SAM-based Audio-Visual Segmentation with Spatio-Temporal, Bidirectional Audio-Visual Attention

Ju-hyeong Seon (선주형)

Advisor: Prof. Sung-Eui Yoon

School of Computing, KAIST

Contents

- Backgrounds
- Introduction
- Method
- Experimental Results
- Conclusion

Background

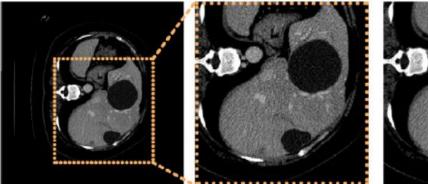
Segment Anything Model (SAM)

Segment Anything Model (SAM)

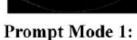
- A foundation model for image segmentation
- Strongly impacts on various dense prediction problems

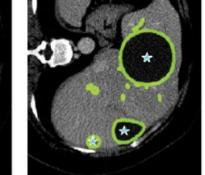
Applications of SAM

- Applied in various dense prediction problems
- Medical Image Segmentation, Shadow Detection, 3D Segmentation, etc.

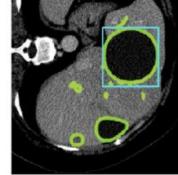


Input Image

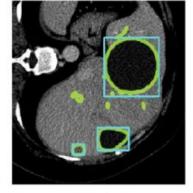




Prompt Mode 2:



Prompt Mode 3:

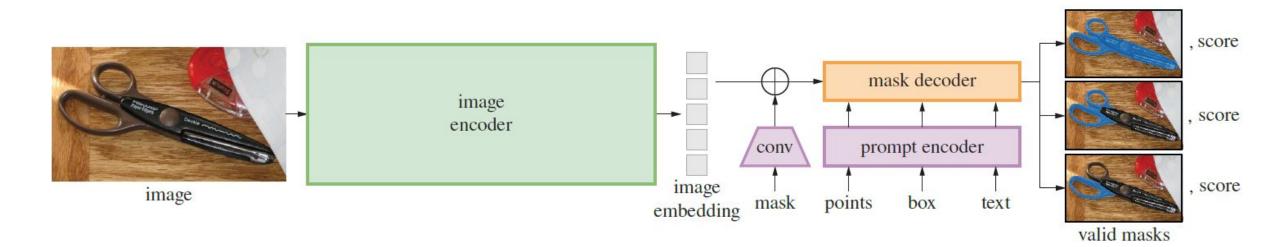


Prompt Mode 4:

Segment anything model for medical image analysis: An experimental study, Medical Image Analysis 89 (2023)

Architecture of SAM

- Large image encoder (ViT-H) is important to generalization performance
- Mask decoder and prompt encoder works for promptable segmentation

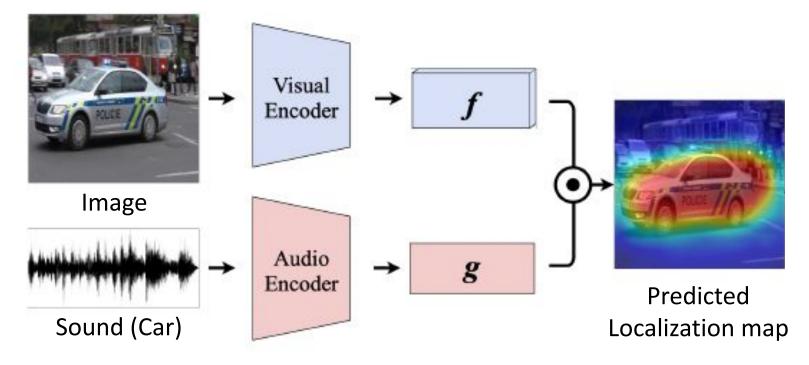


Background

Audio-Visual Segmentation

Sound Source Localization (SSL)

- A research field in audio-visual learning, using audio-visual correspondence
- Find the location of sound source on the image frame



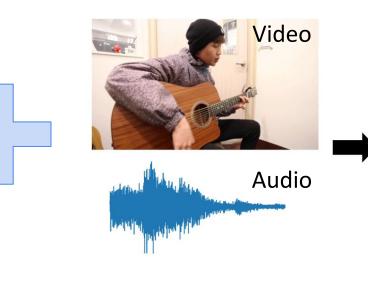
Audio-Visual Segmentation (AVS)

- Advanced task of sound source localization
- Segment the sounding objects in the sequence of frames

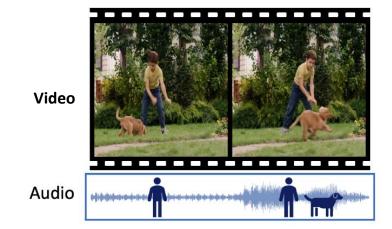
Introduction

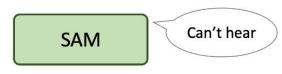
Segment Anything Model (SAM)

Audio-Visual Segmentation (AVS)

