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초 록

본 논문은 운동학적으로 7 자유도 이상의 로봇 팔에 대한 3차원 공간상의 경로 추적 문제를 해결하는 것을

목표로 한다. 궤적 최적화 기법은 경로 추적 목표와 함께 운동학적 제약 조건 및 충돌 회피 조건을 충족하는

조인트 공간에 궤적을 최적화 기법을 통하여 생성하는 방법이다. 하지만, 경로 추적의 목표는 매 순간에

대해 많은 제약 조건이 부과되기에 초기 궤적에 따른 최적화의 결과가 극소값에 빠지기 쉽고, 이를 회피하기

위해서는 시간이 많이 걸리는 여러 번의 재시작이 필요하다. 이 문제를 개선하기 위해, 본 논문에서는 심층

강화 학습기법의 사용하여 학습된 신경망을 통하여 여러 제약조건들이 고려된 초기 궤적을 생성함으로써

최적화 기법의 성능을 향상시키는 방식을 제안한다. 신경망 학습을 위해 경로 추적, 충돌 회피 및 제약조

건들에 대한 보상함수를 구성하였고, 추가적으로 영공간 상에 최적화를 위해 최적화된 궤적들로부터 모방

학습을 활용하였다. 본 프레임워크를 두 개의 대표적인 최적화 기법에 적용하여 수렴 결과에 최적성, 계산

효율성 및 다양한 경로에 대한 강인함의 향상을 확인하였다. 마지막으로 실제 로봇에 적용하여 최적화된

궤적에 효용성을 검증하였다.

핵 심 낱 말 모션 계획, 심층 강화 학습, 로봇 공학

Abstract

We aim to solve the problem of path following for kinematically redundant manipulators over SE(3).

Trajectory optimization (TO) is a solution to generate a joint-space trajectory while satisfying physical

constraints along with the path-following objective. Unfortunately, as many constraints are imposed

over the objective, the optimization is prone to fall into local minima and requires time-consuming re-

starts. To ameliorate this problem, we propose a learning-based initial-trajectory generation method

that returns joint-space trajectories as good initial guesses for TO. Our method learns the kinematically

feasible null-space motions following a target path over a multi-task reinforcement learning framework

with demonstration guidance. We evaluate the proposed method and three baseline initial trajectory

generation methods plugged into two representative TO frameworks. We show that our method boosts

the performance of the optimization methods in terms of optimality, computational efficiency, and ro-

bustness. Finally, we verify the optimized trajectory quality using our initialization method by executing

it on a real Fetch robot and show a better accurate and smooth tracking performance.

Keywords Motion Planning, Deep Reinforcement Learning, Robotics, Integrated Planning and Learn-

ing
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Chapter 1. Introduction

a b c d

Target path Initial trajectory generated by LIT Optimized trajectory Robot execution

Figure 1.1: An exemplar path-following problem, the ‘hello’ word, of a kinematically redundant

manipulator, Fetch from Fetch Robotics. (a) Given a target path (i.e., 6-D pose list), (b) our learning-

based initial trajectory (LIT) generator quickly synthesizes a good initial trajectory. (c) Plugged into the

trajectory optimizer, (d) the real robot smoothly follows the path using the optimized trajectory without

violating any kinematic constraints. The colors of each figure are as follows. (a) Red, Green, and Blue:

x-, y-, and z-axis for each pose, respectively. (b, c) Red-line: target paths, Blue-line: end-effector paths

from the generated joint trajectories. (d) Blue-line: a tracked end-effector path of the optimized joint

trajectory.

Accurate and fast path following of manipulators is an important issue for real-world tasks in manu-

facturing or other domains. Given a fully constrained (i.e., 6-dimensional) pose path, we aim to find a

configuration-space trajectory for kinematically redundant manipulators (see Fig. 1.1) taking into con-

sideration a variety of trajectory constraints, such as joint continuity, smoothness as well as potential

collision in the environment. Although the redundant manipulators can provide a flexibility of solutions,

the solution is generally not unique and cannot be represented as a closed-form.

Conventional methods, such as KDL [1] and Trac-IK [2], often use differential inverse kinematics

(IK) to iteratively find a sequence of IK solutions maximizing the pose-matching objective. However,

the local nature of solutions cannot explicitly consider the constraints over the path, though we can

assign the constraint-related behavior in the null-space at each time step [3]. Instead, a recent solver,

RelaxedIK [4], adopts a relaxed tracking objective by formulating an optimization problem that finds

the closest one satisfying constraints. However, the method still suffers from its myopic solution that

may result in no solution or local-minimum paths at the end. Alternatively, researchers introduce a

global-search method that constructs a discrete layered graph with IK solutions along the path and

finds the most kinematically feasible trajectory [5, 6, 7, 8]. The search is asymptotically optimal but

computationally expensive due to the infinite number of IK solutions given an end-effector pose.

