

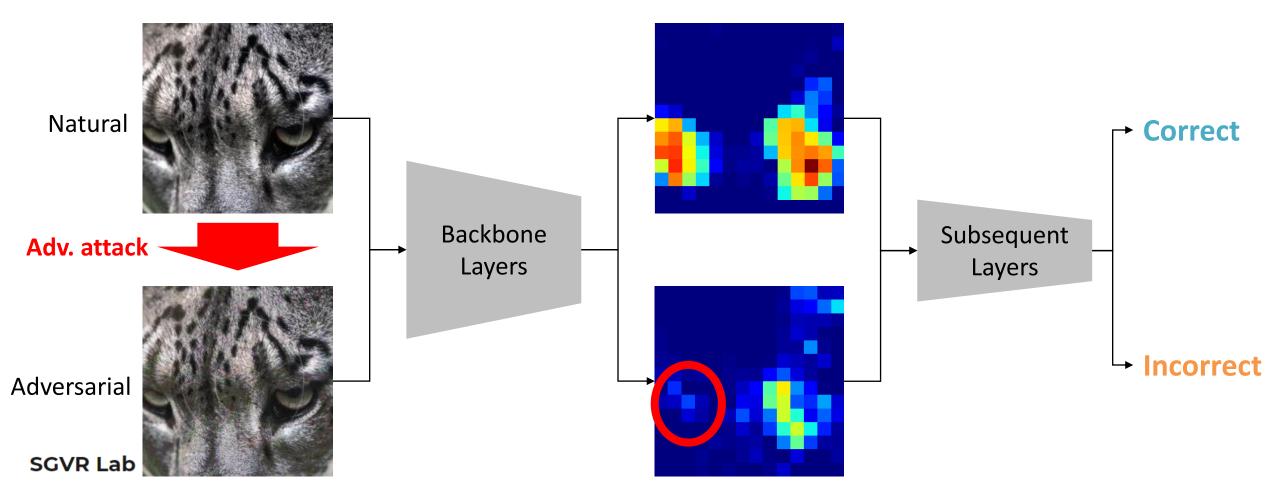
Feature Separation and Recalibration for Adversarial Robustness

Woo Jae Kim, Yoonki Cho, Junsik Jung, Sung-Eui Yoon TUE-PM-389 CVPR 2023 (Highlights)

Preview

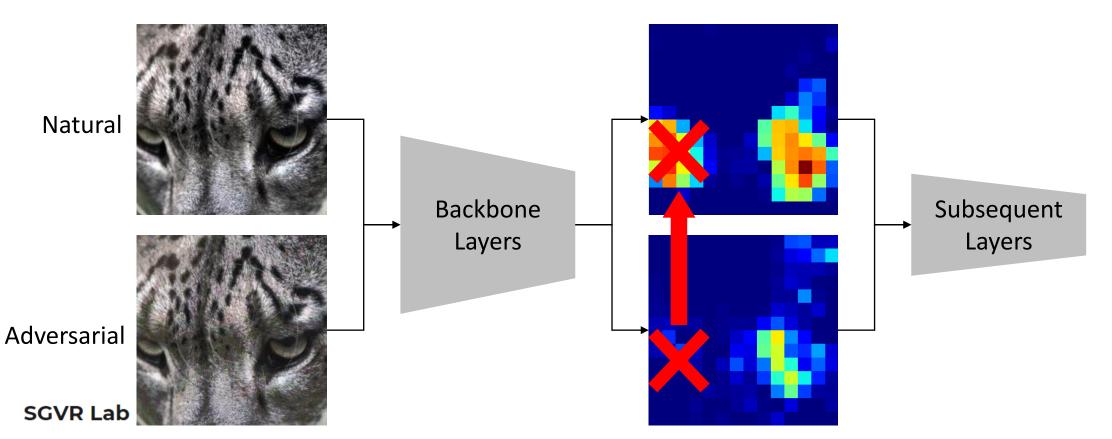
Feature Activation Disruption upon Adversarial Attack

