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Abstract

We aim to solve the problem of path following for kinematically redundant manipulators over SE(3).
Trajectory optimization (TO) is a solution to generate a joint-space trajectory while satisfying physical
constraints along with the path-following objective. Unfortunately, as many constraints are imposed
over the objective, the optimization is prone to fall into local minima and requires time-consuming re-
starts. To ameliorate this problem, we propose a learning-based initial-trajectory generation method
that returns joint-space trajectories as good initial guesses for TO. Our method learns the kinematically
feasible null-space motions following a target path over a multi-task reinforcement learning framework
with demonstration guidance. We evaluate the proposed method and three baseline initial trajectory
generation methods plugged into two representative TO frameworks. We show that our method boosts
the performance of the optimization methods in terms of optimality, computational efficiency, and ro-
bustness. Finally, we verify the optimized trajectory quality using our initialization method by executing

it on a real Fetch robot and show a better accurate and smooth tracking performance.

Keywords Motion Planning, Deep Reinforcement Learning, Robotics, Integrated Planning and Learn-

ing
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Chapter 1. Introduction

Target path Initial trajectory generated by LIT ~ Optimized trajectory Robot execution

Figure 1.1:  An exemplar path-following problem, the ‘hello’ word, of a kinematically redundant
manipulator, Fetch from Fetch Robotics. (a) Given a target path (i.e., 6-D pose list), (b) our learning-
based initial trajectory (LIT) generator quickly synthesizes a good initial trajectory. (c) Plugged into the
trajectory optimizer, (d) the real robot smoothly follows the path using the optimized trajectory without
violating any kinematic constraints. The colors of each figure are as follows. (a) Red, Green, and Blue:
x-, y-, and z-axis for each pose, respectively. (b, ¢) Red-line: target paths, Blue-line: end-effector paths
from the generated joint trajectories. (d) Blue-line: a tracked end-effector path of the optimized joint

trajectory.

Accurate and fast path following of manipulators is an important issue for real-world tasks in manu-
facturing or other domains. Given a fully constrained (i.e., 6-dimensional) pose path, we aim to find a
configuration-space trajectory for kinematically redundant manipulators (see Fig. 1.1) taking into con-
sideration a variety of trajectory constraints, such as joint continuity, smoothness as well as potential
collision in the environment. Although the redundant manipulators can provide a flexibility of solutions,
the solution is generally not unique and cannot be represented as a closed-form.

Conventional methods, such as KDL [1] and Trac-IK [2], often use differential inverse kinematics
(IK) to iteratively find a sequence of IK solutions maximizing the pose-matching objective. However,
the local nature of solutions cannot explicitly consider the constraints over the path, though we can
assign the constraint-related behavior in the null-space at each time step [3]. Instead, a recent solver,
RelaxedIK [4], adopts a relaxed tracking objective by formulating an optimization problem that finds
the closest one satisfying constraints. However, the method still suffers from its myopic solution that
may result in no solution or local-minimum paths at the end. Alternatively, researchers introduce a
global-search method that constructs a discrete layered graph with IK solutions along the path and
finds the most kinematically feasible trajectory [5, 6, 7, 8]. The search is asymptotically optimal but
computationally expensive due to the infinite number of IK solutions given an end-effector pose.

Recently, trajectory optimization (TO) has been widely adopted for generating a kinematically
feasible trajectory by appending constraints along an end-effector path [9, 10, 11, 12, 13, 14]. In general,
the non-convex optimization is likely to get stuck in local minima, depending on the quality of the initial
guess, i.e., initial trajectory. Conventional initialization approaches have used 1) a linearly interpolated
trajectory in configuration space [10, 11] or 2) a trajectory by greedily selecting IK solutions maximally
satisfying the constraints [9, 14] considering a limited time budget. However, optimization results based

on these are still prone to be sub-optimal due to the non-convex optimization landscape, requiring time-



costly restarts to avoid local minima. Thus, we need an efficient estimator to synthesize a good initial
trajectory balancing generation time and satisfaction of constraints.

