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Fig. 1. We propose a path-space manifold learning framework to enhance Monte Carlo reconstruction networks. In this figure, KPCN [Bako et al. 2017] and
SBMC [Gharbi et al. 2019] are respectively extended to KPCN-Manifold and SBMC-Manifold by our framework. The manifold models reconstruct an oil bottle
holder reflected on the kitchen tile or seen through the oil bottle (first row) and tailpipes dimly reflected on the floor (second row) better than their vanilla
counterparts, showing lower numerical errors. "My Kitchen" by tokabilitor under CC0. "Old vintage car" by piopis under CC0.

Image-space auxiliary features such as surface normal have significantly con-

tributed to the recent success of Monte Carlo (MC) reconstruction networks.

However, path-space features, another essential piece of light propagation,

have not yet been sufficiently explored. Due to the curse of dimensionality,

information flow between a regression loss and high-dimensional path-space

features is sparse, leading to difficult training and inefficient usage of path-

space features in a typical reconstruction framework. This paper introduces

a contrastive manifold learning framework to utilize path-space features

effectively. The proposed framework employs weakly-supervised learning

that converts reference pixel colors to dense pseudo labels for light paths.

A convolutional path-embedding network then induces a low-dimensional

manifold of paths by iteratively clustering intra-class embeddings, while

discriminating inter-class embeddings using gradient descent. The proposed

framework facilitates path-space exploration of reconstruction networks by

extracting low-dimensional yet meaningful embeddings within the features.

We apply our framework to the recent image- and sample-space models and

demonstrate considerable improvements, especially on the sample space.

The source code is available at https://github.com/Mephisto405/WCMC.
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1 INTRODUCTION
Image reconstruction such as denoising is an ill-posed problem in

computer science. Fortunately, predefined 3D scenes provide fruitful

guidance on Monte Carlo (MC) reconstruction to recover details

while reducing artifacts. AlthoughMC rendering suffers from severe

noise at low sample counts due to its stochastic nature, reconstruc-

tion models often yield visually impressive results thanks to strong

constraints such as normal, depth, and texture [Rousselle et al. 2013].

The geometry buffer (G-buffer) has shown a high correlation with

the reference image, especially where diffuse reflections are dom-

inant. As a result, regression-based reconstruction can effectively

reduce random noise from MC integration [Moon et al. 2014, 2016].

Moreover, the image-space auxiliary features have led to significant

improvements in the recent deep reconstruction [Bako et al. 2017;

Chaitanya et al. 2017; Kettunen et al. 2019; Xu et al. 2019].

Most prior methods exploit the first bounce features from high-

dimensional paths, and some of them utilize path-space decom-

position [Zimmer et al. 2015] to obtain indirect features manually

when the first few interactions are specular or near-specular [Bako
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Fig. 2. Illustration of our weakly-supervised path-space contrastive learning. (a) For each path, we extract a path descriptor, a sequence of the path’s radiometric
quantities at each vertex. Pseudo colors highlight the similarity between paths. (b) We use a sample-based convolutional network to transform path descriptor
vectors into a low-dimensional space. (c) The network initially produces a poorly-structured manifold space. (d) As training goes on, our contrastive manifold
learning framework refines the manifold space by the proposed sample-to-sample optimization; paths cluster together if they are sampled from pixels with
similar reference colors, while pushing each other away in the opposite case. That is, we use reference pixel radiance as pseudo labels for path clustering. Our
path-space contrastive learning separates the overlapped path distributions, providing distinguishable yet compact features to MC reconstruction networks.
The embeddings are fed to a reconstruction network along with G-buffer to help MC reconstruction.

et al. 2017; Gharbi et al. 2019]. We argue that these features do

not provide a sufficient representation of various light phenom-

ena for reconstruction networks. Since path tracing, for example,

involves a sequence of scattering as shown in Fig. 1, a representa-

tion of light propagation is inherently high-dimensional. However,

learning meaningful patterns between high-dimensional paths and

reference images is still challenging due to the low correlation and

high sparsity of path samples. Recent studies report that deep neural

networks often struggle to explore the sparse space [Huo et al. 2020;

Müller et al. 2019; Zheng and Zwicker 2019].

Main contributions. This study proposes amanifold learning frame-

work that allows MC reconstruction models to fully utilize paths,
containing not only first bounce features but also multi-bounce fea-

tures (Fig. 2). Moreover, our framework aims to extract compact and

useful embeddings of high-dimensional path features to remedy the

sparsity of path-space. To achieve this goal, we leverage the recent

deep manifold learning studies and their contrastive approaches,

which cluster input data for downstream tasks such as classification

and regression [Chen et al. 2017, 2020; Sun et al. 2014; Wu et al.

2018]. In the end, we successfully identify dense clusters in path

manifold (Fig. 4) and exploit the information in the image- and

sample-space MC reconstruction. Our contributions are as follows:

• We propose weakly-supervised contrastive learning, an or-

thogonal design to vanilla regression framework, to leverage

path-space features for improving MC reconstruction (Sec. 4).

• We present path disentangling loss to directly learn the corre-

lation between paths and alleviate the sparsity of path space

(Sec. 4.3).

• We demonstrate that our training framework supplements

vanilla image- and sample-space models, producing numeri-

cally and visually improved results (Sec. 6, Fig. 6, and Fig. 7).

We hope that our work takes a meaningful step toward utilizing

path-space and triggers fruitful future work (Sec. 7).

2 RELATED WORK
This section discusses the recent trend in deep learning-based re-

construction methods for MC path tracing, followed by manifold

learning approaches in computer vision and graphics applications.

2.1 MC Reconstruction with Deep Learning
Kalantari et al. [2015] first adopt a machine learning technique

in MC rendering to reconstruct smooth images from noisy inputs.

Following the pioneering work, Chaitanya et al. [2017] propose a

recurrent convolutional neural network (RCNN), which processes

MC images with extra features to predict the final denoised output

directly. The work exploits temporal coherence of sequential images,

producing temporally stable results in restricted lighting conditions.

Bako et al. [2017] and Vogels et al. [2018] both present convo-

lutional neural network (CNN) approaches to predict per-pixel fil-

tering kernels. Gharbi et al. [2019] extend these approaches and

describe a CNN model that predicts per-sample filtering kernels.