• Feature-level disruptions lead to model mispredictions



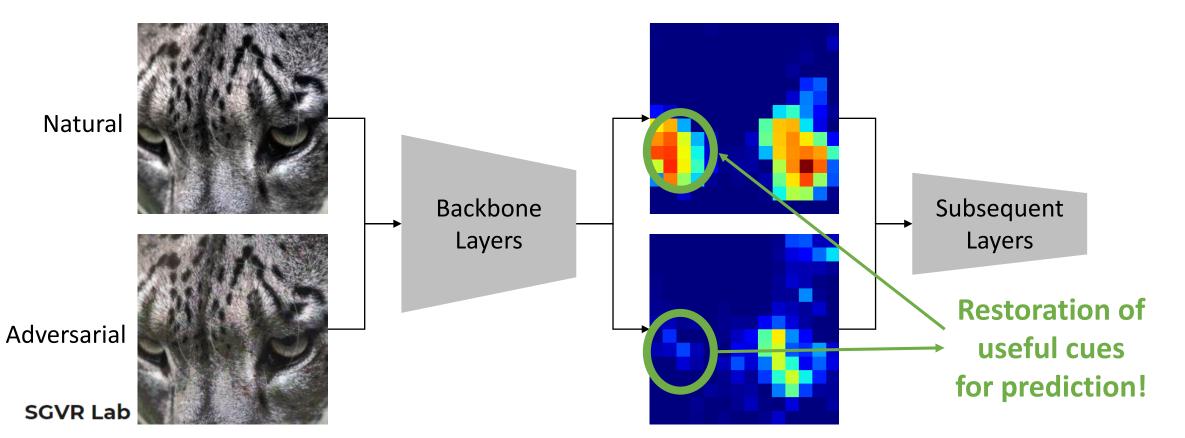
Limitations of Conventional Defense

- Conventional defense methods *suppressed* or *deactivated* disrupted activations
- This approach can lead to *loss of potentially discriminative cues*



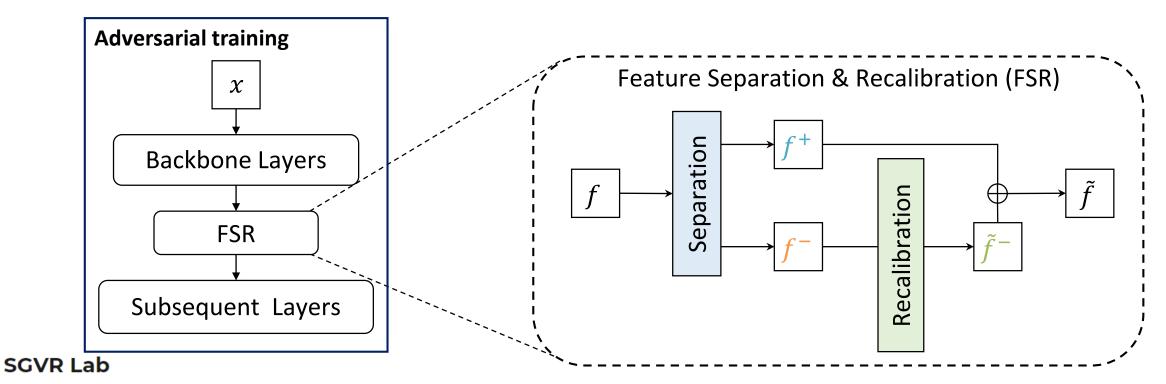
Proposed Approach

- Instead, we propose to *restore useful cues* from these disrupted activations
- These additional useful cues *enrich* model's ability to make *correct predictions*



Feature Separation and Recalibration (FSR)

- Robust feature f^+ : Useful cues
- Non-robust feature f^- : Malicious cues responsible for mispredictions
- Recalibrated feature \tilde{f}^- : Restored useful cues