This work introduces a learning-based initial trajectory (LIT) generator that finds a warm-starting
trajectory, as an initial guess of TO. Alongside the fast inference properties of neural networks, the core
idea behind the method is that the kinematically feasible null-space motions from demonstrations can be
informative for finding a global minimum in the manifold of TO solution space. To learn such motions,
we formulate the trajectory generation problem as a finite-horizon Markov decision process (MDP) by
defining a unified reward function composed of task, imitation, and constraint-relevant rewards. We
then train the LIT generator with a variety of path-following problems with demonstrations by adopting
multi-task reinforcement learning (RL) [15]. Our null-space imitation reward helps encourages the agent
to quickly search kinematically feasible motion while resolving the conflict with the path-following task
reward, raising the success rate.

We first demonstrate how we guide LIT to produce low-cost initial trajectories given complex path-
following problems and evaluate its performance against the other three baseline methods in 5,000
specific and 11,000 randomized problems. We then show LIT can help to find better optimal solutions
with minimal optimization time and minimal constraint-violation rate when plugging it to a state-of-
the-art TO method, trajectory optimization of a redundant manipulator (TORM) [14]. We also show
the generalization performance of LIT with another TO method, Trajectory Optimization for Motion
Planning (TrajOpt) [10] and various environments. Finally, we verify the trajectory optimized by each
initialization method on the real robot, Fetch from Fetch Robotics, and confirm that the trajectory

optimized with the LIT initialization creates a more accurate and smooth tracking performance.

Target path X , Initial configuration 9o, Environment E

Training phase
0 - .
Path following =_> Multi-task
problem ws (' | RL framework
X, ~ .
q, | {/ferencing phase Demonstration set - Policy
E Learning-based initial trajectory generator ; n
[ (Task space) | (Configuration space) \
Target path X T T
Py ~_Initial trajectory ‘
. Sinit /7 //'
‘ [ (
X7, Xisz ) ~— qi |9i+1
Local target poses —» |{q;, [l i7¢}}
RobOt States mm— {Agi} C
{w:i}
Occupancy Map —_—
\ Encoder /
Initial trajectory
Robot-arm W Optimized trajectory( Trajectory | <.
controller | | optimizer

Figure 1.2: Overall framework of the proposed LIT method, which infers an initial guess (i.e., trajectory)

for a path-following optimization problem.



Chapter 2. Trajectory Optimization for Path Following

Trajectory optimization, particularly path following for serial manipulators, is to transform an
end-effector path into a joint path that satisfies various kinematic constraints such as joint continuity,
smoothness, mechanical limit, collision, etc. Researchers often represent a pose path as a sequence of
poses X = [z, 1,...,2n—1] € X evenly spaced in time, where N is the number of points in the path,
X is the space of pose paths, and each pose is a pair of position (€ R3) and orientation (€ SO(3)).
Likewise, the joint trajectory is a sequence of joint angles & = [qo, q1,...,qn—1] € =, where ¢ € R? is a
configuration of a d-degree-of-freedom (DoF) manipulator and = is the Hilbert space of joint trajectories
[10, 11, 14]. Note that d is greater than 6 in the case of a redundant manipulator in SE(3).

There can be a number of kinematically feasible solution trajectories. To select the best one, TO
requires setting an objective functional (i.e., cost function) & € R™, which often consists of multiple
sub-objectives. For example, a state-of-the-art TO method, TORM, uses a unified objective functional

for the path-following problem:

u[g] = upose[g] + Aluobs [5] + )‘QUSmooth [5], (21)

where Upose, Uobs, and Usmootn are a pose error!

, an obstacle cost, and a joint smoothness along the tra-
jectory &, respectively. A1, and Ay are constants. Further, the method uses many kinematics constraints
such as joint position and velocity limits as well as constraints of singularity or collision avoidance. For
more details, We refer the readers to [14].

TO algorithms are often sensitive to the quality of the initial trajectory &;,;; for the path following
problem. Considering the objective functional U[] represents the quality of the trajectory, we can design

the problem of the trajectory initialization for TO as the minimization of U[&;n¢].

1n calculating the pose error, we use a weight of 0.17 for the rotational distance over the translational distance, used
in [7, 14].



Chapter 3. Learning-Based Trajectory Initialization

We introduce a learning-based initial trajectory generation method, LIT, that finds a high-quality
initial trajectory for TO via training a multi-task RL-based policy.

