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Background

Segment Anything Model (SAM)
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Segment Anything Model (SAM)

• A foundation model for image 

segmentation

• Strongly impacts on various 

dense prediction problems

Segment anything, ICCV 2023



• Applied in various dense prediction problems

• Medical Image Segmentation, Shadow Detection, 3D Segmentation, etc.

5Segment anything model for medical image analysis: An experimental study, Medical Image Analysis 89 (2023)

Applications of SAM
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• Large image encoder (ViT-H) is important to generalization performance

• Mask decoder and prompt encoder works for promptable segmentation

Architecture of SAM



Background

Audio-Visual Segmentation
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Sound Source Localization (SSL)

• A research field in audio-visual learning, using audio-visual correspondence

• Find the location of sound source on the image frame

Localizing Visual Sounds the Hardway, CVPR 2021

Image

Sound (Car)
Predicted 

Localization map
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Audio-Visual Segmentation (AVS)

• Advanced task of sound source localization

• Segment the sounding objects in the sequence of frames

Audio-visual segmentation, ECCV 2022



Introduction



Segment Anything Model (SAM)
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Audio-Visual Segmentation (AVS)

Research Goal

SAM for AVS

Images from  https://blog.roboflow.com/how-to-use-segment-anything-model-sam/, AVSegformer, AAAI 2024

Segmentation map

Audio

Video
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Research Goal

SAM for AVS

• Original SAM

○ Can’t process audio and video inputs

○ Can’t solve AVS

Video
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Research Goal

SAM for AVS

ST-BAVA for
Video and Audio

Video
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Research Goal

SAM for AVS

ST-BAVA for
Video and Audio

• ST-BAVA extends SAM into auditory and temporal dims

• ST-BAVA

○ Spatio-Temporal, Bidirectional Audio-Visual Attention

○ Exploits the spatio-temporal and audio-visual 

relationship via cross-attention 



• Quantitative comparison with AVS methods on the AVS benchmark

• SAM shows 12.9% mIoU improvement compared to SOTA model

Research Goal

SAM for AVS

Prev. SOTA
Ours

Results on AVS Benchmark
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Methods



• Input: T seconds video V
i
  into T images & audio streams

• Output: T binary masks    representing that the pixel sounds or not
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Problem definition (AVS)

Input

Ground 

Truth



• Enable SAM to handle the 

consecutive video frames 

with corresponding audio

• We insert audio-visual 

feature interaction module: 

ST-BAVA 
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Overview



SAM pipeline
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• In SAM, prompts guide where to segment in the mask decoder
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SAM Decoder

• In SAM, prompts guide where to segment in the mask decoder 

SAM decoder architecture



SAM for AVS

Naive Approach (SAM Baseline)
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• We can replace point, box prompts to audio



1. SAM Decoder is too shallow to learn the audio-visual correspondence

2. Doesn’t utilize the temporal relationship across the multiple frames
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SAM for AVS

Naive Approach (SAM Baseline): Limitations 

Results on AVS Benchmark



• Insert ST-BAVA module between the encoder and decoder
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Our approach

SAM + ST-BAVA



• How to design ST-BAVA module ?
24

Our approach

SAM + ST-BAVA

?



• Auditory extension of SAM 

=> Bidirectional attention 

between audio-visual features
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ST-BAVA | Architecture

Attention
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• Temporal extension of SAM

=> Spatio-Temporal attention*

between audio-visual features
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ST-BAVA | Architecture

*Divided spatio-temporal attention reduces the memory requirements 
(details in appendix)



• Spatio-Temporal , Bidirectional 

Audio-Visual Attention
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ST-BAVA | Architecture
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Our approach

SAM + ST-BAVA

• Shows meaningful performance improvement

Results on AVS Benchmark



Correct separation 

of the sound source
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Feature similarity analysis 

=

=

Audio Feature

Audio FeatureImage Feature

Image Feature

Irregular patterns

Similarity map

Similarity map

Input video:
Male Speech 

Before 
ST-BAVA

After
ST-BAVA



Experimental results



Audio-visual segmentation, ECCV 2022

• 5 second per video with 1 FPS

• Two subsets 

o Single sound source subset

o Multiple sound sources subset 

31

Dataset - AVSBench



Audio-visual segmentation, ECCV 2022

• Accuracy between the ground truth mask and model’s prediction

o mIoU,  F-score (details in Appendix)