Recently, trajectory optimization (TO) has been widely adopted for generating a kinematically

feasible trajectory by appending constraints along an end-effector path [9, 10, 11, 12, 13, 14]. In general,

the non-convex optimization is likely to get stuck in local minima, depending on the quality of the initial

guess, i.e., initial trajectory. Conventional initialization approaches have used 1) a linearly interpolated

trajectory in configuration space [10, 11] or 2) a trajectory by greedily selecting IK solutions maximally

satisfying the constraints [9, 14] considering a limited time budget. However, optimization results based

on these are still prone to be sub-optimal due to the non-convex optimization landscape, requiring time-

1



costly restarts to avoid local minima. Thus, we need an efficient estimator to synthesize a good initial

trajectory balancing generation time and satisfaction of constraints.

This work introduces a learning-based initial trajectory (LIT) generator that finds a warm-starting

trajectory, as an initial guess of TO. Alongside the fast inference properties of neural networks, the core

idea behind the method is that the kinematically feasible null-space motions from demonstrations can be

informative for finding a global minimum in the manifold of TO solution space. To learn such motions,

we formulate the trajectory generation problem as a finite-horizon Markov decision process (MDP) by

defining a unified reward function composed of task, imitation, and constraint-relevant rewards. We

then train the LIT generator with a variety of path-following problems with demonstrations by adopting

multi-task reinforcement learning (RL) [15]. Our null-space imitation reward helps encourages the agent

to quickly search kinematically feasible motion while resolving the conflict with the path-following task

reward, raising the success rate.

We first demonstrate how we guide LIT to produce low-cost initial trajectories given complex path-

following problems and evaluate its performance against the other three baseline methods in 5, 000

specific and 11, 000 randomized problems. We then show LIT can help to find better optimal solutions

with minimal optimization time and minimal constraint-violation rate when plugging it to a state-of-

the-art TO method, trajectory optimization of a redundant manipulator (TORM) [14]. We also show

the generalization performance of LIT with another TO method, Trajectory Optimization for Motion

Planning (TrajOpt) [10] and various environments. Finally, we verify the trajectory optimized by each

initialization method on the real robot, Fetch from Fetch Robotics, and confirm that the trajectory

optimized with the LIT initialization creates a more accurate and smooth tracking performance.

Learning-based initial trajectory generator

Target path
(Configuration space)(Task space)

PolicyLocal target poses
Robot states

Occupancy Map
Encoder

{ }

{ }
+

Initial trajectory

Robot-arm
controller

Trajectory
optimizer

Optimized trajectory

Initial trajectory

Policy

Path following
problem

Multi-task
RL framework

*
Demonstration set

*

Target path , Initial configuration , Environment

,
, Inferencing phase

Training phase

demo

Figure 1.2: Overall framework of the proposed LIT method, which infers an initial guess (i.e., trajectory)

for a path-following optimization problem.
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Chapter 2. Trajectory Optimization for Path Following

Trajectory optimization, particularly path following for serial manipulators, is to transform an

end-effector path into a joint path that satisfies various kinematic constraints such as joint continuity,

smoothness, mechanical limit, collision, etc. Researchers often represent a pose path as a sequence of

poses X = [x0, x1, ..., xN−1] ∈ X evenly spaced in time, where N is the number of points in the path,

X is the space of pose paths, and each pose is a pair of position (∈ R3) and orientation (∈ SO(3)).

Likewise, the joint trajectory is a sequence of joint angles ξ = [q0, q1, ..., qN−1] ∈ Ξ, where q ∈ Rd is a

configuration of a d-degree-of-freedom (DoF) manipulator and Ξ is the Hilbert space of joint trajectories

[10, 11, 14]. Note that d is greater than 6 in the case of a redundant manipulator in SE(3).

There can be a number of kinematically feasible solution trajectories. To select the best one, TO

requires setting an objective functional (i.e., cost function) U ∈ R+, which often consists of multiple

sub-objectives. For example, a state-of-the-art TO method, TORM, uses a unified objective functional

for the path-following problem:

U [ξ] = Upose[ξ] + λ1Uobs[ξ] + λ2Usmooth[ξ], (2.1)

where Upose, Uobs, and Usmooth are a pose error1, an obstacle cost, and a joint smoothness along the tra-

jectory ξ, respectively. λ1, and λ2 are constants. Further, the method uses many kinematics constraints

such as joint position and velocity limits as well as constraints of singularity or collision avoidance. For

more details, We refer the readers to [14].

TO algorithms are often sensitive to the quality of the initial trajectory ξinit for the path following

problem. Considering the objective functional U [ξ] represents the quality of the trajectory, we can design

the problem of the trajectory initialization for TO as the minimization of U [ξinit].

1In calculating the pose error, we use a weight of 0.17 for the rotational distance over the translational distance, used

in [7, 14].
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Chapter 3. Learning-Based Trajectory Initialization

We introduce a learning-based initial trajectory generation method, LIT, that finds a high-quality

initial trajectory for TO via training a multi-task RL-based policy.