3.1 Problem Formulation

We first formulate an MDP My = (S, A, Rz, T,7) x~p(x) given a sampled target path X from a
distribution P(X) of target pose paths, where S is a set of states, A is a set of actions, Rz : S x A — R
is a time-varying reward function, where Z = {z € Z|0 < z < N — 1} is a set of indices, T: Sx A — S
is a deterministic transition function, and v € [0,1) is a discount factor. The policy trained on the
MDP M x synthesizes a nearly constraints-satisfying trajectory £ in the configuration space following
the target path X. (see Fig. 1.2) On the other hand, since the manipulator has a restricted operation
range in the task space with the arm’s length, the target paths X from the distribution P(X) are within
the same geometric space. To share the similarities between MDPs and obtain a unified policy, we define
a multi-task reinforcement learning from the target path distribution P(X):

N—-1
maximize E aj~m(ag|si) lz FYiRi(Siaai) ’ ﬂO] ) (31)
T Mx~P(Mx|X) | iZo

where ¢ is the initial configuration distribution at the initial pose zy. Then, the objective is to find an

optimal policy 7*, where 7* : § X A — R maximizing the expected returns.

3.2 Scene-context based State and Action

We define a scene-context based state s; that is a tuple, s; = (g;, "% 7 w;), at a time step i:
léi”’“ € RA19) is a list of arm links’ frame poses including the gripper link. Note that here we represent
each pose as a combination of a position vector (€ R?) and an orientation vector (€ R®) to enhance the
learning performance of the neural network with continuous state-space representation [16]. 17¢! € R(%:9)
is a list of relative poses from the current end-effector pose to each target pose from step ¢ + 1 to step
i+ t. Here, t is a future time step to take far-sighted action to avoid local-minima.

w € R4 (zvae) js the scene context vector encoded from an occupancy map, which is constructed
with the point clouds of the robot itself and the obstacles of the environment. This vector enables the
policy to recognize self and external collisions. As shown in Fig. 1.2, we feed the map into a pre-trained
encoder with a variational auto-encoder (VAE) structure [17] and then obtain a latent vector as the
context vector input w. In this work, we represent all of the geometric states with respect to the base-
link frame of the robot. We also define an action as a configuration difference, a; = Ag; € R?. In this

work, ¢;+1 = ¢; + Ag;, since T is deterministic.



3.3 Guided Path-following Reward Signal

We introduce a multi-objective guided reward function, adopting the example-guided deep RL [18],

to follow a target pose path while satisfying kinematic feasibility constraints:
Ri = Rtask,i + Rim,i + Rcstr,h (32)

where the reward terms in the right-hand side represent task, imitation, and constraint-related rewards,
respectively. Note that, for the sake of simplicity, we omit the arguments in the reward functions.

In detail, the task reward function Riqsk,; at the time step i is composed of position and orientation
tracking rewards that encourage the agent to follow the target pose path X = [z¢, z1,...,2n—1]. Let z;
be a target pose and Z; be an end-effector pose corresponding to a current joint configuration ¢; at the
pos quat

time step i. Each pose is a tuple of position and quaternion, (Z%

2 ? K2

). Then, we define the position

error ¢’ and orientation error e?*** given ¢; as:
efos — szpos _ i‘fOS”z’ (3'3)
" = 2 cosTL(|xd" . I, (3.4)

Then, instead of using the sum of negative errors as a combined reward, we normalize and reflect the

relative importance of each error term e, similar to the parametric normalization [4], defining a function:

fle,w) = wp *exp(—wy xe) —wz x>  €R, (3.5)

where w = [wg, wy,ws] € R3+ is a set of non-negative constants. Then, the task reward function is
t
Riask,i = f(e7”, wP®) +1 ef°5§5cmf(egua ,wiet), (3.6)

where wP°® and wi9“% are user-defined parameters for each type of error. We activate the orientation
reward when the current end-effector is within 5 cm of the target position to resolve the potential conflict
between the two reward terms.