This sample-based method shows substantial results in suppress-

ing high-energy outliers compared to prior pixel-based methods,

which only take low-order statistics (e.g., mean and variance) of

radiance samples. The main drawback of the sample-based approach

was the high computational cost and memory consumption, but

Munkberg and Hasselgren [2020] recently propose a cost-efficient

reconstruction method distributing samples into multiple image

layers. Also, Lin et al. [2021] separate auxiliary features into image-

and sample-space and feed them into separate feature extractors to

predict detail-preserved images.

Aside from the studies exploring the network structures, Kettunen

et al. [2019] use a novel image gradient buffer produced by gradient-

domain path tracing [Kettunen et al. 2015] to guide a reconstruction

network. They demonstrated that the frequency information in

image gradients helps the deep network infer image smoothness

at the cost of producing the auxiliary inputs. Also, Chaitanya et al.

[2017] show that each G-buffer channel affects their network’s

convergence to different extents.

Despite the large body of MC reconstruction research, most CNN-

based denoisers are trained on a single task: regression. Although
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several reconstruction losses have been proposed [Chaitanya et al.

2017; Kettunen et al. 2019; Vogels et al. 2018], previous techniques

essentially optimize the distance between output images and refer-

ence images, except a recent adversarial approach [Xu et al. 2019].

Nevertheless, when training deep networks with a single regression-

based objective, complexity and sparsity of path-space degrade the

utilization of path features. As such, we propose a novel task, path-
space manifold learning, to offer additional guidance to CNN-based

reconstruction models (Sec. 4).

2.2 Supervised Manifold Learning
Manifold learning, also known as metric learning, analyzes the

similarity between data to remove redundant dimensions while

preserving useful information. Since manifold learning can handle

high-dimensional data cost-efficiently, it has been applied in various

domains, such as image recognition [Hadsell et al. 2006] and image

retrieval [Wang et al. 2017]. Its detailed discussions are available

at a recent survey by Kaya and Bilge [2019]. We focus here on the

most relevant supervised manifold learning techniques employing

CNNs.

One of the intuitive applications of manifold learning is age es-

timation. Intuitively, even high-dimensional face images can be

mapped onto a one-dimensional number line in order of age. Im

et al. [2018] utilize the ordinal relation between ages, to provide

valuable supervision to age estimation. They successfully observe

a near-one-dimensional distribution in the embedded face image

space.

Recently, a series of contrastive approaches has been proposed

in the computer vision domain [Chen et al. 2020; Deng et al. 2019;

Khosla et al. 2020]. These methods exploit contrastive losses, which

manipulate the distance between embedding pairs according to their

label similarities, to learn the affinity of inputs. These approaches

induce useful embedding spaces and provide improved results when

the embeddings are used as intermediate features for their target

tasks (e.g., face recognition, image classification, and shape cor-

respondence). Also, contrastive learning has been proven useful,

especially when a dataset is sparse (i.e., a limited number of data

for each label). For example, a popular face recognition benchmark

LFW [Huang et al. 2007] contains 13,000 images, including photos

of 1,680 different people.

Our work also designs a contrastive loss in addition to a regres-

sion loss to remedy the sparsity of path-space and extract more ex-

pressive path embeddings for improving MC reconstruction. Since

we cannot clearly define path labels to distinguish between intra-

class pairs and inter-class pairs, path-space contrastive learning

creates new challenges, distinctive from typical image or point

cloud processing. Hence, this paper adopts a weakly-supervised

approach [Zhou 2018] to lessen the strict constraint on contrastive

labeling (Sec. 4.3).

2.3 Manifold Techniques in Graphics
Due to the inherent complexity of path-space, efficient handling of

light paths has been a central question in MC rendering. Researchers

have exploited analytic constraints of path-space, reducing its di-

mensionality. Manifold exploration, proposed in the seminal paper

of Jakob and Marschner [2012], is a path sampling method based on

Fermat’s principle on specular surfaces. This approach scales down

the dimensionality of path integration by analyzing the manifold of

specular transport at the cost of computing the Jacobian.

Half vector space light transport (HSLT) [Kaplanyan et al. 2014]

perturbs half vectors stochastically along a sequence of path vertices.

Unlike manifold exploration, HSLT performs importance sampling

on those half vectors from BSDFs and geometries, facilitating path-

space exploration. Hanika et al. [2015b] present breakup mutation
strategy, which further extends HSLT to displaced geometries.

Hanika et al. [2015a] apply the specular manifold analysis to

complement next event estimation (NEE), combined with MC path

tracing. In the spirit of manifold NEE, Zeltner et al. [2020] present a

method for rendering specular microgeometry and complicated sur-

faces induced by normal and displacement mappings. Nonetheless,

these techniques are not based on data-driven learning approaches.

Beside the MC rendering, various data-driven methods have been

discussed, thanks to recent advances in machine learning. Font

synthesis is one of the intuitive and valuable applications ofmanifold

learning. Balashova et al. [2019] learn the manifold of typefaces

by applying a machine learning-based manifold method. Zsolnai-

Fehér et al. [2018] also leverage the same algorithm to explore the

two-dimensional manifold of material appearances and synthesize

unseen materials.

As far as we know, data-driven manifold techniques have not yet

been studied for MC reconstruction, even though they have begun

to be applied in other graphics sub-fields. Hence, we explore its

potential by employing contrastive learning to MC reconstruction.

3 OVERVIEW
We now present the main intuition of path-space manifold learning

for MC reconstruction. We then give an overview of our framework

to train deep reconstruction models.

Path-space deep neural network. While the auxiliary features have

proven valuable to high-qualityMC reconstruction, high-dimensional

data processing techniques are inevitable to efficiently utilize the

information on light paths, another important piece of MC render-

ing. Due to the sparsity and complexity of paths, efficient training

in path-space is difficult for deep neural networks. One brute force

solution is to collect training samples as dense as possible. However,

it often requires a large amount of data and long training time, ex-

ponentially growing with data dimensions for stable and reliable

results.

Why manifold learning? The classic solutions of MC reconstruc-

tion, such as cross bilateral filtering [Eisemann and Durand 2004],

non-local means filtering [Buades et al. 2005], ray histogram fu-

sion [Delbracio et al. 2014], and adaptive regression [Moon et al.

