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Abstract

This paper introduces the first two pixel retrieval bench-
marks. Pixel retrieval is segmented instance retrieval. Like
semantic segmentation extends classification to the pixel
level, pixel retrieval is an extension of image retrieval and
offers information about which pixels are related to the
query object. In addition to retrieving images for the given
query, it helps users quickly identify the query object in true
positive images and exclude false positive images by de-
noting the correlated pixels. Our user study results show
pixel-level annotation can significantly improve the user ex-
perience. Compared with semantic and instance segmenta-
tion, pixel retrieval requires a fine-grained recognition ca-
pability for variable-granularity targets. To this end, we
propose pixel retrieval benchmarks named PROxford and
PRParis, which are based on the widely used image re-
trieval datasets, ROxford and RParis. Three professional
annotators label 5,942 images with two rounds of double-
checking and refinement. Furthermore, we conduct exten-
sive experiments and analysis on the SOTA methods in im-
age search, image matching, detection, segmentation, and
dense matching using our pixel retrieval benchmarks. Re-
sults show that the pixel retrieval task is challenging to
these approaches and distinctive from existing problems,
suggesting that further research can advance the content-
based pixel-retrieval and thus user search experience. The
datasets can be downloaded from this link.

1. Introduction

Image retrieval is a long-standing and fundamental com-
puter vision task and has achieved remarkable advances.
However, because the retrieved ranking list contains false
positive images and the true positive images contain com-
plex co-occurring backgrounds, users may be difficult to
identify the query object from the ranking list. In this paper,
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Figure 1. Example scenarios of image retrieval and pixel retrieval
for the same query image. Pixel retrieval offers pixel-level anno-
tation (red outlines) on the target object. Our user study shows
that pixel retrieval can significantly improve the user experience
(Sec. 3). Yellow boxes in the searched results indicate the ground
truth ones. You can check our user study from this link. To start
the user study, please enter any character into the “unique Prolific
ID” blank.

we execute a user study and show that providing pixel-level
annotations can help users better understand the retrieved
results. Therefore, this paper introduces the pixel retrieval
task and its first benchmarks. Pixel retrieval is defined
as searching pixels that depict the query object from the
database. More specifically, it requires the machine to rec-
ognize, localize, and segment the query object in database
images in run time, as shown in Figure 1.

Similar to semantic segmentation, which works as an ex-
tension of classification and provides pixel-level category
information to the machines, pixel retrieval is an exten-
sion of image retrieval. However, pixel retrieval differs
from existing semantic segmentation [11, 62, 21] in two as-
pects: the fine-grained particular instance recognition and
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the variable-granularity recognition.
On the one hand, pixel retrieval asks the machine to con-

sider the fine-grained information to segment the same in-
stance with the query, e.g., segment the particular query
building in the street figures that contain many similar build-
ings. This is different from existing semantic segmenta-
tion [11] and instance segmentation [21, 62]. Semantic seg-
mentation only requires the category level information, e.g.,
to segment all the buildings in the street figures. On top of
semantic segmentation, instance segmentation additionally
requires demarcating individual instances, e.g., segmenting
all the buildings and giving the boundary of each building
separately. However, instance segmentation does not distin-
guish the differences among the buildings [62, 21, 4].

On the other hand, pixel retrieval requires adjusting
the recognition granularity as needed. The query image
can be the whole building or only a part of the build-
ing. The search engine should understand the intention
of the query and adjust the segmentation granularity in
demand. This differs from existing segmentation bench-
marks [62, 7, 19, 8, 10], where the recognition granular-
ity is fixed in advance. Therefore, the pixel retrieval task
is supplementary to semantic and instance segmentation by
considering the recognition and segmentation featured with
fine-grained and variable-granularity properties, which are
also fundamental visual abilities of humans.

In order to promote the study of pixel retrieval, we cre-
ate the pixel retrieval benchmarks Pixel-Revisited-Oxford
(PROxford) and Pixel-Revisited-Paris (PRParis) on top of
the famous image retrieval benchmarks Revisited-Oxford
(ROxford) and Revisited-Paris (RParis) [30, 31, 33]. There
are three reasons to use ROxford and RParis as our base
benchmarks. Firstly, they are notoriously difficult and can
better reflect the search engines’ performance. Secondly,
each query in these datasets has up to hundreds of positive
images, so they are suitable for evaluating the fine-grained
recognition ability. Thirdly, every positive image is guar-
anteed to be identifiable by people without considering any
contextual visual information [33].

We provide the segmentation labels to a total of 5,942
images in ROxford and RParis. To ensure the label quality,
three professional annotators independently label the query-
index pairs and then refine and check the labels. The anno-
tators are aged between 26 to 32 years old and have worked
full-time on annotation for over two years. We then design
new metrics, mAP@50:5:95, and mAP, to evaluate the pixel
retrieval performance (Section 2).

