques [21]–[24], assumes the rectilinear propagation of sound
waves and fits into high-frequency sounds; specular reflection
is one of the high-frequency phenomena. They do not model
many low-frequency phenomena such as diffraction, which is a
type of scattering that occurs in the presence of obstacles whose
sizes are of the same order of magnitude as the wavelength.
In practice, diffraction is a fundamental mode of sound wave
propagation and occurs frequently in building interiors, e.g.,
when the source is behind an obstacle or hidden by walls.
These effects are more prominent for low-frequency sources,
such as vowel sounds in human speech, industrial machinery,
ventilation, and air-conditioning units.

Main contribution: We present a novel sound localization
algorithm that takes into account diffraction as well as reflection,
even from NLOS sources and intermittent sound signals. A key
aspect of our work is that it models diffraction propagation paths
of sounds by the acoustic rays and identifies multiple source
locations from acoustic rays satisfying a real-time operation.
The diffraction propagation paths are modeled by the uniform
theory of diffraction (UTD) [25] along the wedges and approx-
imated by the diffraction acoustic rays. Our method efficiently
identifies multiple source positions using MCL, which finds out
the convergence regions of rays, corresponding to intersections
of rays.

Our approach supports the iterative computation and, during
every iteration, can localize multiple dynamic sources as well
as NLOS sources by modeling the reflection and diffraction
of acoustic rays. Furthermore, our approach can distinguish
between active and inactive states of intermittent sound signals
in addition to continuous sounds.

During the precomputation phase, we use SLAM and primi-
tive fitting techniques to reconstruct the 3-D map information of
an indoor environment, specifically a 3-D triangular mesh and
wedges of obstacles. At runtime, we generate primary acoustic
rays toward the incoming sound directions as computed by a
DoA estimator. Once the acoustic ray hits the reconstructed
mesh, we generate reflection rays (Section III-B). Furthermore,
when acoustic rays satisfy our diffraction criterion, e.g., hitting
on the edge of the wedge, we also generate diffraction acoustic
rays (Section III-C). We estimate multiple source positions by
performing MCL to identify the ray convergence given gener-
ated acoustic rays (Section IV).

We evaluated our method in various scenarios in two indoor
environments: one 7 m by 7 m in size and the other 7 m by
3.5 m in size and a height of 3 m. We also tested our approach
in different environmental or experimental setups and applied
our approach to the other task navigating to the NLOS source.
Given these test environments, our method achieves low aver-
age errors, e.g., 0.6159 and 0.7364 m, for clapping sound and
human speech, respectively, even with a moving source and an
obstacle occluding the LOS between the listener and the source.
Furthermore, our method demonstrates high performance, in
this case, 0.5919 and 0.5271 m, respectively, on clapping
sounds and human speech with multiple stationary and dynamic
sources.

Previous versions of this article were published in ICRA
2018 [26] and 2019 [27]. Compared to these previous versions,
we extend single-source localization of those prior methods to
multiple-source localization techniques. We tested our algorithm
in more diverse scenes to demonstrate the benefits of our method
for localizing sound sources. Specifically, we tested the effects
of changes in specular and diffuse materials (Section V-C), the
compatibility of the method with different microphone arrays
(Section V-D), and multiple-source scenarios (Section V-E).
Unlike the previous versions where the robot equipping the
microphone array was stationary, we made our robot move;
it can be possible for the robot to perform various tasks, e.g.,
navigation, based on our approach (Section V-G). We also
compared accuracies of our method to the previous work [1]
which does not consider indirect sound.

II. RELATED WORKS

SSL methods have been studied to overcome the difficulty
encountered by a robot when attempting to identify a speaker
such as a human, machine, or even another robots, in a real envi-
ronment. We explain previous research on SSL (Section II-A),
after which we introduce physical-based modeling tech-
niques that enable realistic sound generation for simulators
(Section II-B). Our approach is inspired by these physical-based
modeling methods.

A. Sound Source Localization

There have been many efforts to identify the sound source
location, and many of them have focused on estimating the DoA.

For simple and fast DoA estimators in a 2-D space, many
methods have been proposed using microphone pair signals and
their TDOA. The TDOA can be estimated by using a generalized
cross-correlation with phase transform [4], [5] and a difference
singular value decomposition with phase transform [7] from
a microphone pair. Using microphone pair signals and their
TDOA, Carlo et al. [28] proposed a method for 2-D SSL, i.e.,
DoA estimation, by considering echoes.

Beamforming or subspace-based methods have been sug-
gested to estimate DoA in a system using multiple microphones,
i.e., microphone array. A delay and sum (DAS) beamformer was
proposed for fast DoA estimation using the cross-correlation
operation with eight microphones [29]. The fast and accu-
rate speaker identification system for distributed meeting was
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suggested by using a minimum variance distortionless response
(MVDR) beamformer [9]. Nakamura et al. [12] suggested a
multiple signal classification based on generalized singular value
decomposition algorithm for a robust and real-time localization
method.

Recently, there have been demands for estimating the actual
location of the sound source, not just DoA. Valin et al. [1]
suggested a 3-D SSL and tracking system based on a steered
beamformer and particle filter. Portello et al. [17] presented an
active source localization of an intermittent signal considering a
motion of a moving binaural sensor. Nguyen et al. [16] presented
a 2-D SSL method by updating sequential acoustic data using
a mixture Kalman filter. Sasaki et al. [13] and Su et al. [14]
presented 3-D SSL algorithms using a disk-shaped sound detec-
tor and a linear microphone array such as Kinect and PS3 Eye.
Even et al. [18] presented a probabilistic 3-D mapping algorithm
of sound sources accumulating acoustic information of direct
sound on an occupancy grid map. These approaches consider
only direct sound and, thus, are not designed for scenarios
containing NLOS sources.

To localize the NLOS source, some methods have been pre-
sented based on a ray tracing technique. Kallakuri et al. [19] and
Even et al. [20] suggested the NLOS source localization algo-
rithm by modeling reflection. They produced reflected acoustic
rays and computed the intersection of those rays corresponding
to the source position. Our approach models diffraction as well as
reflection. Our approach also computes the convergence of those
rays based on the MCL to identify the source position; the MCL
based technique is more efficient and faster than computing the
intersection of rays.

B. Interactive Sound Propagation

There has been considerable work in acoustics and physically
based modeling to develop fast and accurate sound simulators
that can generate realistic sounds for computer-aided design
and virtual environments. Geometry acoustic techniques have
been widely utilized to simulate sound propagation efficiently
using ray tracing techniques, and those ray tracing techniques
are efficient to model sound propagations at high frequencies.

At high frequencies, the propagation of the sound waves can
be approximated as traveling in straight and bouncing off the
boundaries [21]. An estimation of the acoustic impulse response
of high-frequency propagation between the source and the lis-
tener was performed using image-source-based ray tracing [22],
Monte Carlo path tracing [23], or a hybrid combination of
geometric and numeric techniques [24].

Low-frequency wave phenomena, i.e., diffraction, need to
be modeled separately since ray tracing algorithms are inap-
propriate for sound propagation models at low frequencies.
Exact methods to model diffraction are based on directly
solving the acoustic wave equation using numeric methods
like boundary or finite-element methods [30], [31], the wave-
geometric approximation method [32], the Kresnel–Kirchoff ap-
proximation method [33], or the Biot–Tolstoy–Medwin (BTM)
model [34] and its extension to higher order diffraction
models [35].

Commonly used techniques to model diffraction with geomet-
ric acoustic methods are based on two models: the UTD [36] and
the BTM model [34]. The BTM model is an accurate diffraction
formulation that computes an integral of the diffracted sound
along the finite edges in the time domain [31], [35], [37].
In practice, the BTM model is more accurate but is limited
to noninteractive applications. The UTD model approximates
an infinite wedge as a secondary source of diffracted sounds,
which can be reflected and diffracted again before reaching the
listener. UTD-based approaches have been effective for many
real-time sound generation applications, especially in complex
environments with occluding objects [23], [38]–[40].

Our approach, backward acoustic ray tracing, is motivated
by these real-time simulations and proposes real-time source
localization algorithm using ray tracing and UTD.

III. ACOUSTIC RAY TRACING HANDLING DIFFRACTION

AND REFLECTION

Motivation: After a source emits a sound, sound waves are
propagated to free space and cause various interactions with ob-
stacles; e.g., reflections occur after the sound wave hits obstacles,
and diffractions arise at the boundary of the obstacles, such as
an edge of wedges. While direct propagation paths are defined
as paths propagating directly from a source to a listener without
any interactions, a range of other interactions causes many types
of indirect propagation paths of sound waves.

When the sound waves reach the microphone array through
direct and indirect propagation paths, we can estimate the DoA,
Θ∗, of sound waves using the DAS beamformer. However, we
cannot determine whether the DoA came from a direct or indirect
sound propagation path. Many beamformers have focused on
estimating DoAs that came from direct propagation paths, but
indirect, i.e., reflection and diffraction, propagation paths fre-
quently occur. Especially, if the sound source becomes an NLOS
source located in the invisible area for the microphone array, the
indirect propagation path becomes a prominent path of sound
propagation, and the beamformer cannot identify the DoA that
came from direct propagation paths. Furthermore, beamforming
techniques do not localize the source position in environments
but compute only the DoA. Thus, a new type of SSL algorithm
is needed to identify 3-D source positions.