3.1 Problem Formulation

We first formulate an MDP MX = ⟨S,A,RZ , T , γ⟩X∼P(X ) given a sampled target path X from a

distribution P(X ) of target pose paths, where S is a set of states, A is a set of actions, RZ : S ×A → R
is a time-varying reward function, where Z = {z ∈ Z|0 ≤ z ≤ N − 1} is a set of indices, T : S × A → S
is a deterministic transition function, and γ ∈ [0, 1) is a discount factor. The policy trained on the

MDP MX synthesizes a nearly constraints-satisfying trajectory ξ in the configuration space following

the target path X. (see Fig. 1.2) On the other hand, since the manipulator has a restricted operation

range in the task space with the arm’s length, the target paths X from the distribution P(X ) are within

the same geometric space. To share the similarities between MDPs and obtain a unified policy, we define

a multi-task reinforcement learning from the target path distribution P(X ):

maximize
π

E ai∼π(ai|si)
MX∼P(MX |X )

[
N−1∑
i=0

γiRi(si, ai)
∣∣∣ µ0

]
, (3.1)

where µ0 is the initial configuration distribution at the initial pose x0. Then, the objective is to find an

optimal policy π∗, where π∗ : S ×A → R+ maximizing the expected returns.

3.2 Scene-context based State and Action

We define a scene-context based state si that is a tuple, si = (qi, l
link
i , lreli , ωi), at a time step i:

llinki ∈ R(d+1,9) is a list of arm links’ frame poses including the gripper link. Note that here we represent

each pose as a combination of a position vector (∈ R3) and an orientation vector (∈ R6) to enhance the

learning performance of the neural network with continuous state-space representation [16]. lreli ∈ R(t,9)

is a list of relative poses from the current end-effector pose to each target pose from step i + 1 to step

i+ t. Here, t is a future time step to take far-sighted action to avoid local-minima.

ω ∈ Rdim(zvae) is the scene context vector encoded from an occupancy map, which is constructed

with the point clouds of the robot itself and the obstacles of the environment. This vector enables the

policy to recognize self and external collisions. As shown in Fig. 1.2, we feed the map into a pre-trained

encoder with a variational auto-encoder (VAE) structure [17] and then obtain a latent vector as the

context vector input ω. In this work, we represent all of the geometric states with respect to the base-

link frame of the robot. We also define an action as a configuration difference, ai = ∆qi ∈ Rd. In this

work, qi+1 = qi +∆qi, since T is deterministic.
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3.3 Guided Path-following Reward Signal

We introduce a multi-objective guided reward function, adopting the example-guided deep RL [18],

to follow a target pose path while satisfying kinematic feasibility constraints:

Ri = Rtask,i +Rim,i +Rcstr,i, (3.2)

where the reward terms in the right-hand side represent task, imitation, and constraint-related rewards,

respectively. Note that, for the sake of simplicity, we omit the arguments in the reward functions.

In detail, the task reward function Rtask,i at the time step i is composed of position and orientation

tracking rewards that encourage the agent to follow the target pose path X = [x0, x1, ..., xN−1]. Let xi

be a target pose and x̂i be an end-effector pose corresponding to a current joint configuration qi at the

time step i. Each pose is a tuple of position and quaternion, (x̂pos
i , x̂quat

i ). Then, we define the position

error eposi and orientation error equati given qi as:

eposi = ||xpos
i − x̂pos

i ||2, (3.3)

equati = 2 cos−1(|xquat
i · x̂quat

i |). (3.4)

Then, instead of using the sum of negative errors as a combined reward, we normalize and reflect the

relative importance of each error term e, similar to the parametric normalization [4], defining a function:

f(e,w) = w0 ∗ exp(−w1 ∗ e)− w3 ∗ e2 ∈ R, (3.5)

where w = [w0, w1, w2] ∈ R3
+ is a set of non-negative constants. Then, the task reward function is

Rtask,i = f(eposi ,wpos) + 1√
eposi ≤5 cm

f(equati ,wquat), (3.6)

where wpos and wquat are user-defined parameters for each type of error. We activate the orientation

reward when the current end-effector is within 5 cm of the target position to resolve the potential conflict

between the two reward terms.

We also introduce the imitation reward Rim,i to make the agent learn the kinematically feasible

postures depicted in the demonstration set ξdemo. To resolve the potential conflicts between task and

imitation rewards, we propose a null-space imitation reward function that projects the error between the

current configuration qi and the ith configuration in ξdemo (i.e., ξdemo[i]) to the null-space of the current

configuration not to lower the path following performance while mimicking the demonstrated posture:

Rim,i = f(eimi ,wim), (3.7)

eimi = ||(I − J(qi)
†J(qi)) · (ξdemo[i]− qi)||2, (3.8)

where J(qi) is the Jacobian matrix at the joint configuration qi, † represents the Moore-Penrose inverse

operation, I is an identity matrix, and wim is a set of non-negative constants.