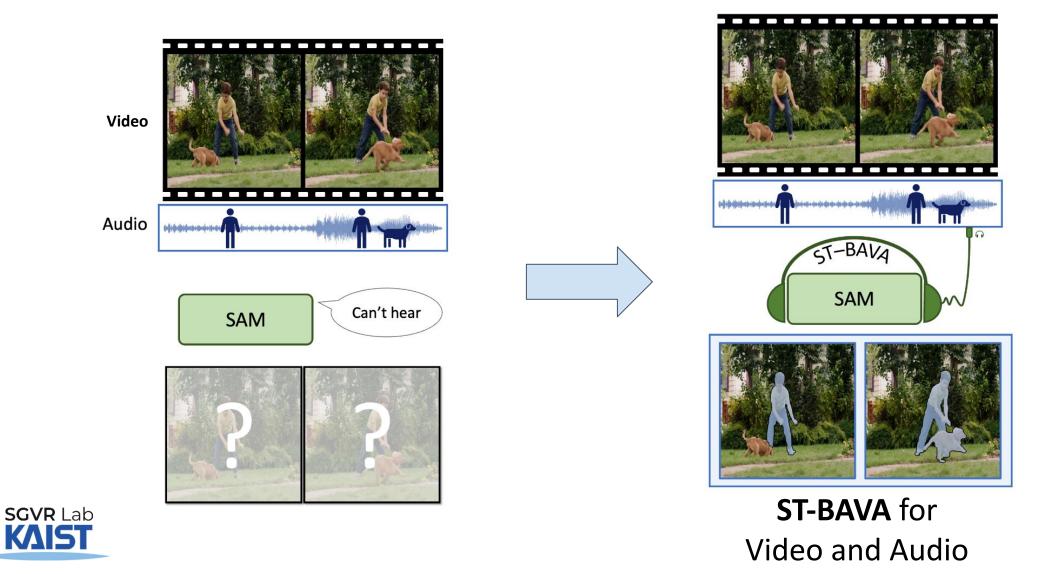


Segmentation map





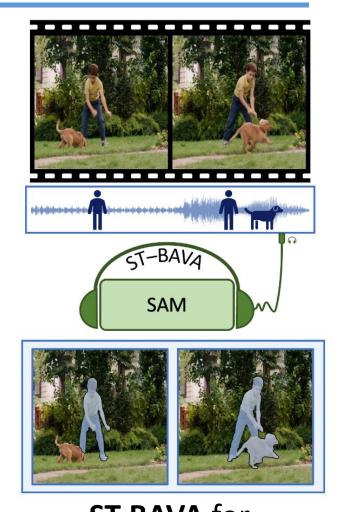
- Original SAM
 - Can't process audio and video inputs
 - Can't solve AVS

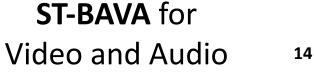


• ST-BAVA extends SAM into auditory and temporal dims

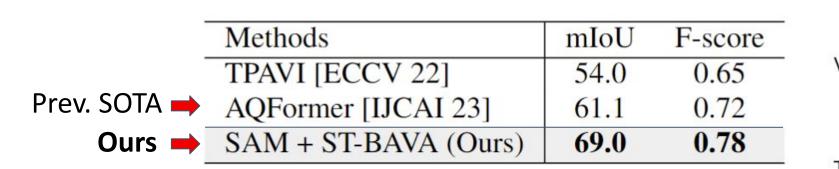
- ST-BAVA
 - Spatio-Temporal, Bidirectional Audio-Visual Attention
 - Exploits the **spatio-temporal and audio-visual**

relationship via cross-attention

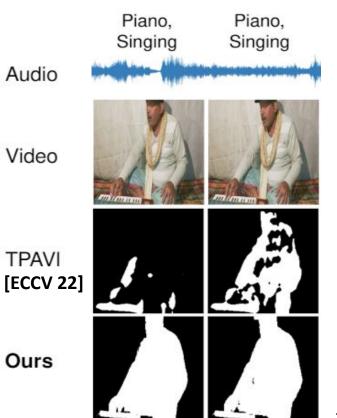




- Quantitative comparison with AVS methods on the AVS benchmark
- SAM shows **12.9%** mIoU improvement compared to SOTA model



Results on AVS Benchmark



Methods

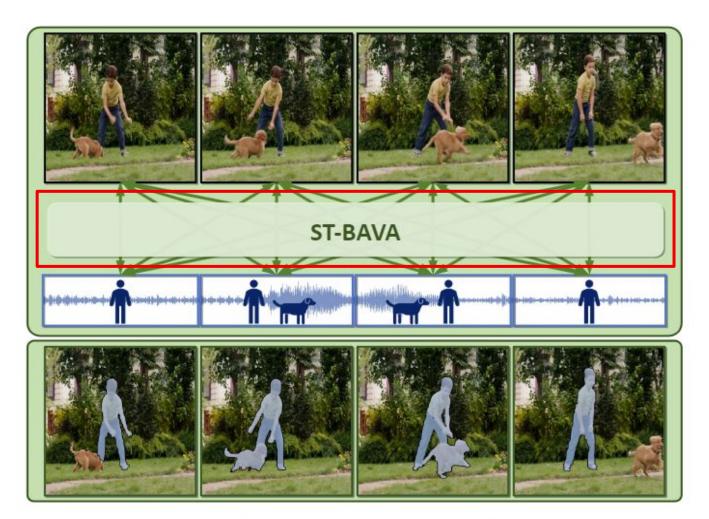
Problem definition (AVS)

- Input: **T** seconds video **V**_i into **T** images & audio streams
- Output: **T** binary masks $\in \{0, 1\}^{H_i \times W_i}$ representing that the pixel sounds or not