2014], share the same philosophy; they define similarity metrics

of pixels and take average colors of surrounding similar pixels. As
an example of the metrics, non-local means filtering uses patch-

wise mean luminance, and ray histogram fusion exploits Chi-Square

distance between two radiance histograms. When extending the pio-

neering intuition to path-space, it is troublesome to define the affin-

ity metric analytically due to the complexity of path-space. Some
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Fig. 3. Schematic of our joint manifold-regression training framework. The suggested manifold learning module (orange enclosure) is attached to an existing
reconstruction network (black enclosure) to utilize path-space features better. The path embedding network in our framework is jointly optimized on two
tasks: contrastive manifold learning and regression. (a) We pair not only two adjacent embeddings but also two distant embeddings in image space. (b) We
label embeddings with the reference radiance at the pixel where each path is sampled. (c) Finally, path disentangling loss aims to adjust the distance between
two embeddings according to the labels. (d) Meanwhile, the path embeddings (i.e., P-buffer) proceed to the reconstruction model along with auxiliary features
and optimize the given regression loss.

previous deep learning-based MC reconstruction methods [Gharbi

et al. 2019; Lin et al. 2021] have tried to leverage of path-space

information via image-space regression, but gains limited effects.

Therefore, we propose a data-driven manifold learning method so

that a reconstruction model can learn the affinity between paths

and exploits the information in inferring its optimal parameters.

Manifold v.s. regression learning. The path-space contrastive learn-
ing aims to learn direct sample-to-sample correlation to discriminate

overlapped path distributions (Fig. 2), which leads to more crisp

embeddings. On the other hand, image-space regression learns cor-

relation between input pixels and target pixels, and a sample-space

model learns that between input samples and target pixels. These ap-
proaches may fail to reconstruct images in pathological cases where

two pixels with similar color distributions converge to a different

color, or pixels with different distributions converge to the same

color.

Joint manifold-regression training. To achieve our goal, we present
a joint manifold-regression training scheme for MC reconstruction

networks. As shown in Fig. 3, we attach the proposed manifold

learning module to a target MC reconstruction network. First, MC

path tracing produces high-dimensional path descriptors, which rep-

resent the radiometric properties of individual paths. Then, we feed

path descriptors into path embedding network serving the feature

extractor. The feature extractor learns the affinity between paths

and a low-dimensional structure of path-space by our manifold loss,

path disentangling loss, built on top of contrastive losses. Since a

contrastive loss requires labels to distinguish inter-class paths, we

use reference pixel radiance as our weak pseudo labels (Fig. 3 (b)).

We call the low-dimensional output P-buffer as analogous to G-

buffer. P-buffer is fed into the reconstruction network together with

G-buffer. Finally, the feature extractor and the reconstruction model

are trained simultaneously on the manifold loss and an ordinary

regression loss (e.g., relative L2).

4 MANIFOLD LEARNING FOR MC RECONSTRUCTION
We propose a novel manifold learning framework to improve MC

reconstruction models via weakly-supervised contrastive learning.

The proposed framework can be adopted to both image- and sample-

space deep learning-based reconstruction models. We illustrate our

framework in Fig. 3.

4.1 Path Descriptor
Configuring the path descriptor is an essential prerequisite for ef-

fective path manifold learning. The proper path descriptor should

provide enough information to the manifold learning module to

distinguish each path, and the information should help image re-

construction as well.

The following information has been known as some useful path

descriptors. First, as shown in Fig. 2, light transports on diffuse

paths (orange) and caustic paths (green) should have vastly dis-

tinct radiance variances and intensities. Therefore, they need to

be processed separately throughout network layers. In fact, paths

can be classified by material properties at each vertex, according to

the Heckbert’s regular expression [Heckbert 1990]. Second, recent

sample-based MC reconstruction methods also utilize some of the

per-vertex material properties [Gharbi et al. 2019; Lin et al. 2021].
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Referring to these studies, we hypothesize that the features, such

as a bidirectional scattering distribution function (BSDF) at each

path vertex and photon energy propagated through the path, play an

important role in path classification and image noise removal as well.

Consequently, we construct our path descriptor with five channels

of per-vertex features representing a BSDF of each path vertex and

six channels of per-path features representing each path’s lighting

condition. Additionally, one channel of path sampling probability is

also collected.

A radiance field at equilibrium can be defined by an integral

equation, called rendering equation [Kajiya 1986]:

𝐿𝑟 (𝑥, 𝜔𝑜 ) =
∫
Ω
𝐿(𝑥,𝜔) 𝑓𝑠 (𝑥,𝜔𝑜 , 𝜔) |cos(𝜃 ) | d𝜔, and (1)

𝐿𝑜 (𝑥,𝜔𝑜 ) = 𝐿𝑒 (𝑥,𝜔𝑜 ) + 𝐿𝑟 (𝑥, 𝜔𝑜 ), (2)

where 𝐿𝑟 , 𝐿, 𝐿𝑜 , and 𝐿𝑒 are respectively the reflected, incident, outgo-

ing, and emitted radiances, 𝑓𝑠 is the BSDF,𝜔𝑜 and𝜔 are respectively

the outgoing and incident directions at a surface point 𝑥 , and 𝜃 is

the angle between the incident direction and the surface normal.

Using MC estimation, Eq. 1 is approximated with a sampling density

𝑞(𝜔 |𝑥,𝜔𝑜 ) (i.e., backward path tracing) as follows:

𝐿𝑟 (𝑥, 𝜔𝑜 ) =
1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑥, 𝜔𝑖 ) 𝑓𝑠 (𝑥, 𝜔𝑜 , 𝜔𝑖 ) |cos(𝜃𝑖 ) |
𝑞(𝜔𝑖 |𝑥,𝜔𝑜 )

. (3)

Suppose we have a path that is bounced 𝑘 times from the eye

𝑥 (−1)
to a point on a light 𝑥 (𝑘) and let 𝑥 = 𝑥 (−1)𝑥 (0) · · · 𝑥 (𝑘) denotes

such path. Let 𝐿𝑒 (𝑥 (𝑙) , 𝜔 (𝑙)𝑜 ) is the emitted radiance from 𝑥 (𝑙) to
𝑥 (𝑙−1)

, where 𝜔
(𝑙)
𝑜 = 𝜔𝑥 (𝑙 )→𝑥 (𝑙−1) and 0 ≤ 𝑙 ≤ 𝑘 . Then, our path

descriptor is (5𝑘 + 6)-dimensional and constructed as follows:

• three channels per vertex for the attenuation;

𝑓𝑠 (𝑥 (𝑙) , 𝜔 (𝑙)𝑜 , 𝜔 (𝑙) )
���cos(𝜃 (𝑙) )

��� , ∀0 ≤ 𝑙 ≤ 𝑘 − 1,

• one channel per vertex for the material-light interaction tag

(reflection, transmission, diffuse, glossy, specular),

• one channel per vertex for the roughness parameter of BSDF,

• three channels per path for the radiance undivided by the

sampling probability;

𝐿𝑒 (𝑥 (𝑘) , 𝜔 (𝑘)𝑜 )
∏

0≤𝑙≤𝑘−1
𝑓𝑠 (𝑥 (𝑙) , 𝜔 (𝑙)𝑜 , 𝜔 (𝑙) )

���cos(𝜃 (𝑙) )
���,

• three channels per path for the photon energy propagated

through the path;

𝐿𝑒 (𝑥 (𝑘) , 𝜔 (𝑘)𝑜 ).
Besides the path descriptor, we collect a path sampling probability

from the path, which is directly fed into a reconstruction network

rather than the path embedding network:

• one channel per path for the path sampling probability,∏
0≤𝑙≤𝑘−1

𝑞(𝜔 (𝑙) |𝑥 (𝑙) , 𝜔 (𝑙)𝑜 ).
In our framework, the reconstruction network uses the probabil-

ity buffer to determine whether a path is an outlier. Note that we do

not input the probability buffer to the manifold module since the it is

greatly influenced by the underlying importance sampling method,

potentially hindering the learning of direct sample-to-sample corre-

lations while training the path embedding network.

The number of path bounces is limited to six for fair comparisons

with one of our baselines, SBMC, in Sec. 6.1. That is, we use 𝑘 = 6 in

constructing path descriptors, and the number of channels of path

descriptors is 36. We put zero pads to handle paths shorter than six

bounces as SBMC’s implementation.

4.2 Path Embedding Network
We adapt the sample-based feature extractor block proposed by

Gharbi et al. [2019] to construct our path embedding network. The

feature extractor block uses stacks of fully-connected layers and an

UNet to embed path descriptor vectors, considering neighbor paths;

the details can be seen in Fig. 13. Note that SBMC uses the structure

to infer splatting kernel parameters for radiance samples, while we

utilize it to infer path embeddings.

P-buffer, the output of the path embedding network, flows in

two branches simultaneously afterward. One is to evaluate our

contrastive loss described in the following section, and the other is

to feed P-buffer into the reconstruction network with one channel

of the sample variance of P-buffer and the path probability buffer

(Fig. 3). Since P-buffer still has the sample dimension, we average it

along the sample dimension and feed it to pixel-based reconstruction

models. For sample-based models, we use P-buffer as it is.

4.3 Path Disentangling Loss and Weak Supervision
Our goal is to learn relevant embeddings from path descriptors.

Though contrastive losses have been widely adopted to solve man-

ifold learning problems, one limitation is that the losses require

ground-truth labels that decide whether two data points are either

a positive or negative pair. Unfortunately, it remains unclear how

to define exact labels for light paths.

Hence, we unify our contrastive approachwithweakly-supervised

learning. As a pseudo label for a path sampled at a pixel, we use ref-

erence radiance at the pixel (Fig. 3). Suppose we have a pair of path

descriptors, {𝑥,𝑦}, where 𝑥,𝑦 ∈ R36
, and the reference radiances

{𝐼𝑥 , 𝐼𝑦}, where 𝐼𝑥 , 𝐼𝑦 ∈ R3
at the pixels where respective paths are

sampled. Let F be the path embedding network in our manifold

learning module (Fig. 3). 𝑓𝑥 = F (𝑥) and 𝑓𝑦 = F (𝑦) denote the

respective path embeddings. Then, our path disentangling loss is

defined as follows:

L𝑚 (𝑓𝑥 , 𝑓𝑦, 𝐼𝑥 , 𝐼𝑦) =
(
∥ 𝑓𝑥 − 𝑓𝑦 ∥22 − ∥𝜏 (𝐼𝑥 ) − 𝜏 (𝐼𝑦)∥

2

2

)
2

, (4)

where 𝜏 (𝐼 ) =
(

𝐼
1+𝐼

)𝛾
is the tone-mapping function [Reinhard et al.

2002], required to reduce the range of images and P-buffers and lead

stable training [Bako et al. 2017; Gharbi et al. 2019].

The loss indicates the discrepancy between the path embedding

space and the reference color space. Two paths similar in the ref-

erence color space attract each other in the path manifold, while

repelling each other in the opposite case. Intuitively, two paths em-

bedded as neighbors on the same manifold have a high-correlation

on contributing to correlated pixels, i.e., pixels of similar colors once

converged with high sample counts. Also, the strong correlation

among the input of a reconstruction model and the reference image

indeed improves MC reconstruction according to the recent discus-

sions on ideal features for denoising [Back et al. 2018; Delbracio et al.

2014; Kettunen et al. 2019; Moon et al. 2013]. In Fig.4, we empirically

discover that our weakly-supervised contrastive learning works

well to induce discriminate and well-clustered P-buffer.
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reference 64K spp input 8 spp P-buffer

Manifold model (ours)

P-buffer

Path model

path descriptors

K
P
C
N

S
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M
C

Fig. 4. Visualization of various spaces. Each row shows three different pixels enclosed by either yellow, cyan, or magenta boxes, followed by relevant path
samples; the input image is rendered at 8 spp, thus each pixel consists of 8 paths. From the third to fifth columns, each plot presents a distribution of either
P-buffers or raw path descriptors (i.e., inputs of the proposed framework), where the data points are color-coded by reference pixel colors. All samples are
projected onto the 2D spaces using t-SNE dimensionality reduction method [Maaten and Hinton 2008]. In the first row, though the magenta pixel shows
similar color with others, the samples are clearly separable in our manifold space (third column). In contrast, without explicit manifold supervision, three
pixels’ path distributions are highly tangled (fourth and fifth columns). In the second row, our method shows individual clusters caused by at least three
different light-material interactions (i.e., red caustics, white floor, and a blue ball), which is not the case in the rest columns.