We also introduce the imitation reward R;., ; to make the agent learn the kinematically feasible
postures depicted in the demonstration set £4¢°. To resolve the potential conflicts between task and
imitation rewards, we propose a null-space imitation reward function that projects the error between the
current configuration ¢; and the ith configuration in £9¢° (i.e., £9¢™°[i]) to the null-space of the current

configuration not to lower the path following performance while mimicking the demonstrated posture:
Rim,i = f(e’z%ma Wim)a (37)
™ = [|(I = J(g) VT (a:)) - (€[] = qi) 2, (3.8)

where J(g;) is the Jacobian matrix at the joint configuration ¢;, T represents the Moore-Penrose inverse
operation, I is an identity matrix, and w*™ is a set of non-negative constants.
The last reward term is the constraint-related reward function R.s:,; that penalizes collision, joint-

limit violation, and early termination states as follows:
Rcstr,i = RC,i + R,],i + RE,i? (39)

where R i(si) = —10 * Leonision(5:), and Ryi(si) = =1 % Lgsq.  (Jg<gmn (5i). Here, we detect the
collision between meshes using Flexible Collision Library [19]. To facilitate the training process, we early
terminate the episode with the negative early termination reward Rpg, when the end-effector is more

than 20 cm away from the target position, as proposed in [18]: Rp,i(si) = =3 x 1 /m=_,0 . (si).



Chapter 4. Experimental Setup

We use a mobile manipulator, Fetch from Fetch Robotics, with a single 7-DoF arm (d = 7) for
training and evaluation steps in both simulated and real-world experiments. Below we describe how to
build pairs of the target path X and demonstration set £4™° for the MDPs formulation.

4.1 Generation of Target Paths and Demonstration Set.

We first collect 5000 valid end-effector poses within the range of = : [0.2,1.2] x y : [-0.7,0.7] X 2z :
[0.0,1.2] (unit: m) by restricting the operation range to the task space. We consider a pose is valid
when at least one IK solution satisfies collision-free and joint-limit constraints. From the valid poses,
we randomly sample 5 to 8 poses as way-points and interpolate the positions at 0.5 cm distance interval
along a B-spline curve. At each point, we also interpolate quaternion orientations using a spherical linear
interpolation (Slerp). We then filter out if any intermediate pose {x;|i € [0, N — 1]} is not valid. Note
that it does not guarantee that there is a feasible trajectory even when all intermediate poses are valid.

Based on the aforementioned procedure, we collect 5,000 paths in an environment without objects,
and additional 10,000 paths from 500 randomly generated environments consisting of a table-shaped box
and various objects on the box (see Fig. 4.1). By randomly sampling two valid initial configurations go
per path, we overall collect 30,000 pairs of the target path and optimized joint trajectory generated from
TORM with a 120s time budget. We use the collected pairs {X, £4¢™°} for the training step below.

4.2 Training Details

We employed a soft actor-critic (SAC) with automatic entropy adjustment [20] to train a policy
7 maximizing Eq. (3.1) by extending the SAC code in Spinning-up RL library [21]. The policy and
double Q networks are composed of 3 hidden layers with 1024 nodes per layer representing its parameter
6. Our LIT generates trajectories using the stochastic policy (i.e., diagonal Gaussian policy). In this
work, we bounded the action within the range of [—0.26,0.26] (unit: rad) to enforce the generated
trajectory naturally satisfies connectivity and smoothness; m(als) ~ 0.26 x tanh(N (g (s), Xo(s))). We
used Exponential Linear Unit (ELU) with o = 1.0 as activation functions except the last layer.

In this paper, we empirically set the state space parameters as t = 6 and dim(zyqe) = 32, which
is the size of scene-encoding latent space, and the normalization coefficients w of each reward term as
wPos = [2,65,30], wivet = [2,5,0] and w'™ = [1,15,0.5]. As the parameters of SAC, we used the 0.99
discounting factor, the 0.995 polyak for target network update, the 3 target entropy, the 108 replay buffer
size, the 4096 batch size, the 1 x 10™% learning rate for the critic, 7 x 107> for policy, and 1 x 10~ for
the entropy regularization weight. We updated the weights 200 times every 10* steps using the Adam
optimizer [22]. Adopting the reference-state initialization approach [18], we placed the agent at an initial
state randomly sampling from the demonstration set £%¢™° and formulated the Mx with the paired
target path X. Training of the policy required 3 x 107 simulation steps, which took approximately 144
hours on the standard desktop equipped with an Intel i19-9900K and a RTX 2080 Ti.