The last reward term is the constraint-related reward function Rcstr,i that penalizes collision, joint-

limit violation, and early termination states as follows:

Rcstr,i = RC,i +RJ,i +RE,i, (3.9)

where RC,i(si) = −10 ∗ 1collision(si), and RJ,i(si) = −1 ∗ 1q>qmax
⋃

q<qmin
(si). Here, we detect the

collision between meshes using Flexible Collision Library [19]. To facilitate the training process, we early

terminate the episode with the negative early termination reward RE , when the end-effector is more

than 20 cm away from the target position, as proposed in [18]: RE,i(si) = −3 ∗ 1√
eposi >20 cm

(si).
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Chapter 4. Experimental Setup

We use a mobile manipulator, Fetch from Fetch Robotics, with a single 7-DoF arm (d = 7) for

training and evaluation steps in both simulated and real-world experiments. Below we describe how to

build pairs of the target path X and demonstration set ξdemo for the MDPs formulation.

4.1 Generation of Target Paths and Demonstration Set.

We first collect 5000 valid end-effector poses within the range of x : [0.2, 1.2] × y : [−0.7, 0.7] × z :

[0.0, 1.2] (unit: m) by restricting the operation range to the task space. We consider a pose is valid

when at least one IK solution satisfies collision-free and joint-limit constraints. From the valid poses,

we randomly sample 5 to 8 poses as way-points and interpolate the positions at 0.5 cm distance interval

along a B-spline curve. At each point, we also interpolate quaternion orientations using a spherical linear

interpolation (Slerp). We then filter out if any intermediate pose {xi | i ∈ [0, N − 1]} is not valid. Note

that it does not guarantee that there is a feasible trajectory even when all intermediate poses are valid.

Based on the aforementioned procedure, we collect 5,000 paths in an environment without objects,

and additional 10,000 paths from 500 randomly generated environments consisting of a table-shaped box

and various objects on the box (see Fig. 4.1). By randomly sampling two valid initial configurations q0

per path, we overall collect 30,000 pairs of the target path and optimized joint trajectory generated from

TORM with a 120 s time budget. We use the collected pairs {X, ξdemo} for the training step below.

4.2 Training Details

We employed a soft actor-critic (SAC) with automatic entropy adjustment [20] to train a policy

π maximizing Eq. (3.1) by extending the SAC code in Spinning-up RL library [21]. The policy and

double Q networks are composed of 3 hidden layers with 1024 nodes per layer representing its parameter

θ. Our LIT generates trajectories using the stochastic policy (i.e., diagonal Gaussian policy). In this

work, we bounded the action within the range of [−0.26, 0.26] (unit: rad) to enforce the generated

trajectory naturally satisfies connectivity and smoothness; πθ(a|s) ∼ 0.26 ∗ tanh(N (µθ(s),Σθ(s))). We

used Exponential Linear Unit (ELU) with α = 1.0 as activation functions except the last layer.

In this paper, we empirically set the state space parameters as t = 6 and dim(zvae) = 32, which

is the size of scene-encoding latent space, and the normalization coefficients w of each reward term as

wpos = [2, 65, 30], wquat = [2, 5, 0] and wim = [1, 15, 0.5]. As the parameters of SAC, we used the 0.99

discounting factor, the 0.995 polyak for target network update, the 3 target entropy, the 106 replay buffer

size, the 4096 batch size, the 1× 10−4 learning rate for the critic, 7× 10−5 for policy, and 1× 10−4 for

the entropy regularization weight. We updated the weights 200 times every 104 steps using the Adam

optimizer [22]. Adopting the reference-state initialization approach [18], we placed the agent at an initial

state randomly sampling from the demonstration set ξdemo and formulated the MX with the paired

target path X. Training of the policy required 3× 107 simulation steps, which took approximately 144

hours on the standard desktop equipped with an Intel i9-9900K and a RTX 2080 Ti.

To train a VAE, we collected 3000 random scenes configured in the form of tables of various sizes

and objects scattered on them. Following the approach [17], we trained the VAE for 500 epochs with
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1 × 10−4 learning rate, 64 batch size, 1 × 10−6 weight decay, and 5 × 10−6 weight of Kullback-Leibler

divergence loss term. The training took about 3 hours using the same optimizer and machine.

4.3 Evaluation Setup

We set 3 trajectory-initialization methods for the path following problem as our baselines:

• Linear : Linear returns a linearly interpolated trajectory in the configuration space. Considering that

the goal configuration is not given in the target path, we selected an IK solution at the last pose of

the path having a minimum L2 distance with an initial configuration q0.

• Greedy [14]: Greedy extracts the sub-sampled poses from X with 10 intervals. Then, starting from an

initial configuration q0, this finds 150 random IK solutions at each next sub-sampled pose and search

for and interpolates with the best IK solution minimizing the objective function (Eq. (2.1)).

• LIT BC : LIT BC is another learning-based prediction method trained with a behavior-cloning (BC)

framework [23], supervised learning for decision making, instead of RL. We trained the neural network

naively mimicking the demonstration set ξdemo with a mean squared error loss.

Note that we call our method LIT RL for clarity.

To verify our method across the type of optimizers, we used TORM and TrajOpt. TORM iteratively

optimizes and explores new initial trajectories to avoid local minima within 50 s. On the other hand,

TrajOpt’s update is performed using a quadratic solver, and thus one iteration takes from 3 s to 14 s, so

we made one trajectory converged within 150 s.