SGVR Lab

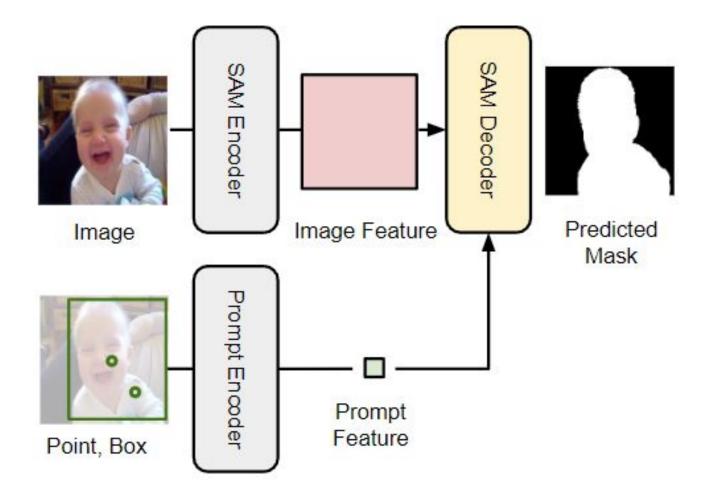
Overview

- Enable SAM to handle the consecutive video frames with corresponding audio
- We insert audio-visual feature interaction module:
 ST-BAVA



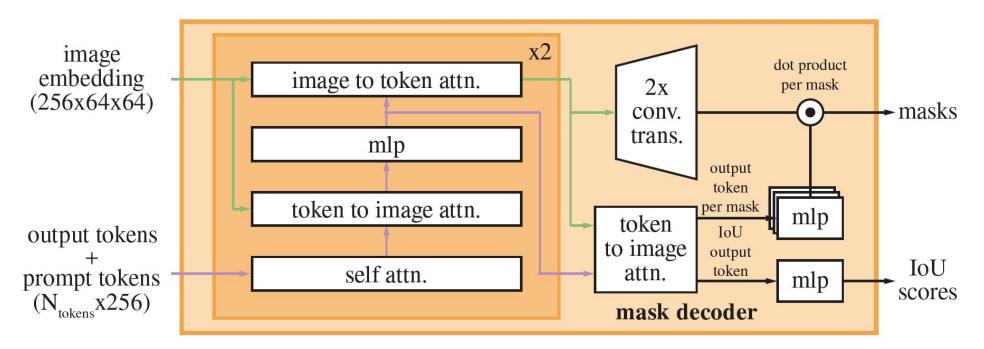
SAM pipeline

• In SAM, prompts guide where to segment in the mask decoder



SAM Decoder

• In SAM, prompts guide where to segment in the mask decoder



SAM decoder architecture

SAM for AVS Naive Approach (SAM Baseline)

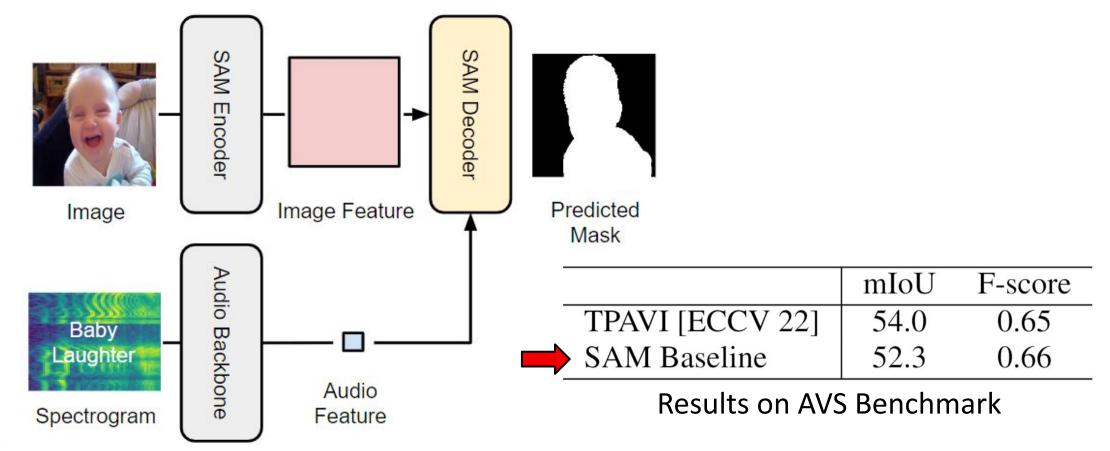
• We can replace point, box prompts to audio



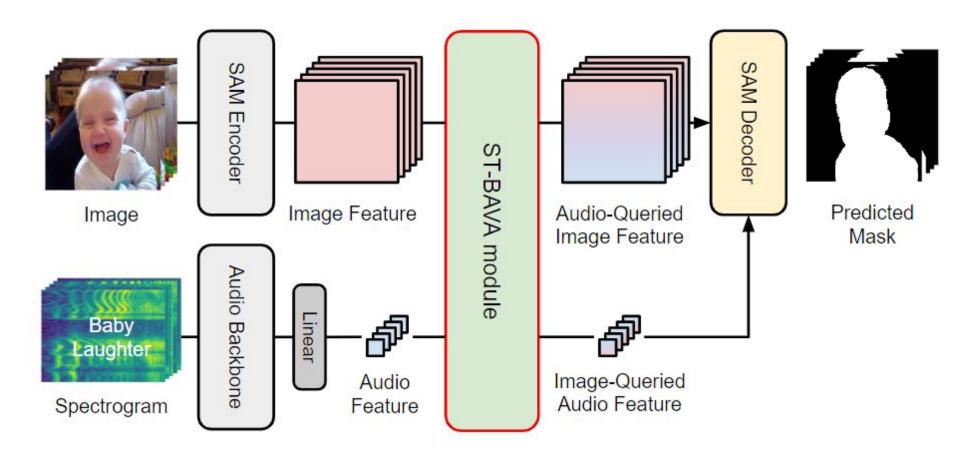
SAM for AVS Naive Approach (SAM Baseline): Limitations