4.4 Joint Manifold-Regression Training
In Eq. 4, a pair selection scheme for 𝑥 and 𝑦 is important to achieve

robust and fast training [Wu et al. 2017]. The network cannot learn

meaningful weights if only easy pairs, whose path disentangling

error is relatively smaller than other pairs, are selected. We propose

non-local pair selection to alleviate this issue.

Given a large image of 1280× 1280, we extract 256 patches of size

128 × 128 in the training phase. We then construct mini-batches of

8 image patches. Path descriptors are located at the corresponding

pixels at each sample count. Since we construct training batches

from high-resolution images, paths belonging to different patches

are likely to have considerable distinctions in path manifold and

vice versa, just as their respective reference radiances. Thus, two

paths from different patches, a non-local pair, have a high chance

to supply a hard case to path disentangling loss, leading to robust

contrastive training.

We construct a set of non-local pairs by randomly shuffling path

descriptors within a batch and by comparing the original batch and

shuffled one. We also construct a set of local pairs to enforce the

balance between similar and dissimilar cases; we shuffle samples

within patches and comparing the original and shuffled ones. Non-

local pair selection offers not only embeddings at adjacent pixels

but also embeddings far apart in image-space to our manifold loss,

aiming to help contrastive learning to mitigate the sparsity of path

samples.

The overall training algorithm is summarized in Alg. 1. Here,

L𝑟 denotes an arbitrary regression loss that the reconstruction

network aims to minimize. Note that we average P-buffer along

Algorithm 1 Joint Manifold-Regression Training Algorithm

notations
𝐼 and 𝐼 noisy input and reference image

𝑔 auxiliary features

𝑝 and 𝑞 path descriptors and sampling probabilities

ΘF weights of the path embedding network

ΘR weights of the given reconstruction network

𝜆 manifold-regression balancing parameter

while total loss is decreasing do
𝑓 = F (𝑝 |ΘF) // path embedding

𝑓 ′, 𝐼 ′ = ShuffleWithinBatch(𝑓 , 𝐼 ) // non-local pairs

𝑓 ′′, 𝐼 ′′ = ShuffleWithinPatch(𝑓 , 𝐼 ) // local pairs

𝐼 = R(𝐼 , 𝑔, 𝑓 , 𝑞 |ΘR ) // image reconstruction

L𝑡𝑜𝑡𝑎𝑙 = 𝜆(L𝑚 (𝑓 , 𝑓 ′, 𝐼 , 𝐼 ′) + L𝑚 (𝑓 , 𝑓 ′′, 𝐼 , 𝐼 ′′)) + L𝑟 (𝐼 , 𝐼 )
ΘF,ΘR ← Adam(L𝑡𝑜𝑡𝑎𝑙 )

end while
return ΘF,ΘR

the sample dimension for image-space models. Also, we find that

𝜆 = 0.1 yields empirically good results. See Table 4 for the impact

of 𝜆 on reconstruction performance.

5 EXPERIMENTAL SETUP

5.1 Reconstruction and Training Details
Reconstruction models. We choose three reconstruction models

to test our joint manifold-regression approach: KPCN [Bako et al.
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2017], SBMC [Gharbi et al. 2019], and LBMC [Munkberg and Hassel-

gren 2020]. Three models employ different approaches to denoising;

SBMC and LBMC are sample-based and KPCN is pixel-based. Since

our manifold method utilizes the affinity among path samples, SBMC

and LBMC are better suited for our approach. Nonetheless, wewould

like to analyze benefits of utilizing manifold learning and its out-

come, P-buffer, even on the pixel-based approach, since image- and

sample-space features can be used together [Lin et al. 2021].

For all models, we use the publicly available implementations

that Gharbi et al. [2019] and Munkberg and Hasselgren [2020] pro-

vided
1 2

. KPCN was initially written in Tensorflow [Abadi and

et al. 2016]
3
, and then Gharbi et al. [2019] re-implemented it in

PyTorch [Paszke et al. 2017]. Munkberg and Hasselgren [2020] is

also written in the same framework. Our experiments are conducted

in PyTorch environment as we exploit a building block of SBMC to

implement our path embedding network.

Training details. We used regression losses adopted by KPCN,

SBMC, and LBMC to train all models. The specular and diffuse

branches of KPCN were trained to minimize L1 error between out-

puts and reference images in linear space. In fine-tuning of KPCN,

the entire model was tuned using the same L1 metric [Bako et al.

2017]. SBMC was trained to minimize relative L2 error between

tone-mapped outputs and references [Gharbi et al. 2019]. LBMC op-

timized symmetric mean absolute percentage error (SMAPE), which

shows numerically stable results [Munkberg and Hasselgren 2020].

We emphasize that we trained all networks from scratch, i.e.,

training from randomly initialized weights with the same dataset.

Therefore, we can exclude the quality of pretrained weights and

focus on evaluating the impact of our manifold learning framework

on different architectures. Also, we used the same initialization

methods, optimizers, and schedulers as suggested in each paper.

The convolutional layers of KPCN and LBMC were initialized using

Xavier method [Glorot and Bengio 2010], and those of SBMC were

initialized using He et al. [2015]’s approach. Both KPCN and LBMC

were trained by ADAM optimizer [Kingma and Ba 2014] with a

learning rate of 10
−4
, and SBMC was also trained by the same

optimizer with a learning rate of 5 × 10
−4
. The batch size is 8. Note

that we adjust the learning rates to use the same batch size for all

models.

We choose relative L2 (RelL2), relative L1 (RelL1), and structural

dissimilarity [Wang et al. 2004] (DSSIM = 1 − SSIM) as error metrics

to evaluate all models. RelL2 is based on the mean-squared error.

5.2 Dataset
Data acquisition. We use three different datasets; training, vali-

dation, and test sets. The training and validation sets are rendered

from 18 scenes and used in the model training phase. Especially, we

stop training when the average error on the validation set starts

increasing. Our 12 test scenes are entirely separated from the train-

ing and validation scenes. Thus, the test set is unseen by models in

training, and we can expect test errors show general performance in

1
https://github.com/adobe/sbmc

2
https://github.com/NVlabs/layerdenoise

3
http://civc.ucsb.edu/graphics/Papers/SIGGRAPH2017_KPCN

Fig. 5. Example reference images from our training set. Our scenes vary in
light phenomena, including glossy reflections, rough transmissions, specular
highlights, and color bleeding.

practice. We assembled all scenes from Blend Swap
4
and a publicly

available repository [Bitterli 2016].