Overview: In this article, we propose a novel SSL method
that is a type of reflection and diffraction-aware SSL method. In
indoor environments, there are many types of obstacles, e.g.,
walls, ceiling, and objects. They cause various interactions,
i.e., direct, reflection, and diffraction, with sound waves, and a
sequence of these interactions denotes a propagation path from
a source to a measurement device. We want to estimate prop-
agation paths considering reflection and diffraction using a ray
tracing technique from signals measured by a microphone array,
i.e., the eight-channel cube-shaped microphone array shown in
Fig. 2. We then identify the positions of multiple sources based
on the estimated propagation paths.

Before performing SSL at runtime, our method reconstructs
the structures of an indoor environment, i.e., the surfaces and
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Fig. 1. Robot, equipped with a cube-shaped microphone array, localizes a
source position in a 3-D space. Our formulation takes into account both direct and
indirect sound propagation, given its use of acoustic rays. The acoustic rays are
initialized and propagated based on our backward acoustic ray tracing algorithm
that considers reflection and diffraction; primary, reflection, and diffraction
acoustic rays are shown in white, blue, and red lines, respectively. The yellow
disk, which is very close to the ground truth, represents a 95% confidence ellipse
with regard to the estimated sound source, as computed by our approach.

wedges of objects, in order to handle the reflection and diffrac-
tion interactions of the sound waves (Fig. 3). Using a SLAM
algorithm [41] with inertial measurement unit (IMU) and 3-D
light detection and ranging (Lidar), we extract a registered point
set representing the indoor environment. We then generate a
mesh map using surface reconstruction techniques, i.e., screened
poisson surface reconstruction [42] or simplification [43], from
the registered point cloud. Our method uses the mesh map to
estimate the reflection of sound propagation. Furthermore, our
framework extracts wedges of objects to estimate the diffraction.
We use a primitive fitting technique [44] to detect the wedges,
given a voxelization map of the point cloud. We then extract the
edges from the wedges of the primitive having no contact with
the floor.

A runtime overview of our approach is shown in Fig. 2.
First, we estimate incoming directions of the propagation paths
using a DoA estimator (Section III-A). Our approach is ba-
sically built upon the DAS beamformer [8] of a cube-shaped
eight-channel microphone array; it can be combined with dif-
ferent DoA estimators and microphone arrays (Section V-D),
e.g., an eigenbeam-minimum variance distortionless response
(EB-MVDR) beamformer of a 32-channel spherical microphone
array [45], [46]. We then generate the acoustic rays considering
both reflection and diffraction based on ray tracing techniques.
Our acoustic ray tracing algorithm initializes a primary acoustic
ray from each estimated DoA and propagates it through free
space. If the acoustic ray hits a surface of obstacle, we gener-
ate a reflection acoustic ray by considering specular reflection
(Section III-B). Additionally, when the acoustic ray satisfies the
diffraction condition at a wedge, defined by the diffractability,
the diffraction acoustic ray is generated based on a UTD model
(Section III-C). Finally, the acoustic ray paths, a set of acoustic
rays that originate from the same DoA, represent the estimated
propagation paths of sound waves.

After generating the acoustic rays, we identify multiple source
positions using acoustic ray paths (Section IV). Because the

propagation paths of sound waves propagate from the sources
to the listener, i.e., the measurement device in this case, the
estimated propagation path represented by the acoustic ray path
should pass through sound source positions. Acoustic ray paths
can therefore converge to each source position, and we find
the convergence regions of acoustic rays and determine these
locations as multiple-sound-source positions.

A. Estimating the Direction of Arrival of Sound

Obstacles such as walls, ceiling, and objects cause various
propagation paths in indoor environments, and different paths
caused by the same source can propagate to the measurement
device from different DoAs. Given the measured sound pres-
sures of L samples in a single frame, it is necessary to estimate
multiple DoAs, as there can be more than one DoA. Given this
problem, we utilize a beamforming algorithm to estimate tuples
containing a DoA Θ∗

n and its average beamforming power βn

over angular frequencies

[(Θ∗
0, β0), . . . , (Θ

∗
N , βN )] = max

Θ

N

(
1

L

L−1∑
ν=0

β(Θ, ων)

)
(1)

wheremaxN denotes the function of findingN tuples, (Θ∗
n, βn)

where N = 4, with large average beamforming powers, ων is
the νth angular frequency, and β is the beamforming power
of the νth angular frequency at direction Θ; we refer beam-
forming formulas in [47]. We create 2562 points on the unit
sphere from an icosahedral grid [48], and Θ is a specific direc-
tion [θ, φ] corresponding to one of those points. We utilize a
cube-shaped eight-channel microphone array with DAS beam-
former [29]; however, our approach works properly with differ-
ent types of microphone arrays and other beamformers as well
(Section V-D).

We initialize a primary acoustic ray from a tuple (Θ∗
n, βn).

The primary acoustic ray r0n is generated into the reverse
direction of Θ∗

n

r0n(l) = d̂0n · l + ȯ (2)

where l is the ray length of a primary acoustic ray, d̂0n denotes
the unit vector of the reverse direction of Θ∗

n, and ȯ represents
the origin of the microphone array. The superscript k of an
acoustic ray rkn indicates the order of interactions, i.e., reflection
or diffraction, along an acoustic ray path from the microphone
array. For example, r0n(l) indicates that there is no interaction
and, thus, denotes a primary ray having the ray length l from the
microphone array. All the other rays with a varying number of
interactions, i.e., k ≥ 1, are referred to as indirect acoustic rays
with kth order interactions.

When the primary acoustic ray r0n is generated in (2), the
primary ray is initialized with initial energy of βn, which rep-
resents the incoming power from the nth DoA. The energy
of sound waves decreases with respect to the travel distance
of the propagation path from the source to the listener and
the absorption coefficient: E(l) = E0 · 1/(1 + l2) · (1− α)K ,
where E(l) is the energy when the sound wave propagates by
distance l, E0 denotes the initial energy of the sound waves at
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Fig. 2. Run-time computations using acoustic ray tracing for sound source localization. Acoustic ray tracing is performed from DoAs, a mesh map containing
wedges, and a robot position where a DoA estimator works on a cube-shaped eight-microphone array. The robot position is estimated by 2-D SLAM from a 2-D
Lidar sensor, and the mesh map and wedges are generated during the precomputation phase. Source position estimation is performed by identifying ray convergence
from the generated acoustic ray paths.

Fig. 3. Precomputation phase. We use SLAM to generate a point cloud of an indoor environment from IMU and 3-D Lidar, and the mesh map is reconstructed
via surface reconstruction techniques. To extract the wedge information, we utilize voxelization from the point cloud and fit a primitive model, e.g., a box model in
this case, onto the voxel map. Wedges are then extracted from the fitted primitive model. The extracted wedges of the fitted box model are highlighted by the red
line.

the sound source, and α is the constant absorption coefficient,
given the number of reflections K. Actually, the absorption
coefficients depend on the material properties, but we assume
that all materials have a constant coefficient, i.e., 0.1, since
the majority of sound materials in our experiment have low
absorption coefficient (Section V-C).

Because we consider backward acoustic ray tracing from a
microphone array (listener) to a source, the initial power βn

should be amplified with respect to the ray length, and we can
determine the maximum travel distance lmax of an acoustic ray
path as follows:

lmax =

√
βth

βn
(1− α)K − 1. (3)

The propagation of the acoustic ray terminates when the
power of the ray exceeds a user-defined threshold for maximum
energy, denoted asβth, which is set by a reasonable power bound,
in this case 10−4W, similar to the power of a loud alarm clock
[49]: 0 ≤ l ≤ lmax.

B. Acoustic Ray Tracing Handling Reflection

When an acoustic ray rkn hits a triangle of an object’s mesh in
the reconstructed environment, we need to simulate how the ray
behaves at the hit point. Ideally, specular or diffuse reflection
can occur with an energy absorption depending on the material
type of the hitting surface. Since simulating all these types of

interactions requires a prohibitive computation time, we support
only a specular reflection in this work.

Our decision not to support diffuse reflections is based on the
following two factors: 1) supporting diffuse reflections requires
an expensive inverse simulation approach such as Monte Carlo
simulation, which is unsuitable for real-time robotic applica-
tions, and 2) while there are many diffuse materials in rooms,
each individual sound signal reflected from the diffuse material
does not carry a high portion of the sound energy generated
from the sound source. Therefore, when we choose high-energy
directional data from the DoA estimator, the most sound signals
reflected by the diffuse material are ignored automatically, and
those with high energy are mostly from specular materials.

Note that our work does not require all the materials to be
specular. When some materials exhibit high energy reflectance
near the specular direction, e.g., tex materials in the ceiling
and finished wooden floors, our method generates acoustic rays
toward those specular reflection directions and can identify the
location of the sound source that generates those rays (Section V-
C). As a result, we focus on handling specular materials and treat
each hit material as specular and generate a reflection ray from
the hit point.

