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Robust Robot Navigation against External Disturbance using

Deep Reinforcement Learning
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Abstract: With recent advances of deep reinforcement learning (DRL) in complex robotic navigation, mobile

robots have worked in diverse places. Nonetheless, as the robots operate in a wider set of environments

including cluttered or messed up environments (e.g., cleanup robots on a dusty construction site), they can
get exposed to external disturbances such as dust or stains. These could hinder the normal operation or even

cause catastrophic behaviors to the robots. To deal with this problem, we propose a navigation method robust

to disturbances using deep reinforcement learning that efficiently follows the path to a goal and secures

safety by sensing the areas where some parts of the sensor cannot observe well due to the disturbances. Our
approach utilizes Confidence map, which constructs the robot’s local regions requiring more observation to

avoid collision and identifies where to sense next via entropy. We empirically demonstrate the influences of

the disturbances on the sensor and compare the existing DRL method with our proposed method under the

disturbances. The result shows that our method achieves higher performances over the existing method in

proposed situations.
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[Fig. 1] Visualization of the sensor observation during the time T.
(a) Normal sensor data and (b) disturbed sensor data. The color
shows the distance between the sensor and obstacles. X-axis
indicates the field of view of the sensor: 240 ° in our experiment.
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[Fig. 2] Modified trajectory to a goal after observing the dynamic
obstacle: some parts of the sensor data (left) are unavailable due
to the disturbances. Confidence score to get higher entropy (H)
leads the robot to sense the areas requiring more observation,
contributing to the collision avoidance.
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Test task: Random Start & Goal Navigation
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1 : Leamed policy (SAC) trained without considering disturbance
[Fig. 3] Results of the experiments. While the performances
without considering disturbances significantly decrease when
disturbances occur, our proposed method achieves reasonable
results even in that case. Results w/o disturbance (blue) can be
considered as upper bounds that ours can achieve. Note that stuck
rate means the robot cannot reach the goal within the time limit.
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