We provide an extensive comparison of State-Of-The-
Art (SOTA) methods in related fields, including image
search, detection, segmentation, and dense matching with
our benchmarks. We have some interesting findings from
the experiment. For example, we find the SOTA spatial ver-
ification methods [6, 28] give a high inlier number to some

true query-index pairs but match the wrong regions. We find
the dense and pixel-level approaches [25, 52] helpful for the
pixel retrieval task. Most importantly, our results show that
pixel retrieval is difficult and further research is needed for
advancing the user experience on the content-based search
task.

Our contributions are as follows:

• We introduced the pixel retrieval task and provided the
first two landmark pixel retrieval benchmarks, PROx-
ford and PRParis. Three professional annotators la-
beled, refined, and checked the labels.

• We executed the user study and showed that the pixel
level annotation could significantly improve user expe-
rience.

• We performed extensive experiments with SOTA
methods in image search, detection, segmentation, and
dense matching. Our experiment results can be used as
the baselines for future study.

2. Content-based pixel retrieval
2.1. Why Revisited Oxford and Paris?

We design the first content-based pixel retrieval bench-
marks, PROxford and PRParis, directly on top of the fa-
mous image retrieval benchmarks Revisited-Oxford (ROx-
ford) and Revisited-Paris (RParis) [30, 31, 33]. Oxford [30]
and Paris [31] are introduced by Philbin et al. in 2007 and
2008, respectively. Their images are obtained from Flickr
by searching text tags for famous landmarks in Oxford Uni-
versity and Paris. Radenovic et al. [33] refined the annota-
tions and updated more difficult queries for them in 2018;
the refined datasets are called ROxford and RParis.

We choose ROxford and RParis because they are among
the most popular image retrieval benchmarks. Many well-
known image retrieval methods are evaluated on them, from
the traditional methods like RootSIFT [2], VLAD [13], and
ASMK [48], to the recent deep learning based methods like
R-MAC [48], GeM [34], and DELF [28].

These datasets are the ideal data sources for our pixel-
retrieval, thanks to several properties. Firstly, compared
to other famous datasets like image matching Photo-
tourism [14] and dense matching Megadepth [18], the pos-
itive image pairs in ROxford and RParis have severe view-
point changes, occlusions, and illumination changes. The
new queries added by Radenovic et al. [33] have cropped
regions that cause extreme zooms with the positive database
images. These properties make the ROxford and RParis no-
toriously difficult. Secondly, each query image contains
up to hundreds of positive database images, while other
datasets, such as UKBench [27] and Holiday [12], only have
4 to 5 positive images for each query. A large amount of



challenging positive images are suitable for evaluating fine-
grained recognition ability.

The Google Landmark Dataset (GLD) [55] encompasses
more landmarks than ROxford and RParis. However, ROx-
ford and RParis outshine GLD in labeling quality. Notably,
they stand as distinct benchmarks for contrasting machine
and human recognition prowess.

It is known that people cannot easily recognize an ob-
ject if it changes its pose significantly [32], but we do not
know where the limit is. ROxford and RParis are the only
existing datasets that can reflect the human ability to
identify objects in the landmark domain to the best of our
knowledge. Every positive image in ROxford and RParis is
checked by five annotators independently based on the im-
age appearance, and all the unclear cases are excluded [33].
This kind of annotation has two benefits. Firstly, although
these benchmarks are difficult, the positive images are guar-
anteed to be identifiable by people without considering any
contextual visual information [33]. This shows the pos-
sibility of enabling the machine to recognize these posi-
tive images by only analyzing the visual clue in the given
query-index image pair. Secondly, these datasets can be
used to compare human and machine recognition perfor-
mance; human-level recognition performance should iden-
tify all the positive images. Although the classification per-
formance (the top 5 accuracy) of machines on ImageNet has
surpassed that of humans [37], the SOTA identification abil-
ity about the first-seen objects in ROxford and RParis is still
far from human-level [17, 1, 6].

2.2. From image retrieval to pixel retrieval

In a similar spirit that semantic segmentation works as an
extension of classification and provides pixel-level category
information to the machines, pixel retrieval is an extension
of image retrieval. It offers information about which pix-
els or regions are related to the query object. This task is
very helpful when only a small region of the positive im-
age corresponds to the query. Such situations frequently
happen in many image retrieval applications, such as web
search [33, 16, 20], medical image analysis [24, 5, 57], ge-
ographical information systems [61, 63, 42], and so on. We
discuss the related applications in Section 3. Distinguish-
ing and segmenting the first-seen objects is also one basic
function of human vision system [43]; it is meaningful to
understand and automate this ability.