For training and validation, we randomized camera parameters,

material parameters, and environment maps to simulate diverse

light transport phenomena in a restricted number of scenes. We

rendered 26 different images of resolution 1280× 1280 for each of 18

scenes. We randomly select one out of 26 images to build a hold-out

validation set. In total, our training set consists of 450 images (Fig. 5),

and validation set consists of 18 images. We trained all models on

2 to 8 spp inputs to make our method compatible with SBMC and

LBMC; both are trained at the range due to I/O bottlenecks. Note

that any spp inputs can be used at the test time thanks to their

sample-based architectures.

We converted the rendering results to the format that each re-

construction model expects (e.g., image-space features for KPCN).

The reference images are rendered at 8,000 spp for training and

validation. Each rendering used a different random seed to avoid

correlation between an input and a reference. We did not use the

test set in the model exploration phase, preventing design choices

and hyperparameters from being optimized only in the test set. The

final model was selected based on the validation results. All datasets

are rendered by OptiX engine [Parker et al. 2013].

Preprocessing. We used the original implementations for input

preprocessing as well. Specially, we transformed the specular com-

ponent of the linear radiance into the log-domain to prevent artifacts

around high energy highlights. We decomposed the albedo from

the diffuse color buffer for KPCN. For our path descriptors and path

sampling probabilities, we used log transformations to handle the

high-dynamic-ranges of BSDFs and probability density functions

(PDF), respectively.

Data augmentation. We sampled patches on-demand from high-

resolution images in disks. We sampled 256 patches of size 128× 128

4
https://www.blendswap.com
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from each image. Therefore, models are exposed to different sets

of patches at every training epoch, increasing their generalities.

Also, we trained models on 2 to 8 spp inputs to achieve generality

on different noise levels as Gharbi et al. [2019]; Munkberg and

Hasselgren [2020].

To reduce the number of trivial patches during the patch sam-

pling process, we utilize a hard patch mining strategy, inspired by

Bako et al. [2017]; Gharbi et al. [2016]. Patches involving low color

deviation, background, or lights are trivial to denoise. At a high

level, our sampling strategy improves the learning efficiency by

allowing reconstruction models learn more glossy surfaces, surfaces

with shadows and textures, and surfaces with complex geometries.

In summary, we used 806,400 (i.e., 450×256×7) on-demand patches

with resolution 128 × 128 in a training epoch, and used 12,600 fixed

patches in validation. We trained each model until its validation loss

stopped improving. Training KPCN and its corresponding manifold

model took 2 to 7 days (i.e. see 6.5 million patches) on a NVIDIA

RTX Titan GPU, including the fine-tuning of diffuse and specular

branches. Training SBMC and its corresponding manifold model

took 10 days (i.e. 5 million patches) on a NVIDIA Quadro RTX 8000

GPU. It took 7 days (i.e. 8 million patches) to train LBMC and its

corresponding manifold model using the same GPU.

6 RESULTS
Throughout this section, we evaluate our framework both numeri-

cally and visually. We also extensively analyze the effectiveness and

benefits of the proposed path-space manifold learning and P-buffer.

We use the following terms throughout this section.

• Vanillamodels denote the original implementations of KPCN,

SBMC, and LBMC.

• Manifold models denote the models trained by our manifold

learning framework as shown in Fig. 3.

• Path models denote the ablated Manifold models that only

minimize L𝑟 instead of minimizing L𝑚 as well. They are

used to demonstrate the effectiveness of manifold learning.

Note that we remove the original path features of SBMC when

training SBMC-Manifold to remedy I/O bottlenecks. Thus, SBMC-

Manifold exploits radiance, G-buffer, and our path descriptors. SBMC

uses their original path features for fairness. Also, we respectively

use 12, 3, and 6 channels of P-buffer (i.e., hyperparameter) for KPCN-

, SBMC-, and LBMC-Manifold, which yields empirically good results.

See Table 4 for the impact of P-buffer dimension on reconstruction

performance.

6.1 Comparisons
We provide quantitative summaries and convergence comparisons

in Fig. 6 and qualitative comparisons between Vanilla models and

their manifold opponents in Fig. 7.

All Manifold models numerically outperform their Vanilla oppo-

nents consistently across all the tested sample counts up to 64 spp

(Fig. 6). Impressively, KPCN-Manifold shows a convergence rate

comparable to that of KPCN while producing lower errors than any

of Vanilla models, even at low sample counts.

The visual comparisons show that our framework improves on the

drawbacks of KPCN, SBMC, and LBMC. We find that KPCN and two

0.02
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0.08

2 4 8 16 32 64

R
el

L2
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KPCN

KPCN-M

SBMC

SBMC-M

LBMC

LBMC-M

Fig. 6. Error comparisons between Vanilla models and their manifold oppo-
nents up to 64 sample counts on 12 test scenes. The errors, vary significantly
across test scenes, are normalized to be relative to those of the noisy inputs
of 2 spp and then averaged [Bako et al. 2017; Vogels et al. 2018]. Manifold
models consistently outperform their Vanilla counterparts, while maintain-
ing the convergence rates comparable to their opponents. Note that KPCN
beats its latest successors with the help of our manifold framework.

sample-based models show different characteristics. Sample-based

models suppress high energy outliers thanks to its discriminative

sample-space features and the kernel-splatting architecture, pro-

ducing smoother images. In contrast, it consistently struggles to

reconstruct high-frequency textures and geometries, as shown by

the fourth and fifth rows in Fig. 7; this can be seen in the Balls scene

in Gharbi et al. [2019] as well. On the other hand, KPCN reconstructs

texture details well thanks to the dense image-space features. Still,

the image-space statistics collapse modes of a radiance distribution

and cannot discriminate noises and features, resulting in noticeable

artifacts, as shown by the second row in Fig. 7. We observe that our

method improves on these shortcomings of the three methods while

preserving their strengths.

6.2 Discussions
In this section, we compare Path and Manifold models and analyze

the effectiveness of manifold learning. We also study the impact of

various design choices on reconstruction performance.