• Training loss: Binary Cross Entropy with GT and prediction mask
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Evaluation Metric

Model PredictionGround truth



Results | Comparison to SOTA

• Quantitative comparison with non-SAM based methods on the AVSBench

• Ours shows the highest performance in all metrics
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Results on AVS Benchmark
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Qualitative results
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Qualitative results



• Baseline - use spatial attention, not the temporal and bidirectional

• Utilizing all attention components performs best
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Ablation study | Model components 

Results on AVS Benchmark



Results | Comparison to concurrent works

• Temporal-Aware ST-BAVA (ours) outperforms concurrent 

SAM-based methods without temporal-awareness
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Results on AVS Benchmark



Conclusion
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Summary

• Extend SAM into temporal and auditory dimensions for AVS

• Propose a Spatio-Temporal, Bidirectional Audio-Visual Attention (ST-BAVA) 

module to leverage the audio-visual correspondence across the video sequence

• Achieve meaningful performance enhancement on the AVS benchmark
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• Acoustic rendering technology using room geometry and acoustics 

• Applications: VR / AR (accurately reproduce audio-visual scenes) 

• Plan to utilize the recent 3D representation techniques, such as NeRF [1] or 

Gaussian Splatting [2]

Future work

[1] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
[2] 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
Image from INRAS: Implicit Neural Representation for Audio Scenes, NeurIPS 2024
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Appendix
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Research Goal

SAM for AVS

Original SAM

• Original SAM

○ Boxes or Points as query

○ Users manually give queries for segmentation
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Related work 

Divided Space-Time Attention in video classification

● Efficient and effective performance

● Not explored yet in Audio-Visual Learning

Is Space-Time Attention All You Need for Video Understanding?, ICML 2021



• Recent approaches use prompt tuning of SAM with adaptors[1,2]

• Didn’t utilize the temporal information, limiting SAM’s performance on AVS - 

Predict per image, not per video

48
[1] Annotation-free Audio-Visual Segmentation, WACV 2024

[2] Prompting Segmentation with Sound is Generalizable Audio-Visual Source Localizer, ICCVW 2023

SAM in Audio-Visual Segmentation



• We use Adapters* to help the subsequent operation of ST-BAVA

• Designed to inject audio feature in the image encoding stage

49

Adapter 

Figure from *Annotation-free audio-visual segmentation, WACV 2024



• Spatial attention captures 

the audio-visual relationship 

per frame

• Temporal attention captures 

the relationship across 

consecutive frames per pixel

50

ST-BAVA | Attention components 



Audio-visual segmentation, ECCV 2022

• mIoU = Inter(y, y_pred) / Union(y, y_pred) 

• F-score = 

o Precision = Inter(y, y_pred) / y_pred

o Recall = Inter(y, y_pred) / y

51

Evaluation Metric

y_pred: Predictiony: Ground truth
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• Qualitative results show the 
effects of temporal attention 
in ST-BAVA

Ablation study | Model components 
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Qualitative results
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Ablation study | Intermediate feature fusion module

• TPAVI[14] is a fusion module proposed in other AVS work

o Doesn’t use bidirectional attention, showing not good results 

• CMRAN[33], HAN[34], JCA[35] are proposed in other A-V tasks 

o Don’t utilize the spatial visual features, showing not good result

[1] Audio-Visual Segmentation, ECCV 2022 
[33] Cross-modal relation-aware networks for audio-visual event localization, ACM MM 2020

[34] Unified multisensory perception: Weakly-supervised audio-visual video parsing, ECCV 2020 
[35] A Joint Cross-Attention Model for Audio-Visual Fusion in Dimensional Emotion Recognition, CVPR 2022
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Failure case

Weakness on distinguishing the semantically similar visual objects

• SAM doesn’t have good understanding on the object semantics

• Auxiliary consideration to the object semantic could be introduced 