Some previous works also noticed the importance of
localizing the query object in the searched image. They
have tried to combine image search and object localiza-
tion [16, 20, 40]. However, due to the lack of a challenging
pixel retrieval benchmark, they show only the qualitative
result instead of the quantitative performance. Pixel-level
labeling and quality assurance are arduous. In this work,
5,942 images are labeled, refined, and checked by three pro-
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Figure 2. Labeling process (please zoom in for details).

fessional annotators. We hope this benchmark can boost
and encourage future research on pixel-level retrieval.

We also compare our pixel-retrieval benchmark with seg-
mentation, image matching, and dense matching bench-
marks in the supplementary material.

2.3. Pixel-level annotation

Images to annotate. ROxford and RParis each contains 70
queries. The 70 queries are divided into 26 and 25 query
groups in ROxford and RParis, respectively, based on the
visual similarity; queries in the same query group share
the same ground truth index image list. There are total
1,985 and 3,957 images to annotate for our PROxford and
PRParis, respectively.
Mask annotation. Figure 2 shows our labeling process.
Researchers with a computer vision background first anno-
tate the target object in each query image. Each annotator
for our new benchmark observes all the queries with masks
in a query group and labels the segmentation mask for the
images in the ground-truth list. Annotators are asked to
identify the query object in the labeling image first and then
label all the pixels depicting the target object. We show the
query masks and the labeling instruction details in the sup-
plementary materials.
Objectivity. To ensure the pixel retrieval task and our
benchmark are objectively defined, we adopt two ap-
proaches. Firstly, we use query masks to distinctly iden-
tify the target objects and segregate them from the back-
ground (e.g., the sky), occlusions (e.g., other buildings),
and the remaining part of the same building if the object
is only a small part of it. These masks guide the removal
of background and indicate the query boundary. Secondly,
by examining the query with masks, our annotators reach
a consensus on the target object and its boundary, thereby
avoiding disagreement about our query intention. This
consensus-based approach is a common method for reduc-
ing subjectivity in recognition tasks; it is also employed in
the original ROxford and RParis benchmarks, where vot-
ing is used to determine the final ground truth for each
query [33].

We retain small-sized occlusion objects, like windows



and fences, during annotation. While this may involve sub-
jective judgments regarding what qualifies as a small-sized
occlusion, it is worth noting that well-known semantic seg-
mentation datasets like VOC [8] and COCO [19] also in-
volve subjective elements, such as identifying objects on a
table as a table or the background behind the bike wheel as a
bike. Such subjectivities are inevitable, given the difficulty
of removing them. Nonetheless, they do not diminish the
usefulness of benchmarks as reliable metrics for evaluating
state-of-the-art methods. We include in the supplementary
materials our mask rules, all the queries with masks, and
our consensus checking.
Quality assurance. To improve the annotation quality, ev-
ery query-index image pair labeling is performed by three
professional annotators following the three steps: 1) anno-
tate; 2) refine + inspect; 3) refine + insp, as shown in Fig-
ure 2. The three annotators are aged between 26 to 32
years old and have worked on annotation full-time for over
2 years. Their works have been qualified in many annota-
tion projects.

2.4. Evaluation metrics

Pixel retrieval from the database. Pixel retrieval aims to
search all the pixels depicting the query object from the
large scale database images. An ideal pixel retrieval algo-
rithm should achieve the image ranking, reranking, localiza-
tion, and segmentation simultaneously. To the best of our
knowledge, there is no existing pixel retrieval metric yet.
Detection and segmentation tasks usually use mIoU and
mAP@50:5:95 as the standard measurement [36]. Image
retrieval methods commonly use mAP as the metric [33].
We combine them to evaluate the ranking, localization, and
segmentation performance in pixel retrieval. Each ground-
truth image in the ranking list is treated as a true-positive
(TP), only if its detection or segmentation Intersection over
Union (IoU) is larger than a threshold n. The other pro-
cess of calculating AP and mAP follows the traditional im-
age search mAP. Note that the mAP calculation methods in
image search and traditional segmentation [8] are different;
image search focuses more on ranking. Similar to detec-
tion and segmentation fields, the threshold n is set from 0.5
to 0.95, with step 0.05. The average of scores under these
thresholds are the final metric mAP@50:5:95. It is desirable
to report both detection and segmentation mAP@50:5:95
for the methods that can generate pixel-level results; high
segmentation performance does not necessarily lead to high
localization performance, as shown in Sec 5. We follow
the medium and hard protocols in ROxford and RParis [33]
with and without 1 M distractors.
Pixel retrieval from ground-truth query-index image
pairs. We can use existing ranking/reranking meth-
ods and treat the remaining process as one-shot detec-
tion/segmentation. In this case, the detection or segmen-

tation performance is evaluated using the mean of mIoU of
all the queries, where mIoU is the mean of the IoUs for all
the ground-truth index images. We do not consider the false
pairs because the ranking metric mAP well reflects the in-
fluence of false pairs in the ranking list.