Importance of manifold learning. In Sec. 3, we presented our in-

tuition behind manifold learning for handling high-dimensional

path-space in MC reconstruction. Fig. 8 supports the claim that

the utilization of path-space features is non-trivial and restricted

without proper guidance. Also, Fig. 4, Fig. 14, and Fig. 15 show that

manifold learning induces a fruitful embedding space, whereas the

raw path space (i.e., path descriptors) and the embeddings learned

solely by regression is highly unstructured. Thus, utilization of

path-space features is limited in Path models.

The effectiveness of manifold supervision is more evident in

the training process and test results. In Fig. 9, the KPCN-Path

result shows that path descriptors and the path embedding net-

work already help to improve KPCN to some extent. Furthermore,

KPCN-Manifold improves this result in another large margin. KPCN-

Manifold stabilizes the initial error, resulting in better convergence

and the validation error on the last epoch.
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ours input KPCN KPCN-Manifold (ours) reference 64K spp

8 spp RelL2 0.0070 RelL2 0.0055

8 spp RelL2 0.0275 RelL2 0.0191

ours input SBMC SBMC-Manifold (ours) reference 64K spp

2 spp RelL2 0.2797 RelL2 0.1321

16 spp RelL2 0.0657 RelL2 0.0550

ours input LBMC LBMC-Manifold (ours) reference 64K spp

32 spp RelL2 0.2656 RelL2 0.0466

16 spp RelL2 0.0177 RelL2 0.0149

Fig. 7. Visual comparisons between Vanilla models and their manifold counterparts. It is challenging for both image-space and sample-space methods to
reconstruct fine details caused by high-frequency textures or complex geometries, especially on reflective/refractive objects. Manifold models alleviate these
issues by providing reconstruction networks with discriminative path cluster information as auxiliary inputs. Path-space contrastive learning, which uses
dense reference labels, leverages rich sample features to distinguish fine details from noise while remedying the sparsity. "BATH" by Ndakasha under CC0.
"Room Scene" by oldtimer under CC BY-SA 3.0. "Library-Home Office" by ThePefDispenser under CC BY 3.0.
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Fig. 8. Evidence that our manifold learning framework increases the utilization of path-space features in the MC reconstruction problem. The gradient
illustrates the norm of the back-propagation signal with respect to the P-buffer during the first training epoch, representing the P-buffer’s contribution to the
reduction of regression loss in the training stage. We obtain the second and third columns using learned model weights. The feature importance shows the
importance of path descriptors in reducing MC noises in the inference stage by permuting the descriptor vectors in the training data and examining the rise in
the error of the output [Breiman 2001]. The activation indicates the output of the first ReLU activation layer of KPCN; we obtain the activation map by
zeroing out the noisy 8 spp input and G-buffer of KPCN, to visualize the P-buffer’s impact on kernel parameters exclusively. In the fourth column, we zero out
the noisy image and G-buffer when predicting kernels of each model, then apply the kernels to produce the reconstructed images. That is, only path-space
features are responsible for the kernel prediction. Surprisingly, KPCN-Manifold produces the sufficiently crisp image, unlike the Path model. These results
imply that path descriptors hardly affect kernel prediction without manifold supervision. The manifold framework is shown to exploit high-dimensional paths
successfully throughout all columns, while KPCN-Path, trained with a single regression loss, struggles to utilize path descriptors.
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Fig. 9. Impact of manifold learning and path-space features on training
convergence and the final validation quality. We stop training when the
validation error starts increasing.

Table 1 offers numerical comparisons among Vanilla, Path, and

Manifold models in our test set. All metrics are relative to the noisy

inputs. Since our framework provides more representative feature

spaces to reconstruction models as shown in Fig. 4, we achieve sub-

stantial performance improvement across different errormetrics (i.e.,

RelL2, RelL1, DSSIM). We also provide I.C. that measure a model’s

improvement consistency across whole test scenes, in addition to

the mean error across the test scenes. I.C. denotes the number of

cases where Path/Manifold model improves the error metric over its

opponent Vanilla reconstruction model, divided by the total number

of comparisons. A similar metric is also used by Xu et al. [2019].

input Path Manifold reference

K
P
C
N

RelL2 0.0371 RelL2 0.0047 RelL2 0.0035

S
B
M
C

RelL2 0.6757 RelL2 0.0327 RelL2 0.0274

Fig. 10. Comparisons between Path models andManifold models. The input
of the first row uses 8 spp, and that of the second row uses 2 spp.

Our framework boosts the improvement consistency in large mar-

gins compared to Path models. Finally, we offer visual comparisons

between Manifold and Path models (Fig. 10). Path models show

their limitations in suppressing artifacts and reconstructing crisp

geometries.

Alternative designs. We now verify benefits of the joint training

scheme, which provides two different supervisory signals simulta-

neously to a reconstruction network. Although we demonstrated

that path-space manifold learning provides MC reconstruction with

fruitful feature spaces, path-space manifold learning and regres-

sion are conceptually different. Thus, pre-trained path embedding
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Table 1. Ablation study on the proposed manifold learning framework. I.C.
denotes the number of cases where a Path or Manifold model improves
an error metric over its opponent Vanilla reconstruction model, divided
by the total number of comparisons. I.C. indicates how consistently the
performance improvement against the Vanilla model is observed, across
different test scenes. Errors of different scenes are normalized to be relative
to the noisy inputs for computing the average errors, as mentioned in Fig. 6.
The same normalization is adopted for computing average errors across test
scenes.

KPCN RelL2 / I.C. RelL1 / I.C. DSSIM / I.C.

Vanilla 0.0869 / - 0.4090 / - 0.0579 / -

Path 0.0735 / 72.22% 0.3703 / 68.06% 0.0604 / 68.08%

Manifold 0.0585 / 93.06% 0.3084 / 93.06% 0.0500 / 94.44%
SBMC RelL2 / I.C. RelL1 / I.C. DSSIM / I.C.

Vanilla 0.0682 / - 0.3656 / - 0.0538 / -

Path 0.0505 / 88.89% 0.2995 / 94.44% 0.0499 / 88.89%

Manifold 0.0477 / 94.44% 0.2926 / 98.61% 0.0459 / 97.22%
LBMC RelL2 / I.C. RelL1 / I.C. DSSIM / I.C.