We used total five specific target paths for the comparison with baselines (see Fig. 4.1(a)-4.1(d)).

Three paths X (‘Hello’, ‘Rotation’, ‘Zigzag’) are without external obstacles and two paths X (‘Square’,

‘S’) are with external obstacles. In the case of ‘Hello’, ‘Zigzag’, ‘Square’, and ‘S’, we fixed the orientation

on the path. On the other hand, in the ‘Rotation’, we fixed the position on the path while varying the

orientation in the range of ±45° along the direction of pitch and yaw axes. We collected 100 valid IK

solutions, at the first pose x0, per benchmark path to obtain reliable statistic results using various initial

configurations q0 since the prediction performance largely depends on the initial configurations [6].

We also evaluated the generality of the LIT methods by using 100 randomly generated target paths

without external obstacles and 1000 random paths from 100 random scenes, where we sampled and

interpolated the randomly sampled valid end-effector poses (see Fig. 4.1(e) and Fig. 4.1(f)). We call this

benchmark set ‘Random’ below.

The number of points for each benchmark path is as follows: NHello = 553, NRotation = 209,

NZigzag = 227, NSquare = 320, NS = 301, and NRandom ∼ N (626, 120).
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(a) Hello (b) Zigzag

(c) Square (d) S

(e) Random w/o obs (f) Random w/ obs

Figure 4.1: Visualization of four specific and two random target paths used in evaluations. Red and blue

lines are the target and generated end-effector paths, respectively. We compute blue lines via forward

kinematics inputting initial joint trajectories from LIT RL. In (c) and (d), the original color of the robot

represents the initial configurations, and the yellow trails indicate that the generated trajectories satisfy

collision-avoidance constraints in the environment.
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Chapter 5. Results

Cost function

Constraint violation rate [%]

Generation time [s]

▬ Greedy▬ Linear ▬  LIT_BC ▬  LIT_RL (Ours)

Hello Rotation Zigzag Square & S Random

Figure 5.1: Comparative analysis of the four initial-

trajectory generation methods in five types of simu-

lated environments. The x- and y-axes are the type

of benchmark problems and the performance met-

rics, respectively.

We first perform quantitative and qualitative

analyses of the initial trajectories from the pro-

posed method and baselines in simulated environ-

ments. Fig. 5.1 shows the comparative analysis of

the initial trajectory generation methods in terms

of three quality metrics: objective functional value

U [ξ] (Eq. (2.1)), constraint violation rate consid-

ering the collision-free and joint velocity limit vi-

olation constraints, and generation time for com-

putational efficiency. We set the ∆t between two

subsequent configurations to 0.1 s and objective

functions’ coefficients as λ1 = 10 and λ2 = 1.5.

LIT RL shows the lowest objective functional

value in all benchmark problems; that is, the gen-

erated trajectory makes the balance between the

sub-objectives of pose error, obstacle cost, and

joint smoothness, and also shows the lower con-

straint violation rate than Greedy and LIT BC.

Specifically, as Fig. 5.2 qualitatively compares the

generated trajectories of each method on one of

the ‘Random’ problems, Greedy has the relatively

small pose error and obstacle cost because it se-

lects the best IK solution greedily. However, it has the worst performance in terms of joint smoothness

since the continuity of the overall trajectory is not guaranteed. Most of the constraint violations of

Greedy happened due to either no IK solution or the local minima solution with a limited number of IK

solutions. On the contrary, the Linear has the best smoothness while having the worst pose error and

obstacle cost among baselines since it does not consider the objectives represented in the task space. The

learning-based methods naturally outperformed the Greedy method in generation time since the function

approximation helps infer the entire path without time-costly searches. Among the two learning-based

(a) Linear (c) LIT_BC (d) LIT_RL(b) Greedy

Figure 5.2: Qualitative results on one of the ‘Random’ problems (N = 728). Red and blue lines

are the target and generated end-effector paths, respectively. The robot’s posture indicates the initial

configuration. Numbers within the parenthesis represent the average pose error, the average joint velocity

(rad/s), and the generation time (s) in order.
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methods, LIT RL shows better performance concerning the objective value than the LIT BC method,

while generation time is almost the same as both methods use a neural network with the same structure.

LIT BC shows poor tracking performance with the limited demonstration set ξdemo we prepared, while

LIT RL generalizes well to more diverse target paths by exploring the state space based on the reward

function. Fig. 4.1 shows the initial trajectories synthesized by LIT RL for each benchmark problem as

qualitative results.

(a) TORM -  ‘Hello’

(c) TORM -  ‘Rotation’

(e) TORM -  ‘Zigzag’

(g) TORM -  ‘Square & S’

(b) TrajOpt -‘Hello’

(d) TrajOpt -‘Rotation’

(f) TrajOpt - ‘Zigzag’

(h) TrajOpt - ‘Square & S’

▬ Greedy▬ Linear ▬ LIT_BC ▬ LIT_RL (Ours)

Time [s]

Avg. Pose error

Figure 5.3: Average pose-error convergence of two

optimization methods (i.e., TORM and TrajOpt) in

four types of simulated benchmark problems during

optimization time. We plugged in the proposed and

three baseline initial trajectory generation methods

into the optimization methods. The y-axis is the

pose error in log scale, and the x-axis is the elapsed

time (s).