3. Applications of pixel retrieval

Pixel retrieval requires the machine to recognize, local-
ize, and segment a particular first-seen object, which is one
of the fundamental abilities of the human visual system. It is
useful for many applications. In this section, we first show
that it can significantly improve the user experience in web
search. We then discuss how pixel retrieval can help image-
level ranking techniques. Finally, we introduce some other
applications that may also benefit from pixel retrieval.
Web search user experience improvement. Modern im-
age retrieval techniques focus on improving the image-level
ranking performance of hard cases, such as images under
extreme lighting conditions, novel views, or complicated
occlusions. However, users may not easily perceive a hard
case as a true positive, even if it is at the top of the ranking
list. We claim that pixel-level annotation can significantly
improve the user experience on the web search application.

To see how pixel-level annotation improves the user ex-
perience on image search, we ran a user study where users
were asked to find images that contain a given target among
candidate images in two different conditions; the one with
pixel-level annotations (i.e., Pixel retrieval) and the other
with no annotations (i.e., Image retrieval). We recruited
40 participants on Prolific1 and compared the time taken
to complete the task between the two conditions.

Participants were asked to complete 16 questions in to-
tal, where eight of them were Pixel retrieval and the other
eight were Image retrieval. We divided the participants into
four groups and counterbalanced the type of questions (Fig-
ure 3). For each question, participants were given a query
image and 12 candidate images. There were three true pos-
itives and nine false positives in the candidate images, and
we randomly chose ground truth images of other queries as
false positives. We shuffled the order of the candidate im-
ages and asked participants to choose three images that con-
tain the query image (i.e., true positives) among them. Fig-
ure 1 shows one of the 16 questions. You can check our user
study from this link. To start the user study, please enter any
character into the “unique Prolific ID” blank. Anonymity is
guaranteed.

Our results show that participants completed the task
faster when the pixel-level annotations were presented
(mean=37.07s, std=49.76s) than when no annotations
were presented (mean=53.71s, std=80.08s). The differ-
ence between two conditions is statistically significant (T-

1prolific.co
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Figure 3. Design of the study on web search user experience. Im-
age retrieval refers to a setting where no annotations are provided,
whereas Pixel retrieval refers to a setting where pixel-level anno-
tations are provided. 40 participants were divided into four groups
and we counterbalanced the type of questions across the groups.
Numbers 1 to 16 indicate the 16 questions.

test, p-value=0.00091), and participants responded that
it was helpful to see annotations in completing the task
(mean=6.375/7, std=0.89).
Other applications. Image retrieval techniques have been
applied to many applications, such as medical diagnosis and
geographical information systems (GIS). The pixel-level re-
trieval is also desirable for these applications. For exam-
ple, the size of medical and geographical images are usu-
ally huge, and the doctors and GIS experts are interested in
retrieving regions of the particular structures or landmarks
from the whole images in the database [57, 5, 24, 63].

Pixel retrieval can also help image matting [54, 56, 60].
Current image matting techniques rely on the user’s click
to confirm the target matting region [54, 56, 60]. Our pixel
retrieval provides a new interaction method: deciding the
target object based on the query example. This query-based
interaction can significantly reduce user effort in situations
where many images depict the same object [41].

4. Experiment
We evaluate the performance of state-of-the-art (SOTA)

methods in multiple fields on our new pixel retrieval bench-
marks. Our new pixel retrieval task is a visual object recog-
nition problem. It requires the search engine to automate the
human visual system’s ability to identify, localize, and seg-
ment an object under illumination and viewpoint changes.
It can be seen as a combination of image retrieval, one-shot
detection, and one-shot segmentation. We introduce these
related tasks and their SOTA methods in this section, and
we implement these SOTA methods and discuss their re-
sults in Section 5.

4.1. Localization in retrieval

Some pioneering works [16, 20, 40] in image retrieval
emphasized the importance of localization and tried to com-
bine the retrieval and detection methods. However, due to
the lack of a standard pixel retrieval benchmark, these pi-
oneering works only showed qualitative results instead of
quantitative comparisons. In this paper, we implement and

compare the SOTA localization-related retrieval methods on
our new benchmark dataset. They can be divided into two
categories: spatial verification (SP) and detection.