To train a VAE, we collected 3000 random scenes configured in the form of tables of various sizes

and objects scattered on them. Following the approach [17], we trained the VAE for 500 epochs with



1 x 10~* learning rate, 64 batch size, 1 x 107% weight decay, and 5 x 1076 weight of Kullback-Leibler

divergence loss term. The training took about 3 hours using the same optimizer and machine.

4.3 Evaluation Setup

We set 3 trajectory-initialization methods for the path following problem as our baselines:

e Linear: Linear returns a linearly interpolated trajectory in the configuration space. Considering that
the goal configuration is not given in the target path, we selected an IK solution at the last pose of

the path having a minimum L, distance with an initial configuration ¢q.

o Greedy [14]: Greedy extracts the sub-sampled poses from X with 10 intervals. Then, starting from an
initial configuration qq, this finds 150 random IK solutions at each next sub-sampled pose and search

for and interpolates with the best IK solution minimizing the objective function (Eq. (2.1)).

e LIT BC: LIT_BC is another learning-based prediction method trained with a behavior-cloning (BC)
framework [23], supervised learning for decision making, instead of RL. We trained the neural network

naively mimicking the demonstration set £4¢° with a mean squared error loss.

Note that we call our method LIT_RL for clarity.

To verify our method across the type of optimizers, we used TORM and TrajOpt. TORM iteratively
optimizes and explores new initial trajectories to avoid local minima within 50s. On the other hand,
TrajOpt’s update is performed using a quadratic solver, and thus one iteration takes from 3s to 14s, so
we made one trajectory converged within 150s.

We used total five specific target paths for the comparison with baselines (see Fig. 4.1(a)-4.1(d)).
Three paths X (‘Hello’, ‘Rotation’, ‘Zigzag’) are without external obstacles and two paths X (‘Square’,
‘S’) are with external obstacles. In the case of ‘Hello’, ‘Zigzag’, ‘Square’, and ‘S’, we fixed the orientation
on the path. On the other hand, in the ‘Rotation’, we fixed the position on the path while varying the
orientation in the range of +45° along the direction of pitch and yaw axes. We collected 100 valid IK
solutions, at the first pose xg, per benchmark path to obtain reliable statistic results using various initial
configurations ¢o since the prediction performance largely depends on the initial configurations [6].

We also evaluated the generality of the LIT methods by using 100 randomly generated target paths
without external obstacles and 1000 random paths from 100 random scenes, where we sampled and
interpolated the randomly sampled valid end-effector poses (see Fig. 4.1(e) and Fig. 4.1(f)). We call this
benchmark set ‘Random’ below.

The number of points for each benchmark path is as follows: Npgejo = 553, Npgotation = 209,
Nzigzag = 227, Nsquare = 320, Ng = 301, and Ngandom ~ N (626,120).



(a) Hello

(¢) Square (d) s

(e) Random w/o obs (f) Random w/ obs

Figure 4.1: Visualization of four specific and two random target paths used in evaluations. Red and blue
lines are the target and generated end-effector paths, respectively. We compute blue lines via forward
kinematics inputting initial joint trajectories from LIT_RL. In (c) and (d), the original color of the robot
represents the initial configurations, and the yellow trails indicate that the generated trajectories satisfy

collision-avoidance constraints in the environment.



Chapter 5. Results

We first perform quantitative and qualitative Cost function U[§] = Linear == Greedy == LIT BC == LIT RL (Ours)
analyses of the initial trajectories from the pro- lm_% %
posed method and baselines in simulated environ-  °?] Fra —+h - - ﬁ
ments. Fig. 5.1 shows the comparative analysis of
the initial trajectory generation methods in terms o.05] — = ﬁ*

== s

Constraint violation rate [%]

of three quality metrics: objective functional value

U[¢] (Eq. (2.1)), constraint violation rate consid- o6

ering the collision-free and joint velocity limit vi- | | | I

0.4+

olation constraints, and generation time for com-
putational efficiency. We set the At between two ] | I .. | I |
subsequent configurations to 0.1s and objective ..._.-- - u
Generation time [s]
functions’ coefficients as \; = 10 and Ay = 1.5. 10 4 =
LIT_RL shows the lowest objective functional = + =
100_
value in all benchmark problems; that is, the gen-
erated trajectory makes the balance between the 1073 -
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sub-objectives of pose error, obstacle cost, and Hello Rottion  Zigzag  Square &S Random
joint smoothness, and also shows the lower con-
straint violation rate than Greedy and LIT_BC.