SGVR

- 1. SAM Decoder is too shallow to learn the audio-visual correspondence
- 2. Doesn't utilize the temporal relationship across the multiple frames



Our approach **SAM + ST-BAVA**



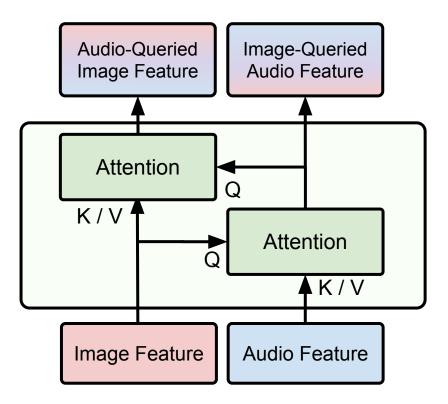
• Insert ST-BAVA module between the encoder and decoder

Our approach **SAM + ST-BAVA**

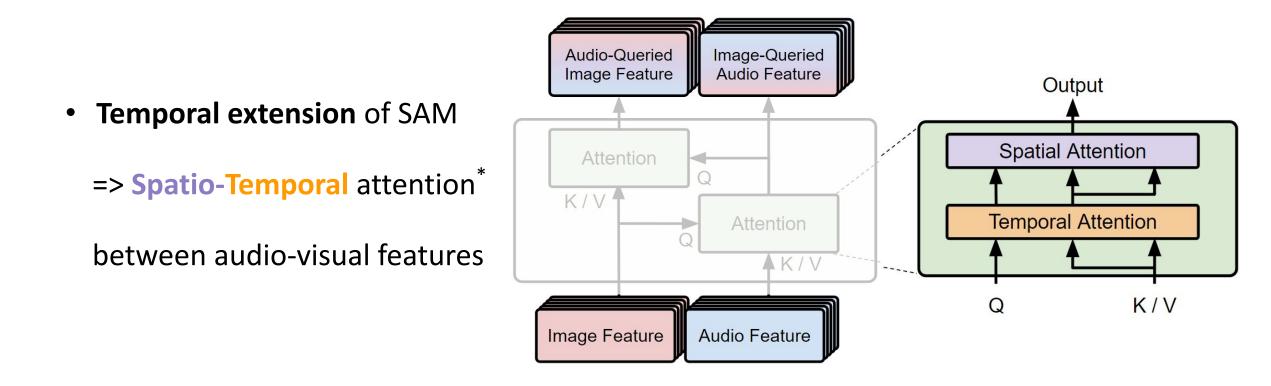
• How to design **ST-BAVA** module ?

ST-BAVA | Architecture

- Auditory extension of SAM
 - => Bidirectional attention
 - between audio-visual features