SP [40, 23, 2, 28, 6] is one of the most popular rerank-
ing approaches in image retrieval. It is also known as image
matching [14]; SP and stereo task in Image Matching Chal-
lenge (IMC) [14] share the same pipeline and theory except
for the final evaluation step. In this work, we selected the
local features and matching hyperparameters with the best
retrieval performance on ROxford and RParis, which con-
tain more challenging cases than datasets in IMC.

SP compares the spatial configurations of the visual
words in two images. Theoretically, it can achieve verifica-
tion and localization simultaneously. However, the image-
level ranking performance cannot fully reflect the SP ac-
curacy or localization performance. In the hard positive
cases, e.g., where many repeated patterns exist in the back-
ground, even though SP generates a high inlier number and
ranks an image on top of the ranking list, the matched visual
words can be wrong due to the repeated patterns. Our pixel
retrieval benchmark can not only evaluate the localization
performance, but also better reflect the SP accuracy and be
helpful for future SP studies.

Researchers mainly focus on generating better local fea-
tures to improve SP performance. The classical local fea-
tures have SIFT [23], SUFT [3], and rootSIFT [2]. Re-
cently, DELF [28] and DELG [6] local features, which are
learned from the large landmarks training set [55], achieve
the SOTA SP result. We evaluate the SP performance with
SIFT, DELF, and DELG features on our new benchmark
datasets in this paper.

Another localization-related image search approach is to
directly apply the detection methods [16, 20, 35, 36, 53, 44,
45]. Faster-RCNN [36] and SSD detector [22] fine-tuned on
a huge manually boxed landmark dataset [45] achieve the
SOTA detect-related retrieval result [45]. Detect-to-retrieve
(D2R) [45] uses these fine-tuned models to detect several
landmark regions for a database image and uses aggregation
methods like the Vector of Locally Aggregated Descriptors
(VLAD) [13] and the Aggregated Selective Match Kernel
(ASMK) [46] to represent each region. To better check the
effect of the aggregation methods, we also implement the
Mean aggregation (Mean), which simply represents each re-
gion using the mean of its local descriptors. The region with
highest similarity can be seen as the target region for a given
query. We evaluate the combination of different detectors
and aggregation methods on our pixel retrieval benchmarks.

4.2. One-shot detection and segmentation

We can treat pixel retrieval as combining image retrieval
and one-shot detection and segmentation. We test the per-
formance of these approaches.

The Vision Transformer for Open-World Localization



(OWL-ViT) [26] is a vision transformer model trained on
the large-scale 3.6 billion images in LiT dataset [59]. It
has shown the SOTA performance on several tasks includ-
ing one-shot detection. The One-Stage one-shot Detec-
tor (OS2D) combines and refines the traditional descriptor
matching and spatial verification pipeline in image search
to do the one-shot detection. It achieves impressive detec-
tion performance in several domains, e.g., retail products,
buildings, and logos. We test these two detection methods
on our new benchmarks.

The Hypercorrelation Squeeze Network (HSNet) [25]
is one of the most famous few-shot segmentation meth-
ods. It finds multi-level feature correlations for a new class.
The Mining model (Mining) [58] exploits the latent novel
classes during the offline training stage to better tackle the
new classes in the testing time. The Self-Support Prototype
model (SSP) [9] generates the query prototype in testing
time and uses the self-support matching to get the final seg-
mentation mask. The self-support matching is based on one
of the classical Gestalt principles [15]: pixels of the same
object tend to be more similar than those of different ob-
jects. It achieves the SOTA few-shot segmentation results
on multiple datasets. We evaluate these three methods on
our new pixel retrieval benchmarks.

4.3. Dense matching

Different from image matching (SP in this paper), which
calculates the transformation between two images of the
same object from different views, dense matching focuses
on finding dense pixel correspondence. We check if we
can use the SOTA dense matching methods to correctly find
the correspondence points for pixels in the query image and
achieve our pixel retrieval target.

GLUNet [50] and RANSAC-flow [39] are popular
among many famous dense matching methods. Recently,
Truong et al. have shown that the warp consistency objec-
tive (WarpC) [52] and the GOCor module [49] can further
improve the performance and achieve the new SOTA. An-
other popular method is PDC-Net [51]. It can predict the
uncertainty of the matching pixels. The uncertainty can be
useful for our pixel retrieval task, which is sensitive to the
outliers. We test the origin GLUNet, GLUNet with WarpC
(WarpC-GLUNet), GLUNet with GOCor module (GOCor-
GLUNet), and PDC-Net in Table 1.