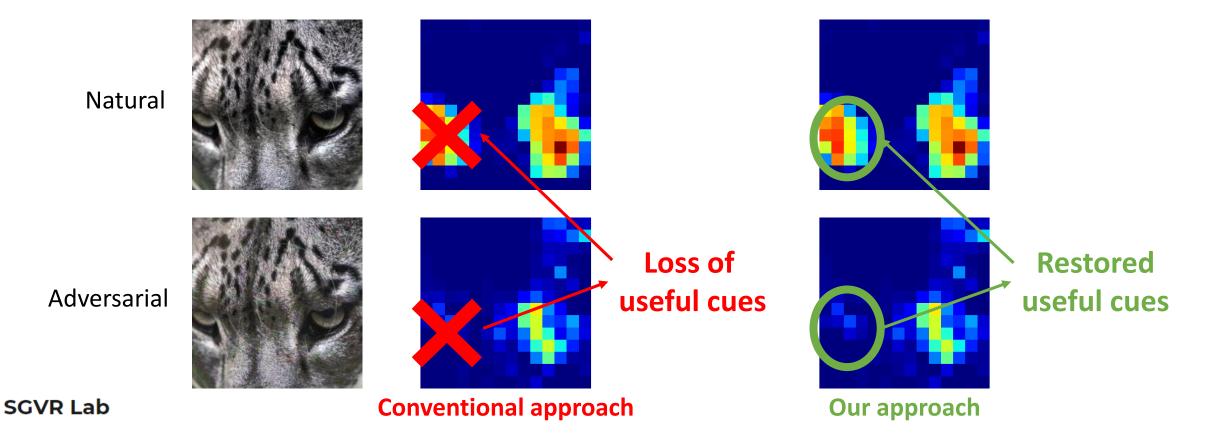


Proposed Approach

Feature Separation and Recalibration

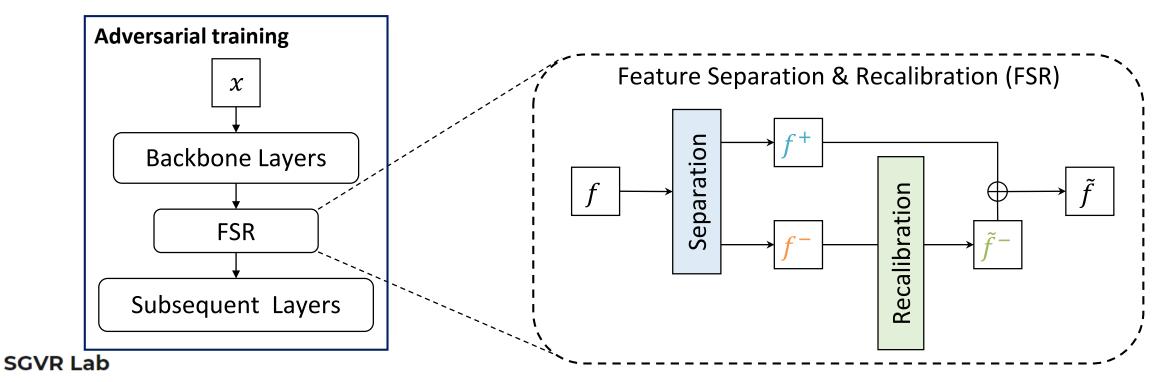
Feature Activation Disruption upon Adversarial Attack

- Goal: Restore useful cues for correct predictions from disrupted activations
- These restored cues will provide richer information for making correct predictions

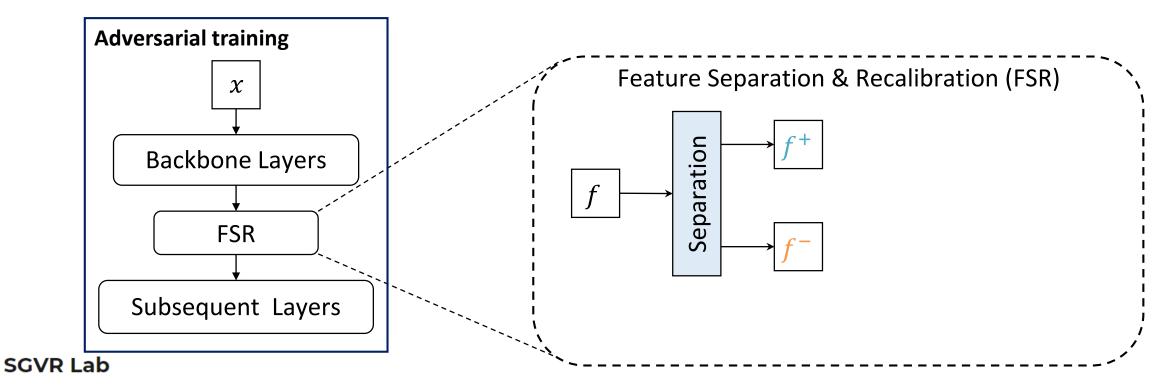


Feature Separation and Recalibration (FSR)