We further extended our experiment by com-

bining each initialization method with two differ-

ent trajectory optimization approaches: TORM

and TrajOpt. Fig. 5.3 shows the convergence of

pose errors over the optimization time. Our ap-

proach gave superior convergence performance for

all experiments with lower pose errors, though the

initial error is often higher than that of Greedy.

The significantly low error indicates our method

helps to find better optimum solutions via TO by

providing better initial trajectories. In particular,

this difference between our method and others is

more prominent in TORM than TrajOpt because

TORM is more sensitive to the initial guess due

to the first-order optimization process.

Table 5.1 shows the success rate of the opti-

mized solutions. LIT RL improved the robustness

of optimization methods by consistently maintain-

ing the highest success rate in all benchmark sets.

In particular, it showed a noticeable performance

improvement compared to the Greedy in the ‘Ran-

dom’ benchmark set. Randomly generated paths

are more challenging to follow than the semanti-

cally generated ones, because the curvature of the path tends to be large, the path exists in more diverse

regions, and the position and rotation change together along the path. Therefore, if the initial trajectory

itself does not satisfy the continuity of the joint, it is difficult to converge to a feasible trajectory without

falling into the local minima. To check only the convergence of each initial trajectory, we blocked TORM

to iteratively explore the new trajectories within the time budget in this experiment. We assessed the

optimized solution to be successful when the optimized trajectory satisfies all the constraints and the

position and rotation errors are smaller than each threshold values shown in the Table 5.1.

We also investigate the effectiveness of the imitation reward on our framework comparing with that

of the other reward combinations while all the constraint-related rewards Rcstr are same. Fig. 5.4 shows

the comparison of learning curves (i.e., path-following success rate) when using four combinations of

rewards: 1) Rim, 2) Rtask, 3) Rtask + Rim,L2, 4) Rtask + Rim. Here, Rim,L2 is a simple L2-distance

imitation reward where eimi = ||ξdemo[i] − qi||2. Overall, Rtask +Rim resulted in the best success rate

at the end (Red line). However, individual rewards such as Rtask or Rim give lower performance than

the proposed reward combination. This indicates the combination helps track the target pose and take

kinematically feasible null-space posture captured in the demonstration. On the other hand, another
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Path TO
Method

Linear Greedy LIT BC LIT RL

Hello

(0.1 cm, 0.1°)
TORM 32.0 68.0 62.0 87.0

TrajOpt 46.0 99.0 92.0 100.0

Rotation

(0.1 cm, 0.1°)
TORM 93.0 98.0 87.0 99.0

TrajOpt 99.0 100.0 100.0 100.0

Zigzag

(1 cm, 1°)
TORM 3.0 74.0 94.0 98.0

TrajOpt 73.0 77.0 87.0 97.0

Square & S

(1 cm, 1°)
TORM 6.0 100.0 76.0 100.0

TrajOpt 22.0 100.0 100.0 100.0

Random

(1 cm, 1°)
TORM 2.3 19.0 61.0 88.0

TrajOpt 6.5 90.0 85.0 99.0

Table 5.1: Comparison of two extended trajectory-optimization approaches with each trajectory initial-

ization methods in terms of success rate (%). We consider an optimized trajectory is ‘successful’ if the

trajectory satisfies kinematic feasibility constraints and the average of positional and rotational errors

are lower than certain thresholds represented in the parentheses.

Path following success rate [%]

step 

▬ Task + Imitation reward (null space)

▬ Task reward
▬ Task + Imitation reward (L2)

▬ Imitation reward (L2)

1.0

0.8

0.6

0.4

0.2

200 40 60

Figure 5.4: Comparison of learning curves from four combinations of reward functions. We measure

the success rate by randomly constructing 20 problems at every 1 × 104 evaluation steps and consider

one experiment successful when distances between the end effector pose and the target pose at all time

steps are within 5 cm positionally and 3° rotationally without any collision.

similar combination, Rtask +Rim,L2, led to lower performance (Orange line). This indicates that joint-

space guidance from a non-optimal demonstration can help learn the kinematically better posture, but

it conflicts with the accurate target pose tracking objective. Thus, this result shows the null-space

projection in Rim helps to guide the internal posture without sacrificing the tracking performance.

Finally, we verified the optimized trajectory quality with Greedy and LIT RL by executing it on

the real robot (see Fig. 6.1) and confirmed that our method shows a more accurate and smooth tracking

performance.
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time [s] 

Found solution trajectory (time: 00:08:75) Done. (01:40:69)

G
re

ed
y

Found solution trajectory (time: 00:00:75) Done. (00:43:05) [ Target path ]

L
IT

_R
L

Figure 6.1: Demonstration on a randomly generated target path. Blue lines are the tracked end-effector

paths where a Fetch manipulator is tracking trajectory-optimization results with the initial trajectories

of Greedy [14] and LIT RL. In the fifth frame of Greedy, the robot shows abrupt deviation from the target

path and takes more time for Greedy. In this experiment, we set the ∆t value large enough so that the

greedy method could produce a discontinuous joint trajectory as a result. As a result, the discontinuity

of the joint results in a large execution time as it sequentially tracks nodes in the trajectory.