Specifically, as Fig. 5.2 qualitatively compares the

Figure 5.1: Comparative analysis of the four initial-
trajectory generation methods in five types of simu-
lated environments. The x- and y-axes are the type

generated trajectories of each method on one of

the ‘Random’ problems, Greedy has the relatively of benchmark problems and the performance met-

small pose error and obstacle cost because it se- rics, respectively.
lects the best IK solution greedily. However, it has the worst performance in terms of joint smoothness
since the continuity of the overall trajectory is not guaranteed. Most of the constraint violations of
Greedy happened due to either no IK solution or the local minima solution with a limited number of IK
solutions. On the contrary, the Linear has the best smoothness while having the worst pose error and
obstacle cost among baselines since it does not consider the objectives represented in the task space. The
learning-based methods naturally outperformed the Greedy method in generation time since the function

approximation helps infer the entire path without time-costly searches. Among the two learning-based

SAOETE G

a) Linear (0.694, 3.4 107%,0.084) (b) Greedy (0.004, 1.4 - 107,8.462) ¢) LIT BC (003, 1.1-1075,0.198) d)LIT_RL (0.013,1.0 - 1075,0.195)

Figure 5.2: Qualitative results on one of the ‘Random’ problems (N = 728). Red and blue lines
are the target and generated end-effector paths, respectively. The robot’s posture indicates the initial
configuration. Numbers within the parenthesis represent the average pose error, the average joint velocity

(rad/s), and the generation time (s) in order.



methods, LIT_RL shows better performance concerning the objective value than the LIT_BC method,
while generation time is almost the same as both methods use a neural network with the same structure.
LIT_BC shows poor tracking performance with the limited demonstration set £%¢° we prepared, while
LIT_RL generalizes well to more diverse target paths by exploring the state space based on the reward
function. Fig. 4.1 shows the initial trajectories synthesized by LIT_RL for each benchmark problem as

qualitative results.

We further extended our experiment by com- Avg. Pose error = Linear == Greedy ==LIT BC == LIT RL (Ours)
107} e
. . . oy . . . . 10
bining each initialization method with two differ- IE 1071_\_\\
ent trajectory optimization approaches: TORM N 10_3L
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helps to find better optimum solutions via TO by e 0 :
- 3 30 60 90 120 15
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to the first-order optimization process. .
Figure 5.3: Average pose-error convergence of two

Table 5.1 sh th te of the opti-
able 5.1 shows the success rate of the opti optimization methods (i.e., TORM and TrajOpt) in

mized solutions. LIT_RL improved the robustness

four types of simulated benchmark problems during

f optimizati thods b istentl intain-
O OpHIzAlion ELHOCs by CONSISENtly atitan optimization time. We plugged in the proposed and

ing the highest success rate in all benchmark sets. . . .
three baseline initial trajectory generation methods

In particular, it showed a noticeable performance . ..
P ’ p into the optimization methods. The y-axis is the

improvement compared to the Greedy in the ‘Ran-
prov P Y pose error in log scale, and the x-axis is the elapsed

dom’ benchmark set. Randomly generated paths time (s).
are more challenging to follow than the semanti-

cally generated ones, because the curvature of the path tends to be large, the path exists in more diverse
regions, and the position and rotation change together along the path. Therefore, if the initial trajectory
itself does not satisfy the continuity of the joint, it is difficult to converge to a feasible trajectory without
falling into the local minima. To check only the convergence of each initial trajectory, we blocked TORM
to iteratively explore the new trajectories within the time budget in this experiment. We assessed the
optimized solution to be successful when the optimized trajectory satisfies all the constraints and the
position and rotation errors are smaller than each threshold values shown in the Table 5.1.