4.4. Experiment detail

We try our best to find the best possible result for each
method on our novel benchmark. The retrieval localization
methods employed in this study, including image matching
(SP in this paper) and D2R, were configured to achieve op-
timal performance on ROxford and RParis. These methods
rely on precise localization to enhance image retrieval per-
formance. Thus, we adopt the same experimental configu-

rations in our similar pixel retrieval benchmark. Similarly,
dense matching methods, which encompass geometric and
semantic matching tasks, are expected to operate directly
on our pixel retrieval benchmark, as per task definitions.
We evaluate its geometric models with the best performance
on MegaDepth [18] and ETH3D [38], datasets that feature
actual building images, rendering them the ideal valid sets
for our benchmark. The difference is that our dataset con-
tains more extreme viewpoints and illumination changes.
Moreover, we evaluate the performance of semantic mod-
els to see if including semantic information can enhance
rigid body recognition in our benchmarks. We refrained
from fine-tuning the segmentation methods as there is no
segmentation training set pertaining to the building domain
to the best of our knowledge. Our comprehensive exper-
imental findings can be employed as baseline metrics for
future comparisons. We include the detailed experimental
configurations for each method in the supplementary mate-
rials and intend to make them, along with their codes, pub-
licly available.

5. Results and discussion
We report the results of pixel retrieval from ground-truth

image pairs (mean of mIoU) for all the above mentioned
methods in Table 1. We choose one to two representa-
tive methods for each field and show their qualitative re-
sults in Figure 4. To evaluate the performance of pixel
retrieval from database, we combine these methods with
SOTA image level ranking and reranking methods: DELG
and hypergraph propagation (HP) [1]. We show their final
mAP@50:5:95 in Table 2.

Although SP achieves impressive image-level retrieval
results [6, 28], it shows suboptimal performance on pixel re-
trieval. We observe some true positive pairs where SP gives
a high inlier number but matches the wrong regions. For
example, in the first easy case in Figure 4, SP with DELG
features generates 19 inliers, but none of the inliers are in
the target object region. Note that 19 inlier number is high
and only 4 false positive images are ahead of the this easy
case in the final DELG reranking list [6]. This is not to say
DELG is bad; in fact, its matching results are quite good in
most cases. We choose this striking example only to show
that the image-level ranking performance is not enough to
reflect the SP accuracy. Our pixel retrieval benchmarks can
be used to evaluate the matched features’ locations of SP.

For SP, both deep-learning features DELF and DELG
significantly outperform the SIFT features. Interestingly, al-
though DELG shows better image retrieval performance [6]
than DELF, it is slightly inferior to DELF in the pixel re-
trieval task. One reason might be that though DELG gener-
ates more matching inliers for the positive pairs than DELF,
these inliers tend to exist in a small region and do not reflect
the location or size of the target object. Improving SP per-



Table 1. Results of pixel retrieval from ground truth query-index image pairs (% mean of mIoU) on the PROxf/PRPar datasets with both
Medium and Hard evaluation protocols. D and S indicate detection and segmentation results respectively. Bold number indicates the best
performance in each field; red number indicates the best performance throughout all fields.

Method
Medium Hard

PROxf PRPar PROxf PRPar
D S D S D S D S

Localization methods in retrieval
SIFT+SP [30] 10.5 3.9 14.0 5.1 7.1 2.4 12.4 4.3
DELF+SP [28] 14.5 5.5 21.3 7.5 9.4 4.1 16.7 5.5
DELG+SP [6] 13.8 5.2 18.6 7.2 8.9 2.9 13.6 4.9
D2R [45]+Resnet-50-Faster-RCNN+Mean 20.2 - 29.6 - 16.7 - 27.4 -
D2R [45]+Resnet-50-Faster-RCNN+VLAD [13] 25.8 - 37.5 - 21.6 - 35.5 -
D2R [45]+Resnet-50-Faster-RCNN+ASMK [47] 26.3 - 38.5 - 21.6 - 35.6 -
D2R [45]+Mobilenet-V2-SSD+Mean 19.7 - 25.9 - 20.1 - 27.9 -
D2R [45]+Mobilenet-V2-SSD+VLAD [13] 23.1 - 33. - 20.9 - 33.6 -
D2R [45]+Mobilenet-V2-SSD+ASMK [47] 22.4 - 34.0 - 20.8 - 33.1 -