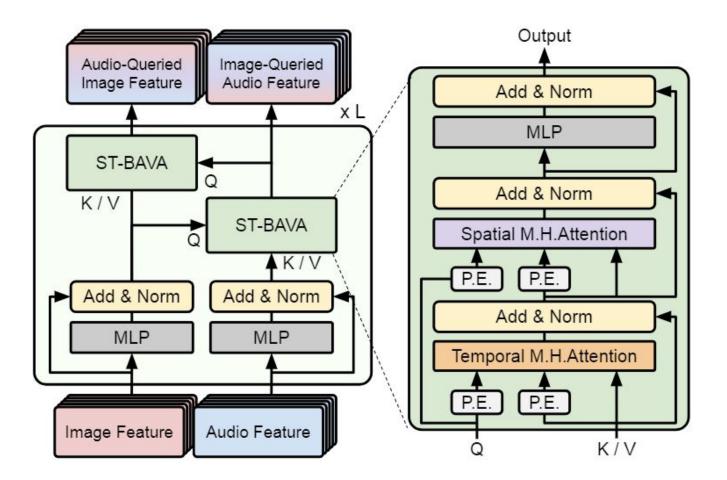
ST-BAVA | Architecture

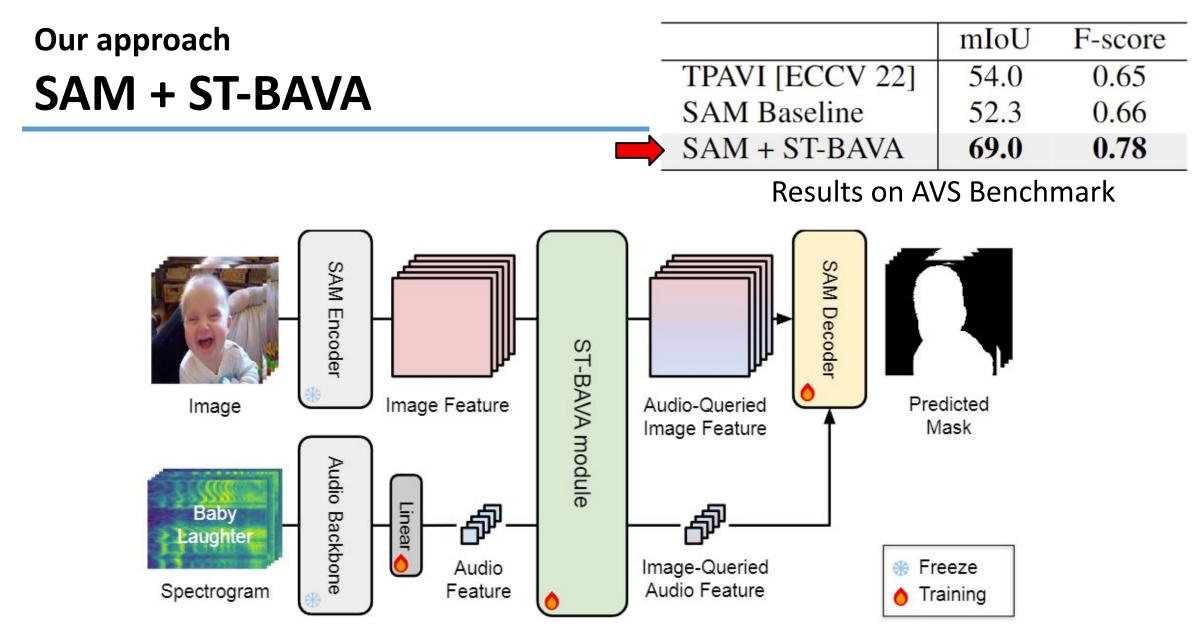


*Divided spatio-temporal attention reduces the memory requirements (details in appendix)

ST-BAVA | Architecture

• Spatio-Temporal , Bidirectional Audio-Visual Attention

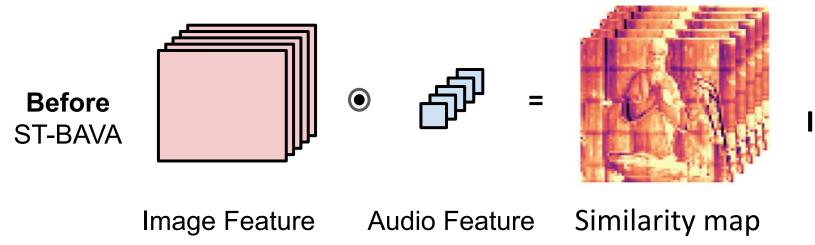




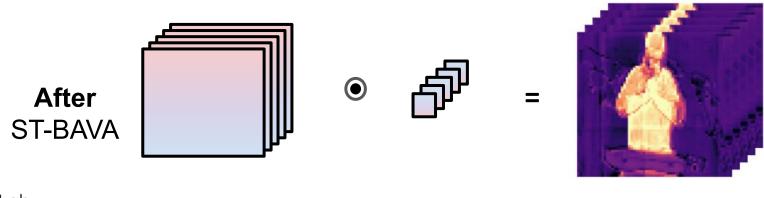
Shows meaningful performance improvement

Feature similarity analysis

Input video: Male Speech



Irregular patterns



Correct separation of the sound source

Audio Feature Similarity map

Experimental results

Dataset - AVSBench

- 5 second per video with 1 FPS
- Two subsets
 - Single sound source subset
 - Multiple sound sources subset

subset	classes	videos	train/valid/test	annotated frames
Single-source	23	4,932	3,452*/740/740	10,852
Multi-sources	23	424	296/64/64	2,120

Evaluation Metric

- Accuracy between the ground truth mask and model's prediction
 - mIoU, F-score (details in Appendix)
- Training loss: Binary Cross Entropy with GT and prediction mask

Ground truth

Model Prediction

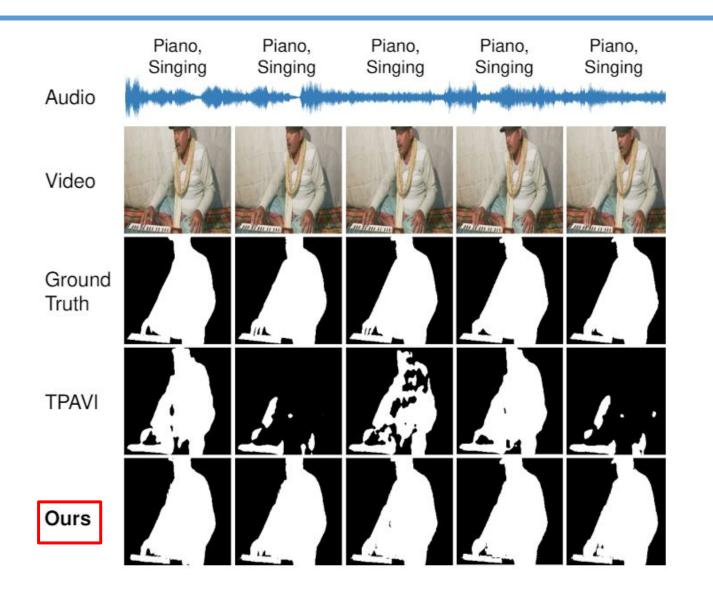
Results | Comparison to SOTA

- Quantitative comparison with non-SAM based methods on the AVSBench
- Ours shows the highest performance in all metrics