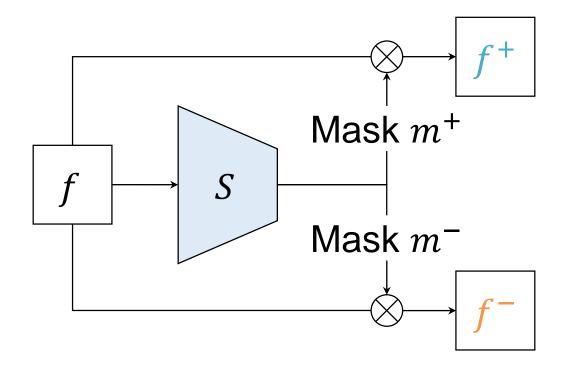
- Module inserted to *any CNN model*
- Trained with *any adversarial training* technique in an *end-to-end* manner
- Recalibrates disrupted feature activations to restore useful cues for predictions



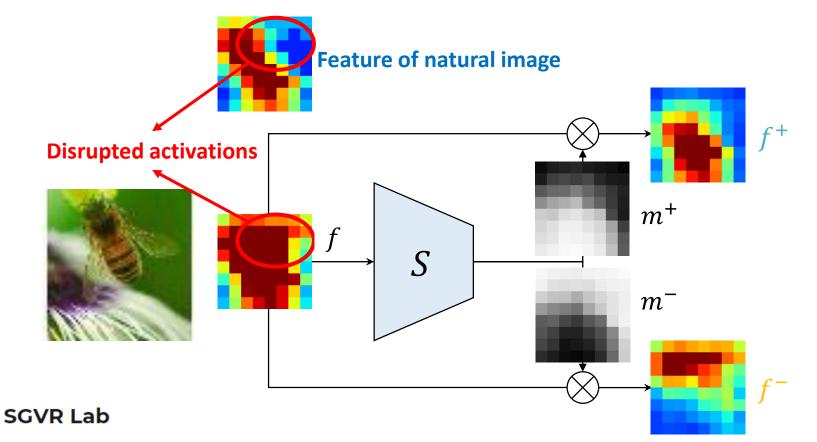
- Separation: Separate feature f into robust feature f^+ and non-robust feature f^-
- Robust f^+ : Activations that provide useful cues
- Non-robust f^- : Activations that are responsible for model mispredictions



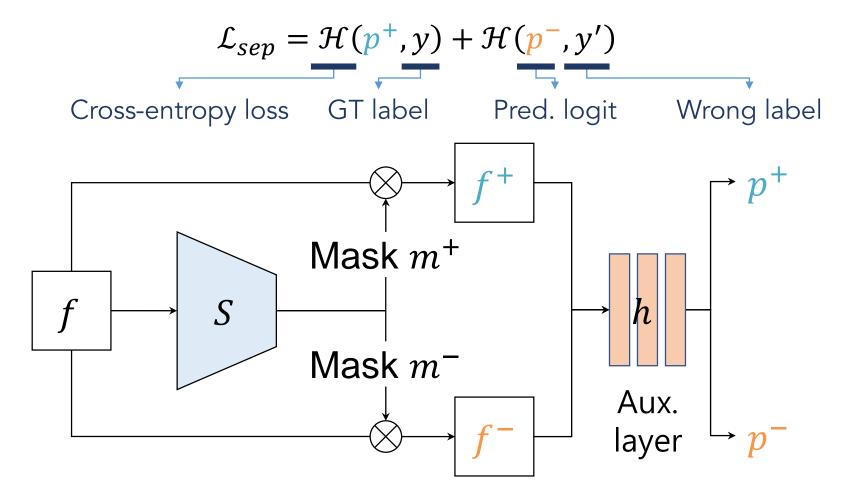
- Separation Net S learns the robustness of each activation of input feature f
- We activation-wise separate the feature based on the robustness