Chapter 6. Conclusion

We presented a learning-based initial trajectory (LIT) generation method that quickly finds a low-

cost initial trajectory for the better trajectory optimization of kinematically redundant manipulators.

We formulate the 6-D pose path-following as a multi-task RL, which enables LIT to find a joint-space

solution trajectory given a variety of path-following problems. In particular, by defining a unified reward

function with a null-space imitation reward, we made the agent explore and learn kinematically feasible

postures in demonstrations without conflicting with the task rewards.

We showed the high quality of our initialization method qualitatively and qualitatively. In conjunc-

tion with the two representatives TO methods, our initialization method resulted in boosted convergence

speed and optimality with a higher success rate over diverse benchmark problems. In addition, We

demonstrated the generalization performance and the anytime property of our learning-based method

through a variety of simulated and real-world experiments.

The content written in this dissertation has been submitted to the ICRA conference in 2022 and is

under the process of review.
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Chapter 7. Related Work

7.1 Path-wise Inverse Kinematics (IK)

The inverse kinematics (IK) finds joint values of an articulated chain that produce the desired

end-effector pose given in cartesian space. Various numerical methods for solving IK problems include

jacobian, non-linear programming (NLP), and artificial intelligence-based methods [24].

In the case of a redundant manipulator, an infinite set of IK solutions are possible for one end-

effector pose. Therefore, prior research attempted to simultaneously consider more task objectives, such

as obstacle avoidance [25], joint limits, and kinematic singularity avoidance, by using redundancy in joint

space, called null-space optimization [26].

Task priority IK [27, 28, 3] uses a null-space projection of the Jacobian matrix to consider tasks

hierarchically in the order of priorities. On the other hand, importance-based IK [29, 4] formulates the

objective function of NLP through the weighted sum of each task such that the IK solution is at the

basin of the objective function.

The path-wise IK is extended to finding a list of joint configurations that satisfies the given list of

end-effector poses. The constraints that all joint configurations should match the end-effector poses and

be feasible (joint-level smoothness and non-collision) make the possible solution space discontinuous [7],

resulting in jumping in the joint space in the middle of the joint configuration path with the local search

method [2, 4].

RelaxedIK [4] considers joint continuity by adding an objective function related to smoothness with

the previous joint values, but it is prone to be stuck into the local minima because only the immediately

preceding joint is considered.

In order to make a very accurate and feasible joint path, some research [7, 5, 6] proposes off-line

methods. [7] derived a joint path having minimal Fréchet distance with the reference end-effector poses

in the task space using a variant of Dijkstra’s graph search algorithm on a graph where IK solutions

of each end-effector pose form vertices. STAMPEDE [5] efficiently formulated a discrete-space graph

by creating vertices with locally optimal IK solutions at each end-effector pose through NLP. With the

importance of the starting configuration to the quality of the path-wise IK solution, [6] made multiple

candidate solutions from various starting configurations and selected the best one with a user preference.

These methods can find a globally optimal solution if time is given enough, but in practice, there is a

problem of hyper-parameters’ resolution, such as the number of IK solutions for each end-effector pose,

and it takes a long time because all solution spaces should be explored.

7.2 Trajectory Optimization for Path-wise IK

Trajectory optimization (TO) approaches have been extensively studied to quickly compute locally

optimal trajectory connecting start to end configuration without collision [30]. CHOMP [11] extends the

elastic band approach [31] to a functional gradient optimization method and finds a feasible trajectory by

iteratively optimizing a functional trading-off between joint smoothness and obstacle avoidance. TORM

[14] proposed a two-stage gradient descent technique for the problem of falling into local minima due to

the conflict between constraints. STOMP [32] explored the solution space around the current trajectory
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by injecting noise to the trajectory with the path integral method [33]. TrajOpt [10] and GuSTO [34]

solved a sequential convex optimization problem with the convex relaxation techniques.

These methods usually use linear interpolation in joint space as an initial trajectory for the robot

arm, completely independent of task space objectives, especially when all end-effector poses are fully

constrained as in a path-wise IK problem. TORM [14] proposes a heuristic initialization method for

the path-wise IK problem that creates an initial trajectory with joints selected from IK solutions for

each segment of end effector poses. However, making an initial trajectory in the same homotopy set

with a global optimum solution is still challenging because the joint continuity between segments is not

considered. Recently, many neural-network-based approaches [35, 36, 37, 38] have been researched to

warm-start the optimization with the learned initialization by leveraging off-line experience.