The operation for specular reflection is defined as follows.
Whenever an acoustic ray rkn hits the surface of the obstacle at
the particular ray length lhit, we create a new, reflection acoustic
ray rk+1

n with the following direction:

rk+1
n (l) = d̂k+1

n · l + rkn(lhit) (4)
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Fig. 4. Example of propagating reflection acoustic rays. The acoustic ray path
containing direction and reflection acoustic rays from r0n to rkn is propagated
from the origin ȯ of the microphone array to the red point corresponding to
rkn(l). The summation of all ray lengths l of each acoustic ray from r0n to rkn
should be identical to lmax.

where d̂k+1
n is the direction of the specular reflection of the

ray rk+1
n and is analytically computed by d̂k+1

n = d̂kn − 2(d̂kn ·
n̂k+1)n̂k+1, where n̂k+1 is the normal vector at the surface hit
point, rk+1

n (0). Its example is shown in Fig. 4. The primary
acoustic ray r0n is initialized at the origin ȯt of the microphone
array at a t frame and hits the triangle 1. The reflection acoustic
ray, then, is generated into the d̂1n direction considering specular
reflection. The acoustic ray path is propagated into the kth order
of reflection acoustic ray. The summation of all ray lengths of
acoustic rays contained in the ray path should be the same as
lmax, given the power bound.

The reflection acoustic ray that we create can be reflected fur-
ther by getting another hit on other obstacles. While generating
the acoustic rays of a path, we maintain them in a ray sequence,
called a ray path, Rn = [r0n, r

1
n, . . .] generated for the nth DoA.

C. Acoustic Ray Tracing Handling Diffraction

We now explain our algorithm to model diffraction efficiently
within acoustic ray tracing. Since our goal is to achieve fast
performance in localizing the sound source, we use the formu-
lation based on UTD [36]. The incoming sound signals collected
by the microphone array consist of contributions from different
propagation paths in the environment, including reflections and
diffractions.

Edge diffraction occurs when a sound wave hits the edge of
a wedge. In the context of forward acoustic ray tracing from
a source, when an acoustic ray hits an edge of a wedge, the
diffracted signal propagates into all possible directions from that
edge. The UTD model assumes that the point on the edge causing
the diffraction is an imaginary source generating a spherical
wave [36].

In order to solve the problem of localizing the sound source,
we simulate the process of backward ray tracing from the micro-
phone array to the source. Suppose that an nth DoA is generated
by the diffraction at the point md on the wedge in Fig. 5(a).
We generate the primary acoustic ray r0n and perform backward
acoustic ray tracing. In an ideal case, we can assume that the
ray path Rn hits the point md on the edge of the wedge; for
example, the ray rk−1

n hits the point md and diffraction acoustic
rays r(k,·)n must be generated in Fig. 5(a).

Fig. 5. Our acoustic ray tracing method devised to handle the diffraction
effect. (a) Suppose that we have an acoustic ray rk−1

n satisfying the diffraction
condition, hitting or passing near the edge of a wedge. We then generate Nd

diffraction rays covering the possible incoming directions (especially, in the
shadow region) of rays that cause the diffraction. (b) Outgoing unit vector,

d̂
(k,p)
n , of a pth diffraction ray is computed on local coordinates (êx, êy , êz)

and used after transformation to the environment in runtime, where êz fits on
the edge of the wedge and êx is set half-way between two triangles of the wedge.

We assume that the point md causing the diffraction is an
imaginary source generating the spherical wave based on the
UTD model. Given the diffracted propagation path estimated
by the ray rk−1

n in Fig. 5(a), there might be an infinite number
of candidates for incident propagation paths to the point md

causing the diffraction. Given that it is difficult to determine
the specific direction d̂kn corresponding to the direction of an
incident propagation path, to generate the kth order diffraction
ray, we generate a set of Nd different diffraction rays which
covers possible incident directions to the point md on the edge
based on the UTD model. Intuitively, this set is generated based
on the assumption that one of these generated rays may have the
actual incident direction causing the diffraction, thus creating
the subsequent ray rk−1

n . When there are sufficient acoustic rays,
including the primary, reflection, and diffraction rays, it is highly
likely that those rays will pass through or close to the sound
source location; we choose a proper value of Nd, which is 5, by
analyzing diffraction rays (Section V-B).

Given the nth DoA caused by the diffraction, it is rare for
acoustic rays of the nth DoA to intersect an edge precisely
because our algorithm works in real environments containing
various types of errors from sensor noise and resolution errors
from the DoA estimator.
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Fig. 6. Diffraction condition. When a ray rk−1
n passes closely by an edge of

a wedge, we consider the ray to be generated by edge diffraction. We measure
and utilize the angle θD between the ray and its ideal generated ray that hits the
edge exactly to verify our diffraction condition.

In order to support various cases that arise in real environ-
ments, we propose the use of the simple yet effective notion of
a diffraction condition between a ray and a wedge. A diffraction
condition simply measures how closely the ray rk−1

n passes by
an edge of the wedge. Specifically, we define the diffractability
vd according to the angle θD between the acoustic ray rk−1

n and
its ideally generated ray r′k−1

n for the diffraction with the wedge,
i.e., vd = cos(θD), where the cos function is used to normalize
the angle θD (Fig. 6).

Suppose that the nth DoA is generated by the diffraction on
the edge of the wedge, as highlighted by the dotted line in
Fig. 6. In this case, the ray path Rn contains the diffraction
propagation path, and we assume that the ideally generated ray
r′k−1

n represents the actual diffraction propagation path; the ray
rk−1
n does not hit the edge of the wedge due to the various errors

that exist in real environments. We define the ideally generated
ray r′k−1

n as a ray touching the pointmd on the edge of the wedge
and satisfying the smallest angle θD. To have the smallest angle
θD, the distance from the point md to the ray rk−1

n also becomes
the smallest

md = argmin
m′

d

(distance(m′
d, r

k−1
n )) (5)

where m′
d is any point on the edge of the wedge, and the

distance(·) denotes a minimum distance between the given point
and line. The propagation direction of the ideally generated ray
r′k−1

n is identical to the vector from the origin of the ray rk−1
n

to the point md, and the angle θD can be computed using the
inner product of the propagation directions of both rays rk−1

n

and r′k−1
n .

If the diffractabilty vd is larger than a threshold value vth, e.g.,
0.984 in our tests, our algorithm determines that the acoustic
ray is generated from the diffraction at the wedge, and we,
thus, generate the secondary diffraction ray at the wedge in the
backward manner.

We now present how to generate the diffraction rays when an
acoustic ray satisfies the diffraction condition. The diffraction
rays are generated along the surface of the cone [Fig. 5(a)]
because the UTD model is based on the principle of Fermat [25];
the ray follows the shortest path from the source to the listener.
The surface of the cone for the UTD model contains every set of
shortest paths. When an acoustic ray rk−1

n satisfies the diffraction

condition, we compute outgoing directions for those diffraction
rays. Those directions are the unit vectors generated on that cone
and can be computed on a local domain as shown in Fig. 5(b)

d̂(k,p)n =

⎡
⎢⎣cos (θw/2 + p · θoff ) sin θd
sin(θw/2 + p · θoff ) sin θd

− cos θd

⎤
⎥⎦ (6)

where d̂(k,p)n denotes the outgoing unit vector of a pth diffraction
ray among Nd different diffraction rays, θw is the angle between
two triangles of the wedge, θd is the angle of the cone that
is the same as the angle between the outgoing diffraction rays
and the edge on the wedge, and θoff is the offset angle between
two sequential diffraction rays, i.e., d̂(k,p)n and d̂

(k,p+1)
n , on the

bottom circle of the cone.
Given a hit pointmd by an acoustic ray rk−1

n on the wedge, we
transform the outgoing directions in the local space to the world
space by aligning their coordinates (êx, êy, êz). Based on those
transformed outgoing directions, we then compute the outgoing
diffraction rays, r̄(k)n = {r(k,1)n , . . ., r

(k,Nd)
n }, starting from the

hit point md.
In order to accelerate the process, we only generate the

diffraction rays in the shadow region, which is defined by the
wedge; the outside of the shadow region is called the illuminated
region. We focus on the shadow region because covering only
the shadow region over the entire region generates minor errors
for a simulation of the sound propagation [38].

Given the new diffraction rays, we apply our algorithm recur-
sively and generate another order of reflection and diffraction
rays. Given the nth DoA, we generate acoustic rays, including
direct, reflection, and diffraction rays and maintain the ray paths
Rn in a tree data structure. The root of this tree represents the
primary acoustic ray, starting from the microphones. The depth
of the tree denotes the order of its associated rays. Note that we
generate one child and Nd children for handling reflection and
diffraction effects, respectively.

We maintain the ray path Rn for the fixed duration Dray,
one second, to accumulate a sufficient number of ray paths; the
ray path is deleted after the duration Dray. The duration Dray is
determined to maintain a ray path caused by an early reflection
until a late reflection, i.e., reverberation. If the duration Dray is
too long, our approach cannot properly reflect changes in the
position of a moving sound source.