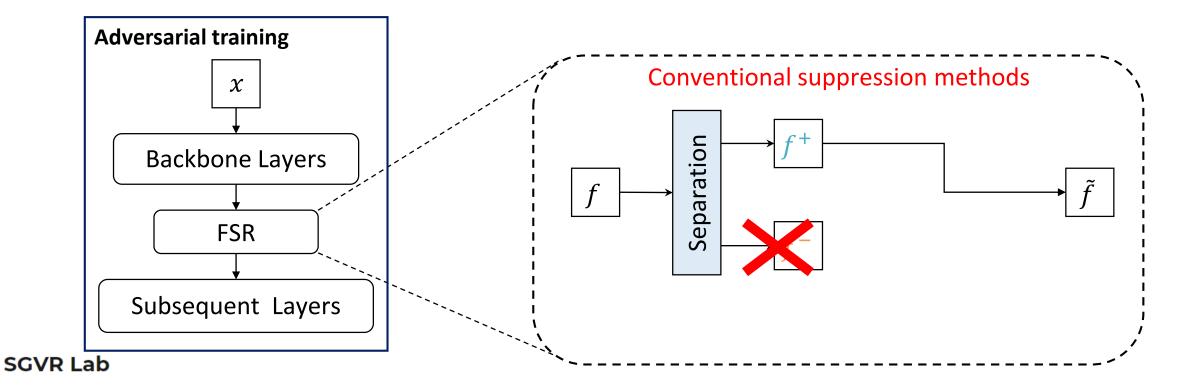
- Positive mask emphasizes activations relevant to correct predictions
- Negative mask emphasizes activations relevant to mispredictions



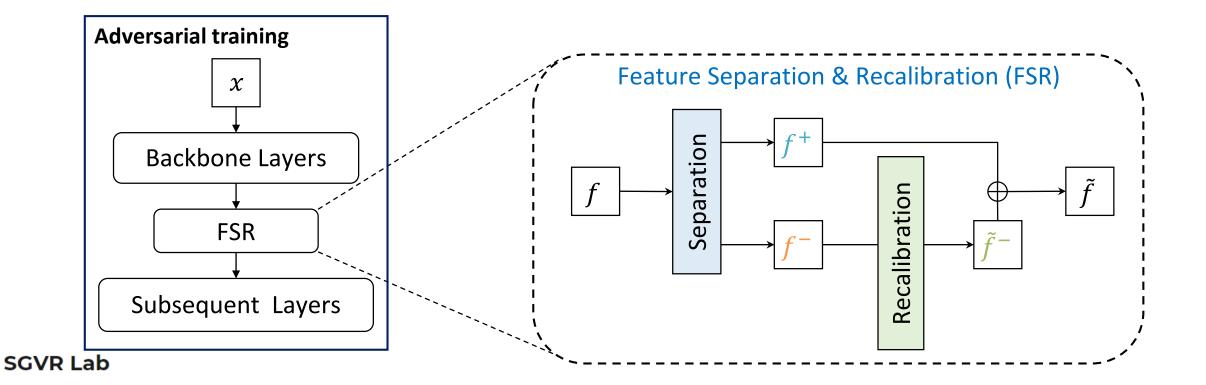
• Guide the Sep. Net S to learn robustness based on relevance to correct prediction



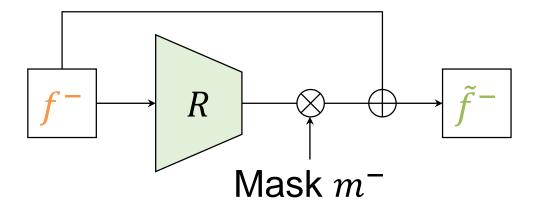
- Conventional methods simply suppress the non-robust feature f^-
- This approach can *neglect potentially useful cues* in the non-robust feature



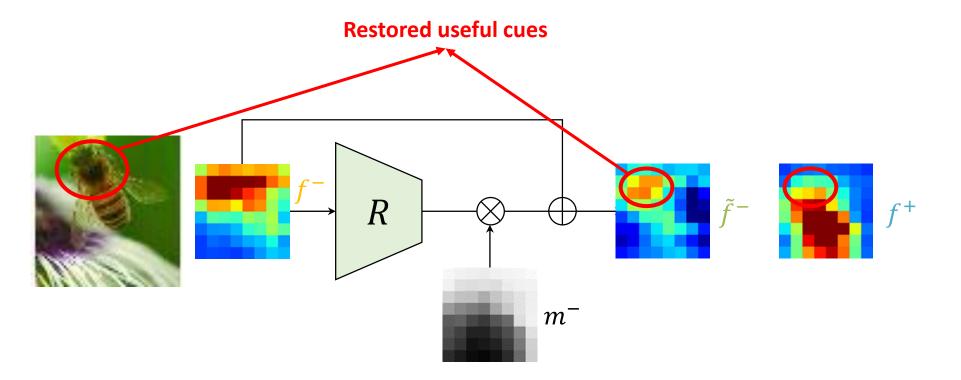
- Recalibration: Recalibrates non-robust feature f^- to restore useful cues
- Recalibrated \tilde{f}^- : Activations with restored useful cues