We also investigate the effectiveness of the imitation reward on our framework comparing with that
of the other reward combinations while all the constraint-related rewards R s are same. Fig. 5.4 shows
the comparison of learning curves (i.e., path-following success rate) when using four combinations of
rewards: 1) Rim, 2) Riask, 3) Riask + Rim,r2, 4) Riask + Rim. Here, Rim 12 is a simple Lo-distance
imitation reward where ei™ = [|¢9¢™°[i] — ¢;||o. Overall, Ryask + Rim resulted in the best success rate
at the end (Red line). However, individual rewards such as Riqsk or Ry give lower performance than
the proposed reward combination. This indicates the combination helps track the target pose and take

kinematically feasible null-space posture captured in the demonstration. On the other hand, another

10



Method

Path TO -
Linear ‘ Greedy ‘ LIT_BC | LIT_RL
Hello TORM 32.0 68.0 62.0 87.0
(0.1¢m, 0.1°) | TrajOpt 46.0 99.0 92.0 100.0
Rotation TORM 93.0 98.0 87.0 99.0
(0.1cm, 0.1°) | TrajOpt 99.0 100.0 100.0 100.0
Zigzag TORM 3.0 74.0 94.0 98.0
(lem, 1°) | TrajOpt | 73.0 | 77.0 87.0 97.0
Square & S TORM 6.0 100.0 76.0 100.0
(lem, 1°) | TrajOpt | 22.0 | 100.0 | 100.0 | 100.0
Random TORM 2.3 19.0 61.0 88.0
(lcm, 1°) TrajOpt 6.5 90.0 85.0 99.0

Table 5.1: Comparison of two extended trajectory-optimization approaches with each trajectory initial-
ization methods in terms of success rate (%). We consider an optimized trajectory is ‘successful’ if the
trajectory satisfies kinematic feasibility constraints and the average of positional and rotational errors

are lower than certain thresholds represented in the parentheses.

Path following success rate [%)]

1.0
0.8 -®- Task + Imitation reward (null space)
0.6
0.4 - 4% Task reward
=& Imitation reward (L2)
0.2 . Ty
wahtill step
0 20 40 60 x10°

Figure 5.4: Comparison of learning curves from four combinations of reward functions. We measure
the success rate by randomly constructing 20 problems at every 1 x 10% evaluation steps and consider
one experiment successful when distances between the end effector pose and the target pose at all time

steps are within 5 cm positionally and 3° rotationally without any collision.

similar combination, Rtask + Rim,L2, led to lower performance (Orange line). This indicates that joint-
space guidance from a non-optimal demonstration can help learn the kinematically better posture, but
it conflicts with the accurate target pose tracking objective. Thus, this result shows the null-space
projection in R;,, helps to guide the internal posture without sacrificing the tracking performance.
Finally, we verified the optimized trajectory quality with Greedy and LIT_RL by executing it on
the real robot (see Fig. 6.1) and confirmed that our method shows a more accurate and smooth tracking

performance.
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Found solution trajectory (time: 00:08:75) Done. (01:40:69)

Found solution trajectory (time: 00:00:75) ' " Done. (00:43:05) | Target path |

Figure 6.1: Demonstration on a randomly generated target path. Blue lines are the tracked end-effector
paths where a Fetch manipulator is tracking trajectory-optimization results with the initial trajectories
of Greedy [14] and LIT_RL. In the fifth frame of Greedy, the robot shows abrupt deviation from the target
path and takes more time for Greedy. In this experiment, we set the At value large enough so that the
greedy method could produce a discontinuous joint trajectory as a result. As a result, the discontinuity

of the joint results in a large execution time as it sequentially tracks nodes in the trajectory.

Chapter 6. Conclusion

We presented a learning-based initial trajectory (LIT) generation method that quickly finds a low-
cost initial trajectory for the better trajectory optimization of kinematically redundant manipulators.
We formulate the 6-D pose path-following as a multi-task RL, which enables LIT to find a joint-space
solution trajectory given a variety of path-following problems. In particular, by defining a unified reward
function with a null-space imitation reward, we made the agent explore and learn kinematically feasible
postures in demonstrations without conflicting with the task rewards.

We showed the high quality of our initialization method qualitatively and qualitatively. In conjunc-
tion with the two representatives TO methods, our initialization method resulted in boosted convergence
speed and optimality with a higher success rate over diverse benchmark problems. In addition, We
demonstrated the generalization performance and the anytime property of our learning-based method
through a variety of simulated and real-world experiments.