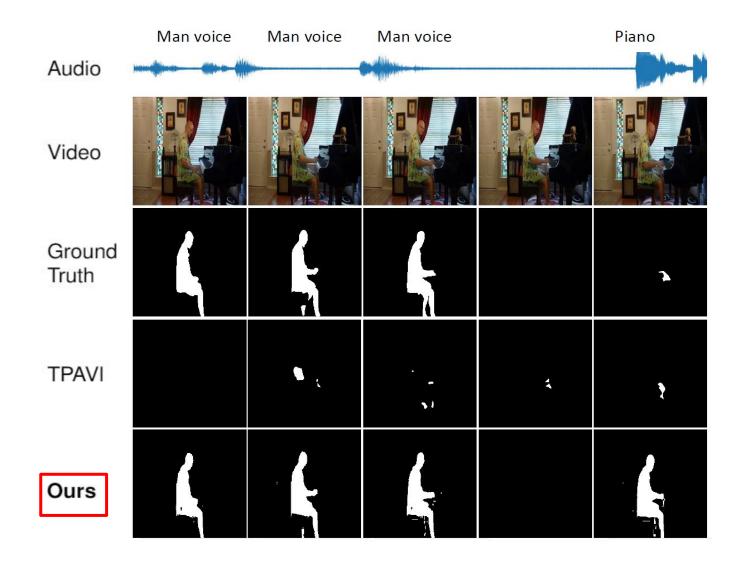
Methods	Single-source		Multi-sources	
Wiethous	mIoU	F-score	mIoU	F-score
TPAVI [ECCV 22]	78.7	0.88	54.0	0.65
CATR [MM 23]	81.4	0.90	59.0	0.70
AQFormer [IJCAI 23]	81.6	0.89	61.1	0.72
ECMVAE [ICCV 23]	81.7	0.90	57.8	0.71
SAM + ST-BAVA (Ours)	82.5	0.91	69.0	0.78

Results on AVS Benchmark

Qualitative results



Qualitative results



Ablation study | Model components

- Baseline use spatial attention, not the temporal and bidirectional
- Utilizing all attention components performs best

Methods	Single	e-source	Multi-Sources	
Methods	mIoU	F-score	mIoU	F-score
Baseline (Spatial Attn.)	76.65	0.857	61.54	0.703
+ Bidirectional Attn.	80.72	0.892	65.37	0.752
+ Temporal Attn.	80.09	0.887	65.17	0.749
Full	82.46	0.906	69.01	0.776

Results on AVS Benchmark

• **Temporal-Aware** ST-BAVA (ours) outperforms **concurrent**

SAM-based methods without temporal-awareness

Methods	Single-source		Multi-sources		
wiethous	mIoU	F-score	mIoU	F-score	
GAVS [AAAI 24]	80.1	0.90	63.7	0.77	
SAMA-AVS [WACV 24]	81.5	0.89	63.1	0.69	
ST-BAVA (Ours)	82.5	0.91	69.0	0.78	

Results on AVS Benchmark

Conclusion

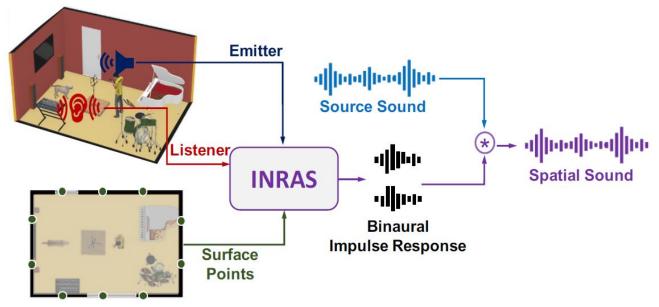
Summary

- Extend SAM into temporal and auditory dimensions for AVS
- Propose a Spatio-Temporal, Bidirectional Audio-Visual Attention (ST-BAVA) module to leverage the audio-visual correspondence across the video sequence
- Achieve meaningful performance enhancement on the AVS benchmark

Future work

- Acoustic rendering technology using room geometry and acoustics
- Applications: VR / AR (accurately reproduce audio-visual scenes)
- Plan to utilize the recent 3D representation techniques, such as NeRF [1] or

Gaussian Splatting [2]



[1] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV 2020
 [2] 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
 Image from INRAS: Implicit Neural Representation for Audio Scenes, NeurIPS 2024

Publications

- First-authored
 - Ju-hyeong Seon, Woobin Im, Sebin Lee, Jumin Lee, Sung-Eui Yoon, Extending Segment Anything Model into Auditory and Temporal Dimensions for Audio-Visual Segmentation, *ICIP 2024* (Under review)
 - Ju-hyeong Seon, Jaeyoon Kim, Joo Young Kim, Young Ju Lee, Hye-kyung Han, Sung-Eui Yoon, 비디오 내 음원 위치 추정 모델의 성능 향상을 위한 클래스 인지 대조 학습 기법 제안, 한국정보과학회 KTCP 2023 (KCI 저널)

• Co-authored

- Guoyuan An, Ju-hyeong Seon, InKyu An, Yuchi Huo, Sung-Eui Yoon, Topological RANSAC for instance verification and retrieval without fine-tuning, NeurIPS 2023
- Jumin Lee*, Sebin Lee*, Changho Jo, Woobin Im, Ju-hyeong Seon, and Sung-Eui Yoon, SemCity: Semantic Scene Generation with Triplane Diffusion, CVPR 2024 (Accepted)