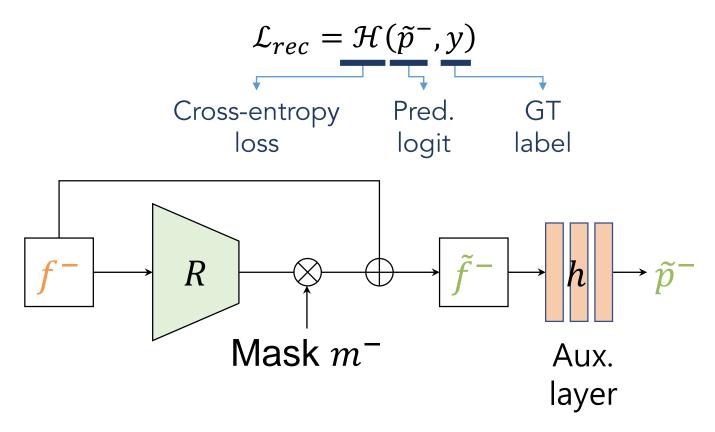
- Recalibration Net R outputs recalibrating units
- We apply the recalibrating units on the non-robust feature f^-



- Recalibration restores useful cues from non-robust feature
- These restored cues provide additional information for correct predictions



• Guide the Rec. Net R to restore useful cues relevant to correct prediction



Training

• Can be attached to any adversarial training (AT) technique with objective \mathcal{L}_{cls}

$$\mathcal{L} = \mathcal{L}_{cls} + \lambda_{sep} \mathcal{L}_{sep} + \lambda_{rec} \mathcal{L}_{rec}$$

- Highly modularized
- Easy to plugin
- Trained in an end-to-end manner

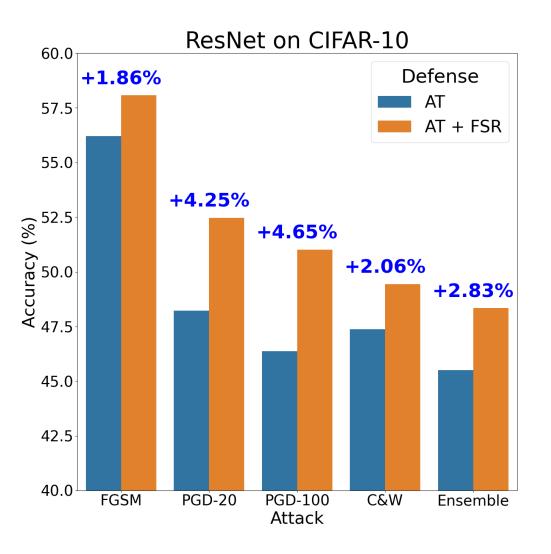
Experimental Evaluations

Experimental Setups

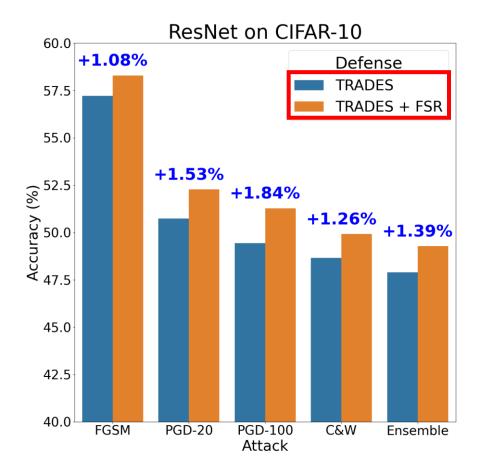
- Baselines
 - PGD adversarial training [1]
 - TRADES [2]
 - MART [3]
- Datasets
 - CIFAR-10/100
 - SVHN
 - Tiny ImageNet
- Models
 - ResNet18
 - VGG16
 - WideResNet-34-10