The content written in this dissertation has been submitted to the ICRA conference in 2022 and is

under the process of review.
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Chapter 7. Related Work

7.1 Path-wise Inverse Kinematics (IK)

The inverse kinematics (IK) finds joint values of an articulated chain that produce the desired
end-effector pose given in cartesian space. Various numerical methods for solving IK problems include
jacobian, non-linear programming (NLP), and artificial intelligence-based methods [24].

In the case of a redundant manipulator, an infinite set of IK solutions are possible for one end-
effector pose. Therefore, prior research attempted to simultaneously consider more task objectives, such
as obstacle avoidance [25], joint limits, and kinematic singularity avoidance, by using redundancy in joint
space, called null-space optimization [26].

Task priority IK [27, 28, 3] uses a null-space projection of the Jacobian matrix to consider tasks
hierarchically in the order of priorities. On the other hand, importance-based IK [29, 4] formulates the
objective function of NLP through the weighted sum of each task such that the IK solution is at the
basin of the objective function.

The path-wise 1K is extended to finding a list of joint configurations that satisfies the given list of
end-effector poses. The constraints that all joint configurations should match the end-effector poses and
be feasible (joint-level smoothness and non-collision) make the possible solution space discontinuous [7],
resulting in jumping in the joint space in the middle of the joint configuration path with the local search
method [2, 4].

RelaxedIK [4] considers joint continuity by adding an objective function related to smoothness with
the previous joint values, but it is prone to be stuck into the local minima because only the immediately
preceding joint is considered.

In order to make a very accurate and feasible joint path, some research [7, 5, 6] proposes off-line
methods. [7] derived a joint path having minimal Fréchet distance with the reference end-effector poses
in the task space using a variant of Dijkstra’s graph search algorithm on a graph where IK solutions
of each end-effector pose form vertices. STAMPEDE [5] efficiently formulated a discrete-space graph
by creating vertices with locally optimal IK solutions at each end-effector pose through NLP. With the
importance of the starting configuration to the quality of the path-wise IK solution, [6] made multiple
candidate solutions from various starting configurations and selected the best one with a user preference.
These methods can find a globally optimal solution if time is given enough, but in practice, there is a
problem of hyper-parameters’ resolution, such as the number of IK solutions for each end-effector pose,

and it takes a long time because all solution spaces should be explored.

7.2 Trajectory Optimization for Path-wise IK

Trajectory optimization (TO) approaches have been extensively studied to quickly compute locally
optimal trajectory connecting start to end configuration without collision [30]. CHOMP [11] extends the
elastic band approach [31] to a functional gradient optimization method and finds a feasible trajectory by
iteratively optimizing a functional trading-off between joint smoothness and obstacle avoidance. TORM
[14] proposed a two-stage gradient descent technique for the problem of falling into local minima due to

the conflict between constraints. STOMP [32] explored the solution space around the current trajectory

13



by injecting noise to the trajectory with the path integral method [33]. TrajOpt [10] and GuSTO [34]
solved a sequential convex optimization problem with the convex relaxation techniques.

These methods usually use linear interpolation in joint space as an initial trajectory for the robot
arm, completely independent of task space objectives, especially when all end-effector poses are fully
constrained as in a path-wise IK problem. TORM [14] proposes a heuristic initialization method for
the path-wise IK problem that creates an initial trajectory with joints selected from IK solutions for
each segment of end effector poses. However, making an initial trajectory in the same homotopy set
with a global optimum solution is still challenging because the joint continuity between segments is not
considered. Recently, many neural-network-based approaches [35, 36, 37, 38] have been researched to

warm-start the optimization with the learned initialization by leveraging off-line experience.

7.3 Data-driven Motion Generation

In the field of graphics, research to generate general motions from the collected motion capture data
is an active research area. [39, 40, 41, 42, 43] have increased the generalization of motion by constructing
neural network architectures to efficiently learn a pattern or mode of behavior repeated in the character’s
motion. However, although this seems realistic, it cannot be guaranteed whether the generated motion
is dynamically feasible.

Therefore, methods using reinforcement learning techniques have emerged to make robust motions
even in various unseen external perturbations in a dynamic environment [44, 45]. On the other hand,
in reinforcement learning, when learning is performed with a sparse task reward, learning may proceed
differently from the user’s intention or may not be learned at all. Therefore, [18, 46] shape the reward
function so that the agent can have a specific motion style while increasing the learning efficiency with

a motion prior built from reference motion data.
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