IV. MONTE CARLO LOCALIZATION FOR MULTIPLE SOURCES

In the prior section, we generated primary, reflection, and
diffraction acoustic rays starting from DoAs. Given those acous-
tic ray paths, we are ready to localize not only stationary
sound sources but also moving sound sources in 3-D space;
our approach utilizes all ray paths created within the fixed time
duration Dray.

The generated acoustic ray paths represent the propagation
paths of sound waves from sound sources to the microphone
array. In an ideal case with multiple sources, it is sufficient to
find points at which acoustic ray paths intersect and treat them as
source positions. However, when we deal with real environments



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON ROBOTICS

Fig. 7. Example of performing the pth particle filter at the first and second iterations, i.e., t = 0 and t = 1. At the beginning of our approach, i.e., t = 0, particles
are initialized based on the uniform distribution in (a). In the weight computation part (b), weights of particles are computed, given acoustic ray paths; particles
have higher weights when they are located near the convergence region of ray paths. In the resampling path (c), particles with low weights are resampled close to
particles with high weights. Thanks to the resampling part, particles can be moved to the convergence region of ray paths. After executing the part of allocating ray
paths (Section IV-D), the first iteration of our approach is finished. At the second iteration, i.e., t = 1, the Monte Carlo localization starts with the sampling part,
and particles are regenerated based on the Gaussian distribution in (d).

in practice, acoustic ray paths may not intersect precisely, as
there are diverse types of noise from sensors, e.g., microphones,
IMU sensors, and Lidars. We thus need a technique that is robust
to these types of noise. We cast our problem as one involving the
locating of regions where many such ray paths converge and treat
the convergence regions as candidate regions containing sound
sources. To achieve our goal, we propose the use of MCL [13],
[50], also known as a particle filter.

Sasaki et al. [13] proposed the source localization method
based on a particle filter from estimating the convergence regions
of the plane observation models, which contains direct sound
information. We extend this approach to identify the conver-
gence region of acoustic rays; the prior approach needs to satisfy
some constraints, i.e., accumulating the observation models
in different positions and orientations of a sound sensor, but
our approach does not require those constraints by considering
indirect sound.

Assuming there are P sound sources, there can be P different
convergence regions of ray paths. The pth convergence region
corresponds to the pth sound source, and ray paths propagating
to the pth convergence region can be caused by the pth sound
source. In the acoustic ray tracing phase, it is difficult to de-
termine what acoustic ray paths are generated by which sound

sources. In every iteration of our localization algorithm, there-
fore, we initially estimate the source positions using multiple
particle filters and then determine whether or not the ray paths
are caused by estimated sources.

Our approach supports P different particle filters to localize
P sound sources, and each particle filter can localize only a
single source. Each particle filter consists of four parts and
sequentially performs them every iteration. These are sampling,
weight computation, resampling, and allocating ray paths. In
the first three parts, particle filters identify the convergence
regions of ray paths; Fig. 7 shows an example of executing
three parts sequentially. In the sampling part, our approach
initializes [Fig. 7(a)] or regenerates the positions of particles
randomly close to previous positions [Fig. 7(d)] to consider
the movement of dynamic sources. The weights of particles
are computed to ensure that the particles converge to the con-
vergence region of the ray paths [Fig. 7(b)]. In the resampling
part, our approach deletes particles located far from the conver-
gence region and resamples new particles inside the convergence
region [Fig. 7(c)].

In the last part of our method, if there are convergence regions,
acoustic ray paths are allocated to each convergence region
into which they propagate. The ray paths generated from the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AN et al.: DIFFRACTION- AND REFLECTION-AWARE MULTIPLE SOUND SOURCE LOCALIZATION 9

ray tracing phase are initially not allocated to any convergence
region; they have an initial state of−1, i.e.,S(Rn) = −1, where
Rn denotes the nth ray path and S(·) is the function returning
the state value of a given ray path. After acoustic ray paths are
allocated to the convergence region of the pth particle filter, it
has a p state, i.e., S(Rn) = p.

A. Sampling

To identify the convergence region of ray paths, the pth parti-
cle filter maintains a set of I particles,Xp

t = [x
(p,1)
t , . . . , x

(p,I)
t ],

which serves as hypothetical locations of a sound source; the
number of particles, e.g., I = 200, should be sufficient to cover
all 3-D indoor environments. Those particles are spread out ran-
domly in the 3-D space based on the uniform distribution at the
initial iteration, t = 0, and iteratively move to the convergence
region of the ray paths at other iterations, t ≥ 1. Also, if there
is no ray path at a specific iteration, we treat that there does not
exist any sound source and perform the initialization process,
i.e., spreading out random particles, again to quickly cover the
entire 3-D space.

To consider the movement of sound sources, a new set of
particles Xt is incrementally created from the prior particles
Xt−1 for each iteration t other than the initial iteration. If we
know a source position and its velocity, new particles can be
created using the source velocity and the corresponding moving
direction. However, in an SSL problem, we do not know the posi-
tion or velocity of a source when our approach begins. Therefore,
we randomly create a new set of particles from the prior particles
and then regenerate particles near the actual source position in
the ensuing weight computation and resampling parts.

A new particle x(p,i)
t of the pth filter is generated by offsetting

a previous one x(p,i)
t−1 in a random unit direction û by an offset δ

x
(p,i)
t = x

(p,i)
t−1 + δ · û,

δ = ‖x(p,i)
t − x

(p,i)
t−1 ‖ ∼ N(0, σs

2) (7)

where N(·) denotes a normal distribution with a zero mean
and standard deviation. Actually, the random unit direction û
and the offset δ correspond to the unit vector of the velocity
and the speed of the particle, respectively. Since the offset δ
is sampled according to the normal distribution, (7) can cover
the various movements of the stationary, constant velocity, and
accelerated particles. The standard deviationσs is determined by
the maximum speed of a moving sound source, e.g., σs = 0.2 m
in our experiments. Our approach is designed to handle speeds up
to 1 m/s, = 0.2 m/0.2 s, of moving sources, where the iteration
period is 200 ms.

B. Weight Computation

We associate a weight with each particle, and the weight
indicates the importance of the particle, specifically encoding
how closely the particle is located to a convergence region of
ray paths. Suppose that ray paths are converged in a region
containing the source position. In this case, the distances from
any point inside the convergence region to the ray paths must be

Fig. 8. Example of computing weights of the pth filter for particles against a
ray path, Rn′ = [. . . , rk−1

n′ , rk
n′ ]. The shortest distances for each particle over

acoustic rays are shown in red and become the distances between the particles
and the ray path.

small; in an ideal case, ray paths intersect at a certain point, and
distance between an intersecting point to a ray path should be
zero. Therefore, when a particle is located inside the convergence
region of ray paths, the distances between the particle and the ray
paths are generally short. Based on these distances, we design
the weight of the particle to have a higher value when it is located
inside the convergence region.

The weight at the t iteration is also updated from the previous
iteration t− 1, assuming that the sound source is active from t−
1 to t iterations; how our method handles intermittent sources is
discussed later in this section. During the weight computation
phase, the pth particle filter only considers ray paths in the−1 or
p state. The −1 state means that the ray path is not yet allocated
to any estimated source position. The p state indicates that the
ray path propagated close to the estimated source position in a
prior iteration and was therefore allocated to the sound source
estimated by the pth particle filter. We ignore the remaining ray
paths with other states. Therefore, in the pth particle filter, the
weight of the particle is computed based on the observations opt
consisting of the acoustic ray paths Rn′ in only the −1 or p state.

The distance between a particle and an acoustic ray can be
computed by calculating the distance from a point to a line seg-
ment; the distance between a point to a line segment corresponds
to the distance from a point to a perpendicular foot on a line
segment. We define the distance dist(·, ·) between a particle and
a ray path Rn′ as the shortest distance among the distances from
the particle to the rays of Rn′

dist(x(p,i)
t , Rn′) = min

k
(‖x(p,i)

t − πk
(p,i)‖ × F (x

(p,i)
t , rkn′))

(8)
where π(x

(p,i)
t , rkn′), in short, πk

(p,i), defines the perpendicular

foot of the particle x(p,i)
t to the ray rkn′ (Fig. 8), and ‖ · ‖ denotes

the L2 norm. F is a filter function returning infinity to exclude
irrelevant cases when the perpendicular foot is outside of the
ray segment rkn′ , e.g., πk

(p,1), π
k−1
(p,2), π

k−1
(p,3), and πk

(p,3) in Fig. 8.
Otherwise, the filter function returns one.

Based on the distance between the particle x
(p,i)
t and the ray

path Rn′ , we define the probability density P (Rn′ |x(p,i)
t ):

P (Rn′ |x(p,i)
t ) = N(dist(x(p,i)

t , Rn′) | 0, σ2
w) (9)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON ROBOTICS

where N( · |0, σ2
w) indicates a normal distribution with a zero

mean and standard deviation, representing a parameter that
controls how many particles converge to the estimated source
position; a smaller standard deviation makes particles converge
to a smaller area, meaning that the estimated convergence region
of ray paths also becomes smaller. The standard deviation of
σw only has a minor effect on the accuracy. We use σw = 0.1,
corresponding to 0.1 m in the space, for our tests.