7.3 Data-driven Motion Generation

In the field of graphics, research to generate general motions from the collected motion capture data

is an active research area. [39, 40, 41, 42, 43] have increased the generalization of motion by constructing

neural network architectures to efficiently learn a pattern or mode of behavior repeated in the character’s

motion. However, although this seems realistic, it cannot be guaranteed whether the generated motion

is dynamically feasible.

Therefore, methods using reinforcement learning techniques have emerged to make robust motions

even in various unseen external perturbations in a dynamic environment [44, 45]. On the other hand,

in reinforcement learning, when learning is performed with a sparse task reward, learning may proceed

differently from the user’s intention or may not be learned at all. Therefore, [18, 46] shape the reward

function so that the agent can have a specific motion style while increasing the learning efficiency with

a motion prior built from reference motion data.
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올 수 있었던 것은 아닙니다. 먼저 언제나 학생을 위해 주시고, 연구에 있어 엇나가지 않도록 많은 조언과

가르침을 주신 윤성의 교수님께 큰 감사의 말씀을 드립니다. 비단 교수님과 제자의 관계에 있어서 뿐만 아

니라 인생 전반에 대해서도 배울 점이 많아 저에게는 큰 행운이었습니다. 또 짧으면 짧고 길면 긴 시간 동안

시간을 내주시어 다방면으로 큰 가르침을 주신 박대형 교수님께도 큰 감사의 말씀을 드립니다. 교수님께서

보여주신 애정에 보답하고자 더욱 열심히 준비하여 논문도 작성할 수 있었던 것 같습니다. 앞으로 시작하게

된 박사과정에 있어서도 논문의 X, Y, Z는 잊지 않도록 노력하고 교수님과 함께 더 재미있는 다양한 연구를

해보고 싶습니다.

2년간에 대학원 생활에 있어 SGVR 연구실에서의 생활은 너무도 행복하였습니다. 연구실 구성원들

모두가 친절하고, 각자의 연구분야를 이끌어가는 모습을 보며 큰 귀감이 되어 주셨습니다. 특히 매주 같이

미팅을 하며 다양한 피드백과 정보를 공유한 로봇팀(권용선, 김태영, 강민철, 안인규, 신희찬, 김민철, 문성

주, 장충수, 장진혁, 유형열, 이세빈, 김진원)에게 감사하고 즐거웠습니다. 로봇을 좋아하는 사람들이 하나로

모여 서로가 서로를 이끌어 주는 모습이 너무 보기 좋았던 것 같습니다. GPU 대란으로 인한 장비 구매의

힘든 시기를 같이 해쳐나간 장비팀의 이미지 김재윤, 렌더링 김재윤, 조인영께도 감사드리고, 항상 뒤에서

행정을 봐주시어 학생들에 수고를 덜어주시는 김 선생님께도 큰 감사의 말씀을 드리고 싶습니다. 연구실의

동기이자 친구인 형열, 세빈, 진원에게는 특별한 감사의 말을 남깁니다. 길지는 않지만 같이한 순간순간들이

2년의 긴 터널을 너무나도 짧게 느껴지도록 합니다. 이제는 각자의 길을 선택하여 가지만 어딜 가든 잘할

것으로 믿고 있습니다. 모든 구성원 개개인간에 추억을 적기에는 너무나도 한정된 공간이 작게 느껴집니다.

좋은 사람들을 만날 수 있어서 너무 행복했고, 모두 다시 뵙겠습니다.

끝으로 항상 응원하고 지지해주시는 사랑하는 부모님 그리고 동생에게 감사의 마음을 전합니다. 제게

는 그 무엇과도 바꿀 수 없는 선물입니다. 그에 대한 보답으로 작으나마 이 석사 학위 논문을 바칩니다.

감사합니다.
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Curriculum Vitae in Korean

이 름: 윤 민 성

학 력

2011. 3. – 2014. 2. 서라벌 고등학교

2015. 3. – 2019. 2. 인하대학교 정보통신공학과 (학사)

2020. 3. – 2022. 2. 한국과학기술원 전산학부 (석사)

연 구 업 적

1. Minsung Yoon, Daehyung Park, and Sung-Eui Yoon, “Bias tree expansion using reinforcement

learning for efficient motion planning”, Korea Robotics Society Annual Conference (KRoC), 2021

2. Jinhyeok Jang, Heechan Shin, Minsung Yoon, Seungwoo Hong, Hae-Won Park and Sung-Eui

Yoon, “Deep Neural Network-based Fast Motion Planning Framework for Quadrupedal Robot”,

Machine Learning for Motion Planning Workshop at ICRA 2021

3. Minsung Yoon, Mincheul Kang, Daehyung Park, and Sung-Eui Yoon, “Learning-based Initial-

ization of Trajectory Optimization for Redundant Manipulators’ Path-following Problem”, IEEE

International Conference on Robotics and Automation (ICRA) 2022 (under review)

4. Hyeongyeol Ryu, Minsung Yoon, Daehyung Park, and Sung-Eui Yoon, “Confidence-based Robot

Navigation under Sensor Occlusion with Deep Reinforcement Learning”, IEEE International Con-

ference on Robotics and Automation (ICRA) 2022 (under review)
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