One-shot detection and segmentation methods
OWL-VIT (LiT) [26] 11.4 - 18.0 - 6.3 - 15.0 -
OS2D-v2-trained [29] 10.5 - 13.7 - 11.7 - 14.3 -
OS2D-v1 [29] 7.0 - 8.5 - 8.7 - 9.2 -
OS2D-v2-init [29] 13.6 - 15.4 - 14.0 - 15.1 -
SSP (COCO) + ResNet50 [9] 19.2 34.5 31.1 48.7 15.1 25.3 29.8 41.7
SSP (VOC) + ResNet50 [9] 19.7 34.3 31.4 48.8 16.1 26.1 30.3 40.4
HSNet (COCO) + ResNet50 [25] 23.4 32.8 37.4 41.9 21.0 25.7 34.7 36.5
HSNet (VOC) + ResNet50 [25] 21.0 29.8 31.4 39.7 17.1 23.2 29.7 34.9
HSNet (FSS) + ResNet50 [25] 30.5 35.7 39.4 40.2 22.7 25.1 34.7 32.8
Mining (VOC) + ResNet50 [58] 18.3 30.5 29.6 42.7 15.1 21.4 28.1 34.3
Mining (VOC) + ResNet101 [58] 18.1 28.6 29.5 40.0 14.2 20.4 28.2 34.4

Dense matching methods
GLUNet-Geometric [50] 18.1 13.2 22.8 15.2 7.7 4.6 13.3 7.8
PDCNet-Geometric [51] 29.1 24.0 30.7 21.9 20.4 15.7 20.6 12.6
GOCor-GLUNet-Geometric [49] 30.4 26.0 33.4 25.6 20.8 16.0 19.8 13.3
WarpC-GLUNet-Geometric (megadepth) [52] 31.3 25.4 36.6 27.3 21.9 15.8 26.4 17.3
WarpC-GLUNet-Geometric (megadepth stage1) [52] 23.5 19.3 28.1 20.7 13.2 8.9 17.0 10.9
GLUNet-Semantic [50] 18.5 14.4 22.4 15.6 8.7 5.6 12.8 7.8
WarpC-GLUNet-Semantic [52] 27.5 21.4 36.8 25.7 18.5 11.9 28.3 17.6

formance in both image and pixel level can be a practical
research topic.

Although the detect-2-retrieval [45] is inferior to SP in
image retrieval [6, 28, 33], it shows better performance than
SP in our pixel-level retrieval benchmarks. We conjecture
that the detection models tend to cover the whole build-
ing more than SP. Our benchmark is helpful in checking
this conjecture and designing a better pixel retrieval model
for future works. The results of the region detector and
the aggregation method are similar to the trend in image
search [45]. The VLAD and ASMK aggregation meth-
ods significantly improve the Mean aggregation. A faster-
RCNN-based detector shows better performance than SSD.

For dense matching methods, GLU-Net using warp con-
sistency or GOCor module and PDC-Net show better results
than other models. This trend is similar to that in the dense

matching benchmark Megadepth [18].
The segmentation methods significantly outperform

other methods in terms of the mean of segmentation mIoU.
However, their detection mIoU results are not so impres-
sive. They tend to predict the entire foreground, which con-
tains the target building, as shown in the SSP line of Fig-
ure 4. Among the segmentation methods, SSP shows better
segmentation than others, showing its self-support approach
is helpful for finding more related pixels.

Another interesting finding is that better image rank-
ing mAP does not necessarily brings better pixel retrieval
mAP@50:5:95, as shown in Table 2. The reason might be
that the image search techniques rank some hard cases high,
but detection methods do not well localize the query object
in them.

It is interesting to note that segmentation and dense
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Figure 4. Qualitative comparison of the SOTA methods in different fields on the pixel retrieval benchmarks. Blue masks represent the
prediction results of each method. For SP and WarpCGLUNet, we consider the union of all the matching points as the prediction masks.
We also show the inlier numbers for the SP method. Pixel retrieval is challenging for existing methods and further research is needed.

Table 2. Results of pixel retrieval from database (% mean of mAP@50:5:95) on the PROxf/PRPar datasets and their large-scale versions
PROxf+1M/PRPar+1M, with both Medium (M) and Hard (H) evaluation protocols. Bold indicates the best performance using the same
image ranking list; red indicates the best performance in two ranking lists. Green lines show the image level mAPs of the ranking lists.

PROxf PROxf+R1M PRPar PRPar+R1M
M H M H M H M H

Image retrieval: DELG initial ranking [6]
Image level mAP 76.3 55.6 63.7 37.5 86.6 72.4 70.6 46.9

Pixel
retrieval
methods

DELG + SP [6] 6.1 6.3 5.8 6.7 10.9 8.0 10.5 7.8
D2R+Faster-RCNN+ASMK [45] 29.6 22.5 28.8 19.1 26.3 25.6 23.7 20.5

OWL-VIT [26] 13.1 8.1 12.8 7.2 8.3 12.7 7.6 11.4
SSP [9] 37.3 34.6 36.6 29.9 47.0 43.1 44.5 37.1

WarpCGLUNet [52] 34.3 36.8 33.9 34.9 33.9 28.8 32.9 27.1
Image retrieval: DELG initial ranking [6] + HP reranking [1]