Simply speaking, the probability density P (Rn′ |x(p,i)
t ) be-

comes higher if the ith particle x
(p,i)
t is closer to the ray path

Rn′ , and P (Rn′ |x(p,i)
t ) has the highest value if the particle lies

on the ray path. From the probability density P (Rn′ |x(p,i)
t ), we

design the likelihood P (opt |x(p,i)
t ) of the particle x

(p,i)
t , where

the observation opt consists of N ′ different ray paths having −1
and p states: opt = [R1, . . . , RN ′ ]. We define the likelihood as
the average of P (Rn′ |x(p,i)

t ) over all ray paths

P (opt |x(p,i)
t ) =

1

N ′

N ′∑
n′=1

P (Rn′ |x(p,i)
t ). (10)

The likelihood P (opt |x(p,i)
t ) indicates how much the particle

x
(p,i)
t is close to ray paths contained in the observation opt .
We define the weight w(p,i)

t at the t iteration based on the
likelihood P (opt |x(p,i)

t )

w
(p,i)
t =

P (opt |x(p,i)
t )w

(p,i)
t−1

nc
(11)

where nc denotes the normalization constant and w
(p,i)
t−1 is the

weight at the previous iteration t− 1. The weight w(p,i)
t−1 helps to

consider the convergence region at the previous iteration t− 1.
When the particle x

(p,i)
t−1 is close to the convergence region at

the previous iteration t− 1, the weight w(p,i)
t−1 should be large,

causing the weight w(p,i)
t to increase. If there is no acoustic ray

at iteration t, we set all weights to a uniform probability, i.e.,
1/I .

Suppose that an intermittent source is activated at iteration t,
while it was inactive at the previous iteration t− 1. At iteration
t− 1, no acoustic ray was generated for the intermittent source.
Despite the fact that other active sources exist at iteration t, the
ray paths generated by those sources were previously allocated to
other filters identifying the convergence regions of those sources.
As a result, ray paths in the −1 state are left for the intermittent
source. Suppose that the pth particle filter corresponds to the
source. All weights of particles of the pth particle filter have a
uniform probability as the initialization process (Section IV-A).
At iteration t, newly generated acoustic rays in the −1 state
should be propagated to the activated source, and the weight
w

(p,i)
t is only determined by the distance between the particle

and acoustic rays.

C. Resampling

There may be particles close to or far from the convergence
region of ray paths, and their weights indicate how closely they

are located to the convergence region. To make particles con-
verge to the convergence region of ray paths in this part, we delete
particles located far from the convergence region and regenerate
them inside the convergence region. Intuitively, particles with
low weights are removed, and additional particles are generated
near existing particles with high weights. Regarding this process,
we adopt a basic resampling method [50].

Once resampling is done, we check whether the particles
are converged enough to define an estimated sound source; if
the particles are thus converged, we can treat the positions of
particles as the convergence region of the ray paths. To determine
the convergence of the particle positions, we compute the gen-
eralized variance (GV), which is a one-dimensional measure for
multidimensional scatter data and is defined as the determinant
of the covariance matrix of the particles [51]. If GV is less than
the convergence threshold, σc = 0.01, at the pth particle filter,
we determine that the source emitted the sound and treat the
mean position of particles as the estimated position of the source.
GV is also used as a confidence measure in our estimation; we
use its covariance matrix to draw a 95% confidence ellipsis disk
for visualizing the estimated sound region (Fig. 1).

D. Allocating Ray Paths

Suppose that the sound source is estimated in the resampling
step. In such a case, it becomes necessary to check whether
or not ray paths are caused by the estimated source; if there
is no estimated source, we skip the allocating ray paths phase.
Assuming that a ray path is caused by the estimated source,
it should propagate to the position of the estimated source. In
this step, we only consider ray paths in the −1 state, indicating
that we do not know from which sound sources the ray path
originated. We now verify whether the ray paths in the −1 state
propagate close to the estimated source position.

A simple way to do this is to compute and verify the dis-
tances between the estimated source position, i.e., the mean of
the particle positions, and the ray paths. However, this simple
approach does not consider the shape of the estimated sound
region in Fig. 1, which represents the 95% confidence area. To
deal with the shape of the estimated sound region, we examine
the relationships between the ray paths and particle positions.

We define the probability, P (S(Rn′) → p), of allocating the
ray path to the source estimated by the pth filter as follows:

P (S(Rn′) → p) =

I∑
i=1

P (Rn′ |x(p,i)
t )w

(p,i)
t (12)

where Rn′ is the ray path in the −1 state, P (Rn′ |x(p,i)
t ) is the

probability density in (9), andw(p,i)
t is the weight of a particle as

defined by (11). We allocate the ray pathRn′ to the sound source
estimated by the pth filter if the probability P (S(Rn′) → p)
exceeds a threshold probability, i.e., Pth = 0.2.

The probability density P (Rn′ |x(p,i)
t ) represents how close

the particle x
(p,i)
t is to the ray path Rn′ , and the weight w(p,i)

t

indicates the importance of the particle. If the particle is located
close to the estimated source, its weight becomes high, and it
must be an important particle. Therefore, if many particles with
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Fig. 9. Example of allocating the ray path to the convergence region of the
particle filter. The ray paths, indicated here by the blue and green lines, are
allocated to the convergence regions of the first and second particle filter,
respectively; both convergence regions represent the estimated source positions.
Ray path R5, indicated by the black lines, is now considered to be assigned to
its proper estimated source. Gray dotted lines denote the distance between the

particles and ray path R5, used to compute the probability P (Rp
n′ |x(p,i)

t ) in
(11). In this example, ray path R5 originates from the source estimated by the
first filter, and it is allocated to the estimated source of the first particle filter. The
allocating probability P (S(R5) → 1) exceeds the threshold probability Pth.

high weights are located close to the ray path Rn′ , the allocating
probability P (S(Rn′) → p) becomes higher than the threshold
probability Pth. Fig. 9 shows an example of allocating the ray
path.

We continue these iterations of our MCL algorithm, consisting
of four parts given a fixed duration, e.g., 200 ms, until our
multiple-source localization algorithm, containing acoustic ray
tracing and MCL algorithms, is terminated. We decide to make
the period of iterations short enough to find the source position
quickly, taking into account the calculation time of our approach.
If our MCL algorithm is finished within the computation budget,
200 ms, it enters an idle state until the next iteration.

V. RESULTS AND DISCUSSION

In this section, we provide various results and discussions of
our approach. The hardware platform is based on Turtlebot2 with
a 2-D Lidar (UTM-30LX of Hokuyo), an IMU sensor (MTi-30
of Xsens), an eight-channel microphone array [52], and a laptop
computer with an Intel i7 process shown in Fig. 10(a).

To estimate DoAs, we utilize a DAS beamforming module of
ManyEars [53], which is a real-time open software for the DoA
estimation, tracking, and separation. Although ManyEars tracks
DoA information using the particle filter, the processes between
particle filters of ManyEars and our approach are different; we
just refer to the process of ManyEars and only utilize the DoA
estimator, i.e., the DAS beamformer. ManyEars performs the
particle filter given DoAs and energies of DoAs to track the
DoA sequentially, but our approach performs the particle filter
given acoustic rays to identify convergence regions of those rays.

The DoA estimator and acoustic ray tracing algorithm are
performed every 10.67 ms since the sampling frequency of
the audio stream of the microphone array is 48 000 Hz, and
the number of sound pressure samples is 512, i.e., L = 512;
10.67 ms = 512 samples 48 000 Hz. For all computations, we
use a single core and perform our estimation within every
200 ms, supporting five different estimations in 1 s.

Fig. 10. Hardware platforms of our approach. (a) To utilize our SSL algorithm
in the runtime computation, we add an eight-channel microphone array onto
Turtlebot2, a mobile robot, with 2-D Lidar, an IMU sensor, and a laptop
computer. (b) In the precomputation phase, we extracted the point cloud of
the environments using 3-D Lidar placed on the top of the Fetch mobile robot.

Our experiments contain dynamic sound sources. To make a
sound source move, we utilize the mobile robot platform, i.e.,
Turtlebot2, and the sound sources, an omnidirectional speaker,
are placed on the mobile robot. We also measured the odometry
of the mobile robot, which contains the sound source, and
then utilized measured odometry as the ground truth of moving
sources.

To reconstruct the 3-D environments, we perform a SLAM
algorithm, i.e., Cartographer of Google [41], using sensor data
collected by a 3-D Lidar (VLP-16 of Velodyne) and an IMU
sensor equipped on Fetch [54] [Fig. 10(b)]. We also utilize the
open source, MeshLab [55], to generate mesh maps from point
clouds and improve the quality of meshes.

Wedges needed for supporting diffraction effects are extracted
by using primitive fitting techniques [56], where the primitive
model is defined by the box shape since our experiments contain
only box-shape obstacles. We expect that different shapes of
obstacles can be identified using various primitive models [44],
[57].

Benchmarks: We tested our approach in various scenarios and
compared our result to the prior work [1], i.e., ManyEars3D.
This method is another version of ManyEars [53], i.e., the
open software containing the DAS beamforming module that
we utilize. While ManyEars contains a module for estimating
DoAs, this method, i.e., ManyEars3D, provides a module for
estimating 3-D locations of sound sources. While ManyEars3D
can identify 3-D locations of the source, it considers only the
direct sound; it estimates the source position by considering
direct sound based on the DAS beamformer and then tracks
estimated source positions using a particle filter.