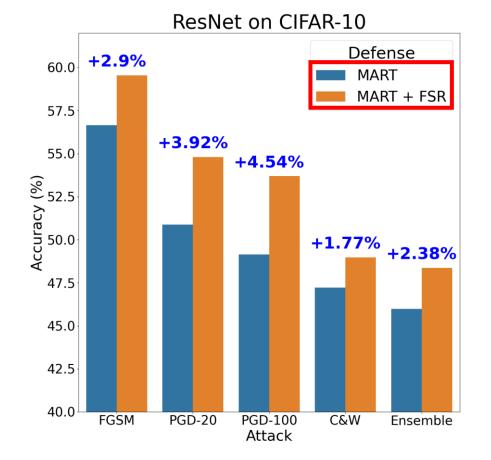
[1] Madry et al., Towards deep learning models resistant to adversarial attacks, ICLR 2018
[2] Zhang et al., Theoretically principled trade-off between robustness and accuracy, ICML 2019
[3] Wang et al., Improving adversarial robustness requires revisiting misclassified examples, ICLR 2019

Improving Robustness of Adversarial Training

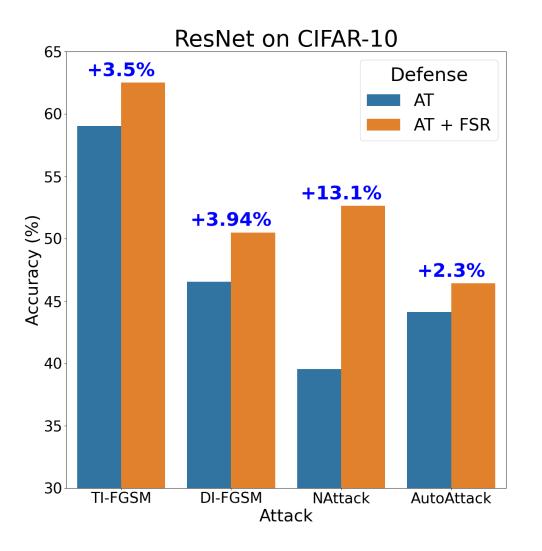


Improving Robustness of Adversarial Training | Different Baselines



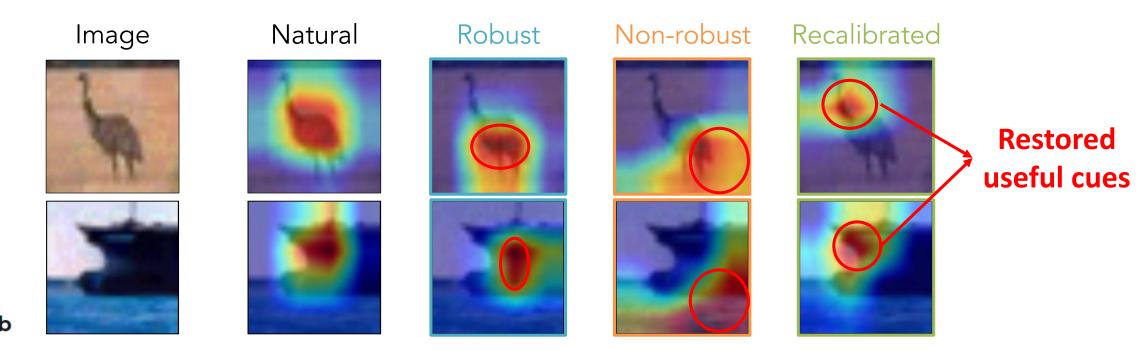


Robustness against Black-Box Attacks and AutoAttack



Robustness of Recalibrated Feature

Method	(a) Classification		(b) Weighted k -NN	
	Ensemble	AutoAttack	5-NN	20-NN
Robust f^+	47.89	45.82	66.21	61.58
Non-robust f^-	33.11	28.39	54.69	53.89
Recalibrated f^-	46.93	44.52	66.34	65.64
Combined $\tilde{f}(f^+ + \tilde{f}^-)$	48.34	46.41	70.91	65.88



Comparison w/ Conventional Methods

• Metric: Classification Accuracy (%)

	Method	Ensemble	AutoAttack
	AT [ICLR 2018]	45.51	44.11
Feature	- FD [CVPR 2019]	45.82	44.57
Deactivation or \dashv	CAS [ICLR 2021]	46.46	44.23
Suppression	$_$ CIFS [ICML 2021]	47.26	43.94
	FSR (Ours)	48.34	46.41

Take-home Messages

- FSR: Module to restore useful cues from disrupted features
- Highly modularized and easy-to-plugin
- Improves robustness of adversarial training-based techniques

Github Codes

github.com/wkim97/FSR SGVR Lab

Project webpage

sgvr.kaist.ac.kr/~wjkim/FSR

Paper

https://arxiv.org/abs/2303.13846