BEAAZ S 1% Aststs 7 Bl 2% &R V)

Bias tree expansion using reinforcement learning

for efficient motion planning
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Abstract: Motion Planning is a computational problem to find a valid and optimal path from the given start

to the goal configuration. During the last few decades, sampling-based motion planning methods, such as

Rapidly-exploring Random Tree* (RRT*), have been shown to work well even in a high-dimensional and

continuous state space. Recently, with the advances of deep learning, sample efficiency of sampling-based

motion planning has been improved by learning the bias (heuristic) to the near-optimal region considering

the surrounding obstacles and goal position. However, the performance of a neural network trained using

supervised learning is highly dependent on a set of demos previously collected for training. Therefore, this

leads to problems such as distribution mismatch and performance bounding and overfitting to the demos.

In this regard, we propose RL-RRT* to train the network using reinforcement learning and use it as a bias

network. We validate our method in a 2-D environment showing improved anytime performance, including

initial solution quality and time and reasonably fast cost convergence rate.

Keywords: Motion and Path Planning, Reinforcement learning.
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RL-RRT* (Ours)
[Fig. 1] The tree structure expanded in 1 second. (green diamond:

start position, yellow diamond: goal position, blue circle: vertex
generated with random sampling, cyan circle: vertex generated
using bias network, green line: edge, red line: found path)
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3. RL-RRT*: A NEURAL MOTION PLANNING
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e Observation: [Enc(map)|Posgoal|Poscur|Lidar scan]

e Action: [_1 1] I= Rdimensionofproblem

e Reward: + 5 ifreach a goal, —0.5 if collision occurs
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Pre-trained with reconstruction loss
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[Fig. 2] Architecture of RL agent
(input: map, current & goal position, and lidar scan, output: action)
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[Table 1] Experiment results (Only RL’s success rate: 86.5 %)

RRT* MPNET RL-RRT*
(1] 2] (Ours)
Time to 100 %
success rate 1.6 2.75 14
(unit: sec)
Initial solution
path quality 8.469 8.311 8.213
(unit: m)
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