We first conducted a room experiment having 7 m × 7 m
area and 3-m height with a moving source (Section V-A). In
this environment, we verify how well our approach identifies a
source position given a direct and reflection acoustic rays. We
also place an obstacle, blocking direct sound propagation paths,
to show the effect of diffraction acoustic rays where the sound
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TABLE I
QUANTITATIVE RESULTS OF SINGLE-SOURCE SCENARIOS

source moves around the obstacle. We then analyze diffraction
acoustic rays to confirm the benefits of them (Section V-B).

In the above environments, the majority of objects, e.g., wall,
floor, and ceiling, consists of specular materials like bricks, thick
woods, gypsum boards, and steals; specular materials reflect the
most of the sound energy from incident sound waves. Those
specular materials cause sufficient specular reflections helping
to generate reflection acoustic rays, whereas diffuse materials
absorb most of the energy; therefore, specular reflection does
not occur well at those diffuse materials. By replacing specular
materials by diffuse materials, we also test the robustness of
our approach where the area of specular materials decreases
(Section V-C); decreasing the number of specular materials
means decreasing the number of reflection propagation paths.
We also tested our approach with a different DoA estimator using
a different microphone array (Section V-D). The quantitative
results of scenarios of a single moving source are summarized
in Table I.

Because we extend the single SSL to the multiple source
localization algorithm in this article, we conducted experiments
with multiple sources. We tested our approach in two scenes
containing multiple static sound sources, which do not move, or
moving sound sources (Section V-E); especially, in the three
static source scenes, we show localizing intermittent sound
sources by controlling the source activation period. The quan-
titative results of scenarios of multiple sources are summarized
in Table II.

To show the robustness for different sizes of environments,
we conducted the experiments in a smaller size of the room: 7 ×
3 m area with 3-m height (Section V-F).

We apply our SSL algorithm to the navigation task. When the
source is located behind the obstacle, i.e., the NLOS source, the
robot equipped with a microphone array estimates the source po-
sition using our approach and navigates to the estimated source
position corresponding to the goal position of the navigation
(Section V-G).

A. Moving Source w/ or w/o an Obstacle

We first show results of the environments with a moving
source without or with an obstacle. The sound source moves

TABLE II
QUANTITATIVE RESULTS OF MULTIPLE SOURCE SCENARIOS

along trajectories, red lines shown in Fig. 11, and emits sound
signals. We utilize two kinds of sound signals that are a clapping
sound and a human speech; the dominant frequencies of a
clapping sound and a human speech are 15 kHz and 275 Hz,
respectively. The clapping sound consists of five claps, and the
human speech is reading the sentence “Hey, robot, come here”
by a woman.

The environment without an obstacle: The results of the
environment without an obstacle [Fig. 11(a)] are shown in
Fig. 12. We measure distance errors between the ground truth
and estimated source positions, and the smaller distance error
means that the accuracy is higher. The average distance errors
of the clapping sound and the human speech are 0.5967 and
0.7416 m, respectively; we call the average of distance errors
as the average distance errors for convenience. Note that both
values are smaller than the average distance errors, i.e., 1.6 and
1.7769 m of the clapping sound and the human speech, of a prior
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Fig. 11. Testing environments in a 7 m × 7 m room with a 3-m height given
one moving source w/ and w/o an obstacle. (a) Environment without an obstacle
and where the sound source moves along the trajectory, highlighted by the red
line. (b) Environment with an obstacle, i.e., the box shape, where the moving
source becomes a nonline-of-sight source when it is located in the invisible area
due to the box.

work, and, thus, our SSL algorithm can identify the source posi-
tion reasonably well in this case. We observe a 168% and 139%
improvement for the clapping sound and the human speech. The
prior work only considers the direct sound, and, thus, the better
accuracies of our approach show that it is useful to consider the
reflection sound. Also, the reason why the average distance error
of the human voice is worse than the clapping sound is that the
dominant frequency of the human voice (275 Hz) is lower than
that of the clapping sound (15 kHz); the lower frequency sound
more frequently causes the diffuse reflection, i.e., scattering by
obstacles, rather than the specular reflection [58].

To verify how much the acoustic rays contribute in terms
of helping source localization, we check how many ray paths
propagate near to the source position. For example, given a ray
path consisting of various acoustic rays, we find the smallest
distance of acoustic rays contained by a ray path; the distance
between the source position and the acoustic ray corresponds to
the distance between a point and a line segment. If the smallest
distance is less than 1 m, we treat this ray path as helping the
source localization. We then check the type of the acoustic ray
having the smallest distance and count this ray; we call those rays
the significant ray. The average numbers of significant primary
and reflection rays per frame are 6.49 and 10.43 of the clapping
sound and 8.84 and 7.23 of the human speech. The diffraction
acoustic rays are not generated because the DoA estimator can
only detect prominent propagation paths; a diffraction propa-
gation path becomes a prominent propagation path when the
source is the NLOS state in other tested environments.

These results tell us that sufficient primary and reflection rays
propagate near the source position. Moreover, the number of
significant reflection rays of the clapping sound, i.e., 10.43, is
larger than the human speech, i.e., 7.23, because the specular

Fig. 12. Results in the environment without an obstacle [Fig. 11(a)], where
the clapping sound is used in (a) and human (female) speech is used in (b).
Both show the distance error of our approach and prior work [1] in the red and
gray curves, respectively, between the ground truth and the estimated source
positions, and the measured signals in blue curves of the clapping sound in (a)
and the human speech in (b).

reflection frequently occurs on the higher frequency sound. The
larger number of significant reflection rays helps to increase the
localization accuracy since reflection rays increase the conver-
gence of rays; the average distance error of the clapping sound
is less than the human speech. The propagation directions of
primary rays should be similar since they are generated at the
robot to the source position, while the propagation directions
of reflection rays are determined by a normal vector of a hit
obstacle.

The environment with an obstacle: In the prior experiment
without an obstacle, there is a sufficient number of significant
primary and reflection rays, and we can localize the moving
source by utilizing the primary and reflection acoustic rays where
the diffraction propagation path was not a prominent path thus
not detected by the DoA estimator. However, we need to consider
diffraction on the wedges of the obstacle, especially when an
obstacle is located and blocks the direct propagation path of
sound, as shown in Fig. 11(b); the size of the obstacle is 0.39 m×
0.96 m area with 1.05-m height. The diffraction propagation
paths become prominent, when the moving source is located in
the invisible area: the source in this case becomes the NLOS
source.

We present the results of the environment with an obstacle in
Fig. 13; we tested with the prior work and two versions of our
approach: the first version is only utilizing primary and reflection
acoustic rays, and the second version is adding diffraction rays to
them. We call the first version as reflection-aware SSL (RA-SSL)
and the second version as diffraction- and reflection-aware SSL
(DRA-SSL) for convenience.
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Fig. 13. Results in the environment with an obstacle [Fig. 11(b)] and two sound
signals: the clapping sound and human speech. In both (a) and (b), the black
curves are the distance errors of the prior work [1], the blue curves are the distance
errors where we use only the primary and reflection acoustic rays (RA-SSL),
and the red curves correspond to the distance errors when handling all types of
acoustic rays containing diffraction acoustic rays (DRA-SSL). Measured audio
signals are shown in the middle of the graphs.

When we use the clapping sound, the average distance errors
are 0.6351 (DRA-SSL), 0.8112 (RA-SSL), and 1.582 m (prior
work) in Fig. 13(a). When we utilize the human speech, the
average distance errors are 0.7313 (DRA-SSL), 0.8803 (RA-
SSL), and 1.7571 m (prior work) in Fig. 13(b). These results
show that the diffraction acoustic rays help to localize the source
better. We observe a 149% (clapping sound) and 140 % (human
speech) improvement over the prior work considering only direct
sound, and a 15% (clapping sound) and 18% (human speech)
improvement when we additionally consider the diffraction rays
compared to only utilizing the primary and reflection rays.

Especially, when the sound source becomes an NLOS source,
located in the invisible area in Fig. 11(b), from 20 to 80 s,
the average distance errors when adding diffraction rays, i.e.,
DRA-SSL, are 0.7336 m for the clapping sound and 0.7618 m
for the human speech, while the average distance errors of the
prior work and RA-SSL are 2.1515 (prior work, clapping sound),
2.3 (prior work, human speech), 0.7336 (RA-SSL, clapping
sound), and 0.7618 m (RA-SSL, human speech), respectively.
We observe a 193% (clapping sound) and 201% (human speech)
improvement compared to the prior work, and a 31% (clapping
sound) and 26% (human speech) improvement when adding the
diffraction rays compared to RA-SSL.

When the sound source is on the LOS from 0 to 20 s and
from 80 to 125 s, the averages of significant acoustic rays of our
approach per frame are 7.36 (primary), 9.52 (reflection), and
2.32 (diffraction) of the clapping sound, respectively, and 6.9

Fig. 14. Average distance errors and computation times for our method on an
Intel i7 6700 processor, as a function of the number of diffraction rays generated
for simulating the edge diffraction.