References

- G. Bertasius, H. Wang, and L. Torresani, "Is space-time atten-tion all you need for video understanding?," in ICML, 2021, number 3, p. 4.
- J. Liu, Y. Wang, C. Ju, C. Ma, Y. Zhang, et al., "Annotation-free audio-visual segmentation," Proc. WACV, 2024.
- Y. Wang, W. Liu, G. Li, J. Ding, D. Hu, and X. Li, "Prompting segmentation with sound is generalizable audio-visual source localizer," arXiv preprint arXiv:2309.07929, 2023.
- Q. Shen, X. Yang, and X. Wang, "Anything-3d: Towards single-view anything reconstruction in the wild," arXiv preprint arXiv:2304.10261, 2023.
- J. Wu, R. Fu, H. Fang, Y. Liu, Z. Wang, Y. Xu, Y. Jin, and T. Arbel, "Medical sam adapter: Adapting segment anything model for medical image segmentation," arXiv preprint arXiv:2304.12620, 2023.
- Wang, W. Zhou, Y. Mao, and H. Li, "Detect any shadow: Segment anything for video shadow detection,"

References

- C. Liu, P. P. Li, X. Qi, H. Zhang, L. Li, D. Wang, and X. Yu, "Audio-visual segmentation by exploring cross-modal mutual semantics," in Proc. ACM MM, 2023, pp. 7590–7598
- S. Huang, H. Li, Y. Wang, H. Zhu, J. Dai, J. Han, et al., "Discovering sounding objects by audio queries for audio visual segmentation," arXiv preprint arXiv:2309.09501, 2023

Thank you for listening

Appendix

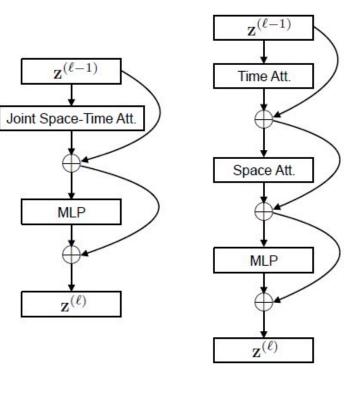
Research Goal SAM for AVS

- Original SAM
 - Boxes or Points as query
 - Users manually give queries for segmentation

Related work

Divided Space-Time Attention in video classification

- Efficient and effective performance
- Not explored yet in Audio-Visual Learning

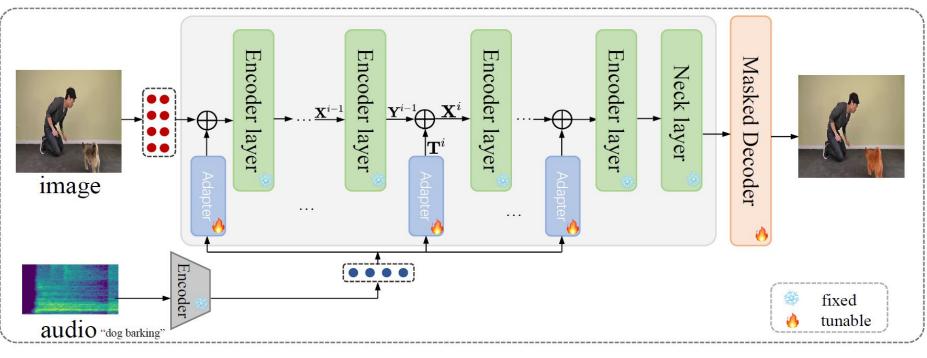


Joint Space-Time Attention (ST) Divided Space-Time Attention (T+S)

SAM in Audio-Visual Segmentation

SGVR Lab

- Recent approaches use prompt tuning of SAM with adaptors^[1,2]
- Didn't utilize the temporal information, limiting SAM's performance on AVS -Predict per image, not per video



[1] Annotation-free Audio-Visual Segmentation, WACV 2024

[2] Prompting Segmentation with Sound is Generalizable Audio-Visual Source Localizer, ICCVW 2023

Adapter

- We use Adapters^{*} to help the subsequent operation of ST-BAVA
- Designed to inject audio feature in the image encoding stage

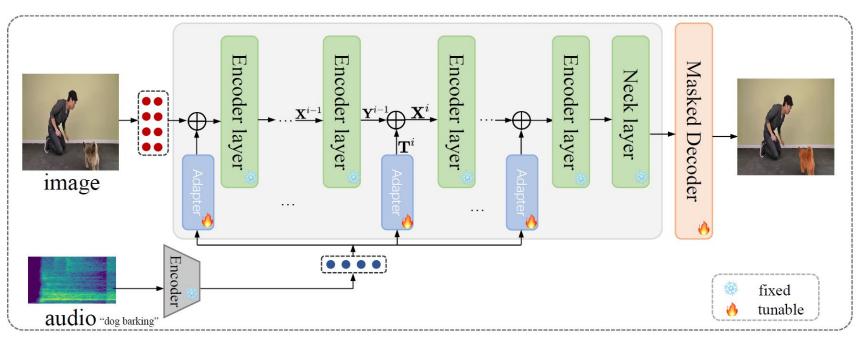
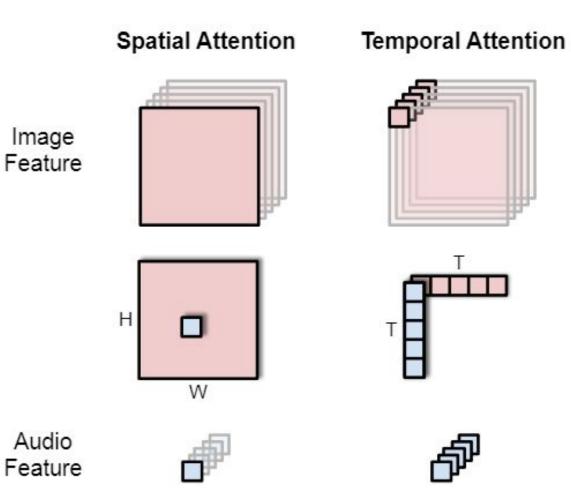