Image level mAP 85.7 70.3 78.0 60.0 92.6 83.3 86.6 72.7

Pixel
retrieval
methods

DELG + SP [6] 6.4 7.2 6.2 7.5 10.7 6.0 10.7 5.9
D2R+Faster-RCNN+ASMK [45] 30.1 23.5 30.5 22.0 26.3 25.3 25.7 24.9

OWL-VIT [26] 12.3 6.6 12.1 13.6 7.9 7.6 7.9 7.8
SSP [9] 33.0 29.7 35.7 30.5 46.4 37.2 45.6 37.2

WarpCGLUNet [52] 31.2 32.6 31.5 31.7 34.1 27.3 34.3 28.1

matching methods have demonstrated superior mIoU results
compared to matching-based and detection-based retrieval
methods, despite not being originally designed for retrieval
tasks. However, to effectively tackle the pixel retrieval task,
these methods must work in conjunction with image search
techniques. While dense matching and segmentation meth-

ods are better suited for identifying target object areas, they
may not achieve fine-grained recognition. In contrast, exist-
ing retrieval methods tend to identify certain textures or cor-
ners but lack the ability to capture the entire object’s shape.
Without a reliable benchmark, retrieval methods may sim-
ply associate an object and its context to improve image-



level performance, leading to low localization and segmen-
tation results, as we discussed above. We did our best to
prepare our new benchmark so that it can provide a valu-
able evaluation for novel methods targeting pixel retrieval,
which requires fine-grained and variable-granularity detec-
tion and segmentation. Moreover, we find pixel retrieval
challenging. The current best mAP@50:5:95 in PROxford
and PRParis at medium setting without distractors are only
37.3 and 47.0.

6. Future works
We present a novel task termed ”Pixel Retrieval.” This

task mandates segmentation but transitions from a seman-
tic directive to the content-based one, thus bypassing se-
mantic vagueness. Concurrently, it demands large-scale,
instance-level recognition—a subject frequently explored
by the retrieval community. This innovative task poses sev-
eral unique challenges, some of which we outline below:

6.1. Enhancing accuracy

For a superior user experience, it’s vital to embrace
methods, workflows, and datasets that bolster accuracy. Our
findings illustrate that segmentation and dense matching
methods are beneficial, especially when an image ranking
list is provided using existing retrieval techniques. Beyond
merely superimposing segmentation over retrieval, a com-
pelling approach would be to rank images based on the re-
sults of the segmentation. Further insights and experimental
outcomes in this regard are available on our website.

Although the introduction of new datasets, even those
echoing the landmarks in our benchmarks, is commend-
able, it’s pivotal to articulate their application to dis-
cern the sources of performance enhancements. If PROx-
ford/PRParis and ROxford/RParis are employed as bench-
marks, it’s crucial to ensure the consistent usage of the same
training set. Given the public accessibility of our ground
truth files, it’s imperative to prevent any unintended data
leaks during training.

6.2. Scalability and speed

A major challenge lies in scaling the algorithms and aug-
menting the retrieval speed. Techniques like segmentation
and dense matching, which compute for every pair, inher-
ently lag in speed when compared to retrieval methods such
as ASMK and D2R. Therefore, swift methods that can cater
to extensive scales are highly sought after.

6.3. Innate visual recognition and The significance
of training data

The prevalent trend in research is to amass expansive
training or fine-tuning sets closely aligned with test in-
stances—certainly a commendable approach. However, in-
triguingly, humans exhibit an innate ability to discern in-

stances in query images. Our annotators, despite being un-
familiar with European landmarks, could effortlessly seg-
ment target objects in each positive image, even when sub-
jected to extreme lighting and perspective alterations. What
fuels this innate recognition? Is it purely due to extensive
prior exposure, or are there underlying mechanisms at play?
How pivotal is the training dataset in replicating human-like
content-based segmentation, especially when semantic in-
fluences are excluded? These questions beckon exploration.

7. Conclusion

We introduced the first landmark pixel retrieval bench-
mark datasets, i.e., PROxford and PRParis, in this paper. To
create these benchmarks, three professional annotators la-
beled, refined, and checked the segmentation masks for a
total of 5,942 image pairs. We executed the user study and
found that pixel-level annotation can significantly improve
the user experience on web search; pixel retrieval is a prac-
tical task. We did extensive experiments to evaluate the per-
formance of SOTA methods in multiple fields on our pixel
retrieval task, including image search, detection, segmenta-
tion, and dense matching. Our experiment results show that
pixel retrieval is challenging and further research is needed.
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