(primary), 9.79 (reflection), and 1.15 (diffraction) of the human
speech, respectively. When the sound source is occluded by the
obstacle, i.e., NLOS source, the averages of significant rays per
frame are 0.61 (primary), 9.3 (reflection), and 3.87 (diffrac-
tion) of the clapping sound, respectively, and 1.55 (primary),
3.83 (reflection), and 6.39 (diffraction) of the human speech,
respectively. Ideally, there should be neither diffraction rays
during LOS sources nor primary rays during NLOS sources,
respectively. However, in practice, primary rays generated im-
mediately after being occluded by the obstacle and diffraction
rays generated just before being occluded by the obstacle were
counted in significant primary acoustic rays in the NLOS source
cases and affect significant diffraction acoustic rays in the LOS
source cases.

The remarkable aspect is that the most primary acoustic rays
are blocked by the obstacle, and the effect of the diffraction rays
increases when the source is the NLOS state; the averages of
significant diffraction rays become larger compared to the LOS
source. Also, the average of significant diffraction rays of the
human speech is larger than the clapping since diffraction is a
low-frequency phenomenon.

B. Analysis of the Diffraction Acoustic Rays

To see effects of considering diffraction acoustic rays in
addition to the primary and reflection acoustic rays, we mea-
sure the accuracy as a function of the number of diffraction
acoustic rays Nd. As Nd increases from 0 to 9, we measure
the average distance errors and the average of calculation times
in the environment containing the obstacle using the clapping
sound (Fig. 14); the experimental setting with Nd = 0, i.e., no
diffraction rays, is the same as the one tested in Fig. 13(a).

The average distance errors are gradually reduced until Nd =
5, and the accuracy is almost converged after Nd = 5. The aver-
ages of calculation times increase linearly, as a function of Nd.
Since the accuracy changes after Nd = 5 are small enough, we
useNd = 5 across all the other experiments. Overall, we observe
29% improvement by using Nd = 5 over using no diffraction
rays; the average distance errors of Nd = 0 and Nd = 5 are
0.8112 and 0.6351 m, respectively.

The average running times for acoustic ray tracing and particle
filter are 6 and 11 ms; the total average running time is 17 ms
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Fig. 15. Environments with one moving source containing high absorption
materials, i.e., acoustic soundproofing foam consisting of a sponge, without and
with an obstacle. In (a) and (b), we replace part of the specular materials with
the diffuse materials from the environments in Fig. 11; the specular materials
are indicated by the green rectangles and the diffuse materials are indicated
by the blue rectangle. These walls strongly affect our approach, as the source
moves from the left end to the right end of the walls consisting of the specular
(green rectangles) and diffuse (blue rectangle) materials; many propagation paths
coming from the moving source to the microphone array interact with those
highlighted materials.

corresponding to the average calculation time at Nd = 5 in
Fig. 14.

C. Analysis of Specular and Diffuse Materials

In the previous environments (Section V-A), most materials,
such as a solid cement wall, a thick wooden floor, and a gypsum
board ceiling, have low absorption coefficients and tend to
generate specular reflections. We verify that most materials have
a coefficient of 0.1 or lower for all frequency bands using a
hand-held measurement device [59], [60].

In real environments, however, there can be diffuse materials,
e.g., carpets on the floor and curtains for windows, with high
absorption coefficients. These scenes can have fewer specular
materials, and the number of reflection propagation paths, espe-
cially those caused by diffuse materials, can therefore decrease.

To see how diffuse materials affect our algorithm, we set the
environment with a diffuse material, as shown in Fig. 15. We
attached diffuse materials, having almost absorption coefficient
of 1 for all frequency bands, to a part of the wall (the blue rect-
angle). Parts of the wall shown by the green and blue rectangles
in Fig. 15 are the candidates for causing the dominant reflection
propagation paths. We cover those walls by the diffuse material,
i.e., acoustic foam.

We tested those situations containing diffuse materials in
environments without and with an obstacle [Fig. 15(a) and (b)]
using the clapping sound. The corresponding distance errors are

Fig. 16. Distance errors, i.e., red graphs, in the environments in Fig. 15
containing diffuse materials without and with an obstacle.

shown in Fig. 16, where the average distance errors w/o and w/
an obstacle are 0.6176 and 0.6998 m, respectively. Because there
exist direct propagation paths and a sufficient amount of specular
materials in the environment without an obstacle in Fig. 15(a),
the average distance error, 0.6176 m, is similar to the average
distance error, 0.5967 m, of the environment consisting mainly
of specular materials in Fig. 12(a); there is only a 3% decrease
due to the added absorption materials.

In the scene containing the obstacle in Fig. 15(b), the average
distance error, 0.6998 m, deteriorates compared to the average
distance error, 0.6351 m, of the environment consisting of the
majority of specular materials in Fig. 13(a)—about a 10% de-
crease due to the added absorption materials. When the sound
source becomes an NLOS state and direct propagation paths
are blocked, the wall w/ the diffuse materials (blue rectangle)
becomes the main material to generate prominent propagation
paths. However, those prominent propagation paths cannot be
detected by our DoA estimator since most of the energy has
been absorbed by the diffuse materials, and this situation is the
reason for the deterioration in Fig. 16(b).

Even though the portion of specular materials decreases, our
approach shows reasonable localization accuracy compared to
the previous environments whose most materials are specular
materials: 3% and 10% decrease in both scenes. This graceful
degradation is achieved since our method still generates and
processes a similar number of acoustic rays. The averages of
total significant rays of environments containing absorption ma-
terials are 18.46 (w/o obstacle), 19.78 (LOS source w/ obstacle),
and 13.8 (NLOS source w/ obstacle), respectively; the detailed
results for primary, reflection, and diffraction rays are shown in
Table I. These values are similar to the previous environments
containing many specular materials, i.e., 16.83 (w/o obstacle),
19.2 (LOS source w/ obstacle), and 13.78 (NLOS source w/
obstacle), respectively. The sound propagation paths that are
absorbed by absorption materials and thus are not detected
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Fig. 17. Distance errors in the environment shown in Fig. 11 without and with
an obstacle when using a different microphone array and the DoA estimator: the
32 channel microphone array, i.e., Eigenmike and EB-MVDR beamformer.

by microphones are compensated by other propagation paths
caused by other specular materials, i.e., the green rectangles in
Fig. 15.

D. Compatibility w/ Different Microphone Arrays

So far, we basically utilized the eight-channel cube shape
microphone array with the DAS beamformer. To show that our
approach can be combined with different types of microphone
arrays and DoA estimators, we tested our method using the
32-channel microphone arrays [45] with EB-MVDR beam-
former [46] that is one of the state-of-the-art DoA estimators.

We tested the different microphone array and DoA estimator
in the environment without and with an obstacle (Fig. 11), and
distance errors are shown in Fig. 17. The distance errors w/ and
w/o an obstacle are 0.5946 and 0.6176 m, respectively. These
results tell us that our approach can work well based on different
types of the microphone array and DoA estimators; both average
distance errors are similar or slightly smaller compared to results
of the eight-channel microphone array and DAS beamformer,
i.e., 0.5967 and 0.6351 m. The reason why those results are
slightly better than the 8-channel microphone array is that the
32-channel microphone array has a higher number of channels,
i.e., 32 channels, with the state-of-the-art DoA estimators. Even
if the 32-channel microphone array has a better performance
compared to the 8-channel microphone array, our approach has
acceptable accuracies w/ the 8-channel microphone array, which
is much cheaper than the tested 32-channel microphone array.

E. Multiple Sound Sources

In general, localizing multiple sources is more difficult than
handling a single source, as reverberant sounds tend to accumu-
late as the number of sources increases. Moreover, our approach
can detect up toN different DoAs at a single frame [see (1)]. As a
result, the number of allocated rays for each source decreases as
there are more sources, and this can deteriorate the localization
accuracy. First, we show results in an environment with multiple
stationary sources (Fig. 18), remaining at fixed positions, and
then present results for multiple moving sources [Fig. 20(a)].

Multiple stationary sources: In a multiple stationary source
environment (Fig. 18), we conducted experiments on two scenes,
one with two stationary sources and another with three stationary

Fig. 18. Environment with multiple sources. We place up to three sound
sources in a room environment. Each red circle indicates a sound location, with
each source numbered as source 1, source 2, and source 3.

Fig. 19. Distance errors and amplitudes of the measured audio signals of
scenes with (a) two and (b) three stationary sources. Sound sources numbering
from 1 to 3 correspond to the sources, denoted by the red circles, in Fig. 18. The
distance errors of the sources are plotted using lines with different colors, and
the amplitudes of the measured audio signals are also presented.

sources. For the former, we place two sources at the positions
of sources 1 and 2, highlighted by red circles in Fig. 18, where
sources 1 and 2 emit clapping sounds and human speech, re-
spectively. For the scene with three stationary sources, we place
three sources at the positions of sources 1, 2, and 3 in Fig. 18,
where source 1 emits human speech, and sources 2 and 3 emit
clapping sounds. Sources 2 and 3 are active from 0 to 25 s and
from 30 to 70 s, respectively, and they are intermittent sound
sources.