Figure from *Annotation-free audio-visual segmentation, WACV 2024

ST-BAVA | Attention components

- Spatial attention captures the audio-visual relationship per frame
- Temporal attention captures the relationship across consecutive frames per pixel

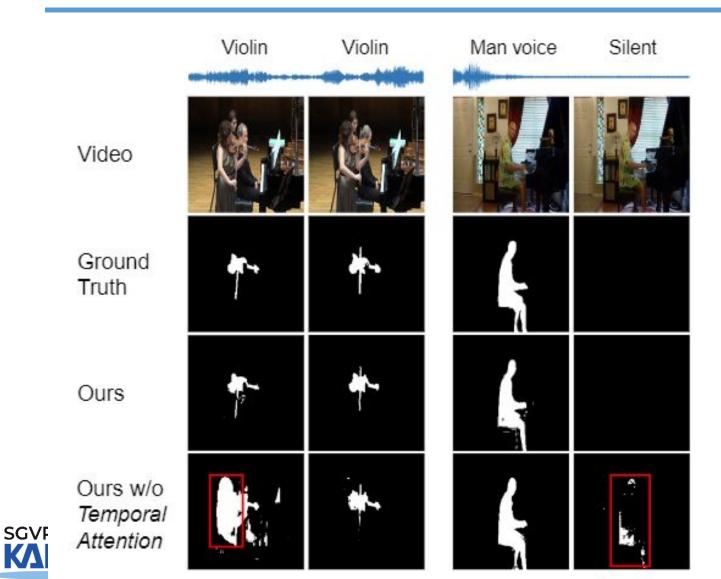


Evaluation Metric

- mIoU = Inter(y, y_pred) / Union(y, y_pred)
- F-score = $\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$
 - o Precision = Inter(y, y_pred) / y_pred
 - o Recall = Inter(y, y_pred) / y

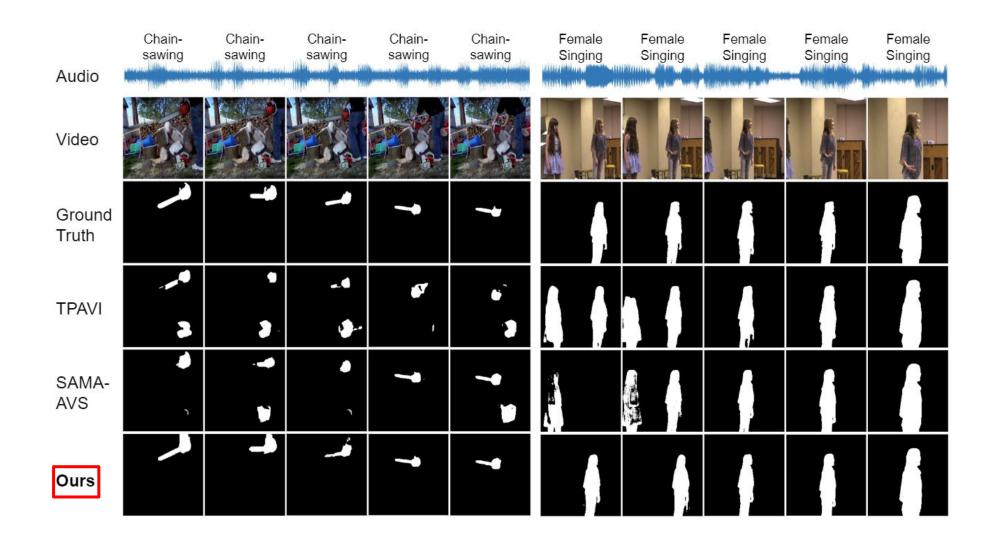
y: Ground truth y_pred: Prediction

Ablation study | Model components



Qualitative results show the effects of temporal attention in ST-BAVA

Qualitative results



Ablation study | Intermediate feature fusion module

- TPAVI^[14] is a fusion module proposed in other AVS work
 - **Doesn't use bidirectional attention**, showing not good results
- CMRAN^[33], HAN^[34], JCA^[35] are proposed in other A-V tasks
 - O Don't utilize the spatial visual features, showing not good result

Approach	Methods	S 4		MS3	
Approach	Methods	mIoU	F-score	mIoU	F-score
Audio Prompts with Training	w/o fusion module [1]	81.53	0.886	63.14	0.691
	+ TPAVI [14]	81.68	0.902	64.78	0.749
	+ HAN [33]	80.56	0.896	64.14	0.739
	+ CMRAN [34]	81.46	0.899	65.09	0.747
	+ JCA [35]	81.99	0.903	65.44	0.751
	+ ST-BAVA (Ours)	82.46	0.906	69.01	0.776

[1] Audio-Visual Segmentation, ECCV 2022

[33] Cross-modal relation-aware networks for audio-visual event localization, ACM MM 2020

[34] Unified multisensory perception: Weakly-supervised audio-visual video parsing, ECCV 2020

[35] A Joint Cross-Attention Model for Audio-Visual Fusion in Dimensional Emotion Recognition, CVPR 2022

Failure case

Weakness on distinguishing the semantically similar visual objects

- SAM doesn't have good understanding on the object semantics
- Auxiliary consideration to the object semantic could be introduced