The localization errors of two and three stationary sources
scenes are shown in Fig. 19. In the scene with two station-
ary sources, the average distance errors of our approach are
0.5947 (source 1) and 0.4306 m (source 2), and the average
distance errors of the prior work are 1.6712 (source 1) and
1.6662 m (source 2). In the scene with three stationary sources,
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Fig. 20. Environment of multiple moving sources in (a) and its accuracy in
(b). There are two moving sources, i.e., moving source 1 and 2, and they follow
trajectories. Both obstacles, i.e., the obstacles A and B, cause the nonline-of-sight
states of each moving source.

the average distance errors of our approach are 0.4263 (source
1), 0.4856 (source 2), and 0.5185 m (source 3), and the av-
erage distance errors of the prior work are 1.3286 (source 1),
1.717 (source 2), and 1.0551 m (source 3); sources 2 and 3 are
intermittent sound sources. These results demonstrate that our
approach can localize multiple sources reasonably well.

Especially, even if two audio signals coincide, our approach
can localize both overlapped signals separately, e.g., a case at 5 s
in Fig. 19(a) that is highlighted by a dotted box. Furthermore,
even if there are intermittent sound sources, i.e., the sources 2
and 3 in the three-source scene, our approach can distinguish
activation and inactivation of intermittent sources. In Fig. 19,
when the source 2 is active from 0 to 25 s, and the source 3
is active from 30 to 70 s, our approach only localizes source
positions when sources are active and does not react properly to
inactivated sources.

Multiple moving sources: For testing our approach to the
scene with multiple moving sources, we place two sources in
Fig. 20(a), and they follow their trajectories, where sources 1
and 2 emit clapping sound and human speech, respectively. We
also put two obstacles between moving sources and the robot to
build a more challenging environment; both obstacles block the
direct propagation paths of each source.

Distance errors of multiple moving sources are shown in
Fig. 20(b). The average distance errors of our approach are
0.7689 (source 1) and 0.7246 m (source 2). Since this sce-
nario containing multiple moving sources is challenging, these
errors are higher than single-source scenarios in Fig. 13(a).
The accuracy of moving source 1 (clapping sounds) is 17%
decreased compared to the one moving source scene containing

Fig. 21. (a) Another testing environment with a small size of 7 m × 3.5 m in
area and with a 3-m height. Red circles denote tested different source positions
whose distance from the robot varies from 1.25 to 4 m by a 0.25-m interval. (b)
Average distance errors at different source positions. The vertical lines represent
the one standard deviation of the average distance errors.

the obstacle with clapping sounds [Fig. 11(b)]; the environment
setups of both experiments are almost the same, i.e., the same
obstacle size and the similar trajectory of the source. Since
multiple sources generate more reverberant sounds and the total
number of generated rays for each source decreases, the accuracy
of moving source 1 becomes worse.

The average distance errors of the prior work is presented in
Table II: 1.36 (source 1) and 1.812 m (source 2). Compared to
the average distance errors of the prior work, we can observe that
our approach shows better result; 76% and 150% improvement
for sources 1 and 2, respectively.

F. Different Environment Sizes

Thus far, we have tested our approach in environments of
identical dimensions, i.e., 7 × 7 m in area and with a 3-m height.
To determine how different sizes of the environment affect our
method, we conducted an experiment in a room that is 7 × 3.5 m
in size and with a height of 3 m as shown in Fig. 21(a). We
also measured localization accuracy by increasing the distance
between the robot and the source from 1.25 to 4 m.

Fig. 21(a) shows 12 locations of sound sources from the
sources 1 to 12; two adjacent sources have the same distance
interval of 0.25 m. We place the sound source at one of the
source locations, and the source emits the clapping sound for 20
s. To demonstrate the benefits of our approach, we also tested
the prior work and our approach. The accuracy of the two cases
are shown in Fig. 21(b).
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We observe that our method helps to improve the accuracy of
SSL by using acoustic rays since all average distance errors of
our approach are smaller than the prior work. By increasing
the distance between the robot and the source, the accuracy
generally deteriorates in both cases.

The prior work utilizes the time differences of arrival sound
to each microphone to estimate the distance between the micro-
phone array and the source. As the source becomes far away
from the microphone array, the change in the time differences
of arrival sound decreases. Thus, it becomes difficult to ac-
curately estimate the distance between the microphone array
and the source from time differences; the localization accuracy
decreases in longer distances, as reported in Fig. 21(b).

In our case, this is attributed by the accumulated propagation
errors of acoustic ray paths caused by various noises, e.g., sensor
noises of the laser scanner, audio noises of microphones, and
odometry noises of the mobile robot. These noises adversely
affect our localization algorithm and cause propagation errors in
our approach. Nonetheless, our approach shows the better and
stable accuracy compared to the prior work only considering
direct sound.

G. Navigating to the NLOS Source

We expect that our approach can be applied to various tasks in
robotics. Especially, our approach is useful in cases of containing
an NLOS source; the vision-based localization approaches do
not deal with these cases due to the occlusion by obstacles.
Assuming that a user orders the robot to bring something, e.g., a
cup of water, the robot has to detect and localize the user and then
navigate to the location of the user. If there is an obstacle between
the user and the robot, the vision sensor does not see the user,
but the sound can be heard through indirect sound propagation;
sound becomes very crucial information in the NLOS source
cases.

We applied our approach to the navigation task. When the
source emits the clapping sound at a specific goal position, which
is unknown for the robot, the robot localizes the source and nav-
igates to the estimated goal position by our localization method.
To simulate the NLOS case, the sound source is occluded by an
obstacle [Fig. 22(a)], and we tested our method and the prior
work to localize the source.

If localization methods, i.e., our approach and prior work,
produce the estimated source position for 2 s, the robot sets an
estimated goal position as the mean of estimated source positions
of localization methods; the duration of the clapping sound is
about 2 s. During the navigation tasks, the sound source plays
the sound clip three times periodically in order to show the
localization result over the different robot positions. The robot
stops navigation process once the distance to the estimated goal
position is less than 1 m.

We utilize Jackal as a mobile robot platform. Jackal provides
the open source of the navigation in the ROS system, and we
use this open source in this experiment where the linear and
angular velocities are 0.1 m/s and 0.314 rad/s, respectively, the
linear and angular accelerations are 2.0 m/s2 and 4.0 rad/s2,
respectively, and other parameters are set to default values. The

Fig. 22. (a) Test environment for the navigation task to the NLOS source. (b)
and (c) Results of our navigation tasks and those of the prior work, respectively.
The blue cubes denote the reference goal position generating a clapping sound,
and red spheres represent the estimated goal position at each time. The purple
lines are the computed trajectory of the robot, given the start point (green circle)
and the end point (purple circle).

microphone array is the same eight-channel cube-shaped type
as in previous experiments.

The results of our navigation tasks and those of the prior work
are shown in Fig. 22(b) and (c). We observe that the robot can
reach the reference goal position at 57 s, given our localization
approach, as shown in Fig. 22(b). On the other hand, the robot
with the prior work does not consider indirect sound paths,
failing in reaching the reference position; the navigation task
of the prior work is stopped at 50 s. Especially, the estimated
goal positions of our approach are gradually getting close to the
reference goal position; the distance errors of estimated goals 1,
2, and 3 are 1.5292 m at 11 s, 0.659 m at 27 s, and 0.3361 m
at 42 s, respectively. The estimated goal positions of the prior
work get worse while the robot moves closely to the obstacle;
the distance errors of estimated goals 1, 2, and 3 are 1.9397 m
at 4 s, 2.09 m at 23 s, and 2.1669 m at 40 s, respectively.
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The prior work that considers only direct sound was not able to
handle the NLOS case caused by the obstacle, but our approach
can reach the destination, i.e., the NLOS source, mainly thanks
to the consideration of diffraction.

VI. CONCLUSION

In this article, we presented a novel reflection- and diffraction-
aware SSL algorithm by utilizing acoustic ray tracing and MCL
for multiple sound sources. Our approach can also localize
NLOS sound sources and model diffraction using the UTD. We
evaluated our method in various scenarios with static and moving
single or multiple sources using different sound signals. We also
analyzed the properties of our method across a diverse set of
configurations with different materials, room sizes, beamform-
ing algorithms, etc. We applied our approach to the navigation
task and confirmed the usefulness of our approach.

While we have demonstrated the benefits of our approach, it
has some limitations that need to be addressed by future work.
The UTD model is an approximate model and is mainly designed
for infinite wedges. Its accuracy can deteriorate on obstacles
that have smooth surfaces. More accurate wave-based diffraction
models can be used to deal with this problem, but achieving
real-time performance remains as a main technical challenge.

Our approach works based on interactions, i.e., reflection
and diffraction, with obstacles and is not suitable for outdoor
environments where we do not have obstacles causing interac-
tion. As mentioned in Section V-E, our method may not work
properly when reverberation becomes prominent. This issue can
be mitigated by utilizing semantic information of sound signal
that each sound source carries. Overall, we believe that the
proposed work takes a meaningful step for SSL, and considering
the aforementioned issues can open up new research directions.
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