Vanilla 0.0729 / - 0.3441 / - 0.0489 / -

Path 0.0576 / 59.72% 0.2607 / 66.67% 0.0494 / 44.44%

Manifold 0.0401 / 83.33% 0.2102 / 90.28% 0.0458 / 90.28%

Table 2. Ablation study on joint manifold-regression training. The result
shows that it is essential to provide two supervisions simultaneously for
the performance of reconstruction models. Path embedding network of
KPCN-Pre-training model is first optimized on path disentangling loss, and
the network is attached to KPCN during the original KPCN training process
afterward.

KPCN RelL2 / I.C. RelL1 / I.C. DSSIM / I.C.

Path 0.0735 / 72.22% 0.3703 / 68.06% 0.0604 / 68.08%

Pre-training 0.0759 / 68.1% 0.3703 / 62.5% 0.0600 / 72.2%

Manifold 0.0585 / 93.06% 0.3084 / 93.06% 0.0500 / 94.44%

network might result in sub-optimal P-buffers without proper regu-

larization of MC reconstruction. The result of Table 2 reinforces this

concern. The table shows that the path embedding network, which is

pre-trained by path disentangling loss (KPCN-Pre-training, second

row) followed by the original KPCN training, provides performance

improvements at most comparable to KPCN-Path.

Failure cases. Since path-space features provide more benefits in

complex lighting conditions, Manifold models give rather limited

improvements in simple scenes. The first row of Fig. 11 shows a

sitting room, where the most materials are diffuse except glossy red

chairs and metallic balls. In such configuration, we may not observe

noticeable visual changes despite numerical improvements.

At extremely low sample counts, it is still challenging for sample-

based methods as well as pixel-based methods. The second row

of Fig. 11 shows a scene of bathroom cabinet shown in the third

row of Fig. 7. A transmissive glass on the bathroom cabinet and

sunlight involves intensive fireflies. Since it is difficult to sample

paths connected to the light source, especially with a small sample

count, neither G-buffer nor path descriptors can adequately capture

these light transport phenomena. Hence, our framework may not

remedy this issue unless leveraging a different rendering algorithm,

input KPCN

Vanilla

KPCN

Manifold

SBMC

Vanilla

SBMC

Manifold

reference

0.1330 0.0096 0.0050 0.0052 0.0043 RelL2

0.6758 0.0442 0.0404 0.0326 0.0274 RelL2

Fig. 11. Failure cases. The first row, where the input uses 4 spp, shows a
simple scene where all methods reconstruct well. Our manifold learning
framework gives visual improvements in a small margin in a simple scene.
The second row, where the input uses 2 spp, shows that all models suffer
from the severely under-sampled input, yielding noticeable artifacts for all
models. "The Chillout Room" by Wig42 under CC BY 3.0.
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Fig. 12. Numerical convergences over time on 12 test scenes.

such as path guiding [Bako et al. 2019; Müller et al. 2017; Vorba et al.

2014].

Performance. Overall time-error comparisons are summarized

in Fig. 12. We use a sample-based, path embedding network to

process path descriptors. Hence, the performance of the embedding

network scales linearly on the sample counts. A manifold module

carries about 16% overhead compared to SBMC during inference

(Table 3). However, SBMC requires more than four times sample

counts to achieve the same error of SBMC-Manifold, according

to Fig. 6. Similarly, KPCN requires more than four times sample

counts to achieve the same error of KPCN-Manifold though the run-

time cost of KPCN is constant. The overhead of manifold learning,

however, exceeds its benefit for some simple cases where KPCN

converges with very low sample counts. Note that we parallelly

execute the specular and diffuse branches of KPCN models in a

large GPU to reduce idle period.

Nevertheless, a cost-efficient sample-based neural network would

likely be achieved by image-sample hybrid approaches. For exam-

ple, LBMC divides samples into mutually exclusive image-space

buffers by sample binning. The further optimized LBMC achieves

comparable results to SBMC at the cost of few tens of microsec-

onds [Munkberg and Hasselgren 2020].
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Table 3. Runtime cost breakdown of the Vanilla models and our manifold
learning module (in seconds), using test scenes of size 1280 × 1280. Due to
the sample-based path embedding network in our framework, the cost of
our module increases linearly with the number of samples. RoC denotes
the rate of change of runtime with respect to sample counts. Note that the
cost of path tracing also increases linearly with the number of samples, and
the benefit of embedding exceeds that of tracing more paths with an equal
time budget.

spp 2 4 8 16 32 64 RoC

OptiX rendering 2.7 3 4 5.6 8.9 15.5 0.21

KPCN 1.6 1.6 1.6 1.6 1.6 1.6 0

SBMC 4.9 6.1 8.6 13.7 24 43.5 0.62

LBMC 1.09 1.2 1.43 1.86 2.74 4.5 0.05

path embed. net. 0.64 0.82 1.19 1.99 3.53 6.6 0.1

We also note that the implementation of a deep model greatly

influences the inference performance. TensorRT can accelerate the

inference of neural networks by orders of magnitude compared to

PyTorch [Ulker et al. 2020], thanks to Tensor Cores, half-precision

execution, and parallelism of CUDAmulti-streams onNVIDIAGPUs.

Thus, efficient implementation of sample-based models would be a

promising future direction for production-ready performance.

Temporal extension. Sample-based methods can be applied to

video reconstruction as described in Gharbi et al. [2019]. A path-

space manifold learning framework needs to learn features invariant

over time in paths to achieve temporal consistency. For example,

the parameters of a moving camera would be useful to cluster sim-

ilar path embeddings from different frames. Our pseudo labeling

method can still be applied to this direction. Also, a self-supervised

approach is recently proposed to extract features from video frames,

considering visual invariants in different frames [Tschannen et al.

2020]. Similar approaches can improve the temporal stability of

path-space contrastive learning and MC reconstruction.

Unbounded path length. In this work, we follow the known setting

of existing path-space methods [Gharbi et al. 2019; Munkberg and

Hasselgren 2020], which numerically and visually demonstrate that

six bounces are sufficient to capture most visual effects within stor-

age and memory limits. Handling infinite path length is still a huge

open problem in the deep MC reconstruction domain. Perhaps, split-

ting a path into a finite number of sub-paths might be a solution. Se-

quential models, such as a recurrent neural network [Rumelhart et al.

1986], that map infinite-dimensional paths into a finite-dimensional

feature space are also promising. Yet, such solutions introduce extra

overheads and require orthogonal effort to balance the benefits. For

conciseness, we focus on weakly-supervised contrastive learning

and regard the infinite length problem as future work.

7 CONCLUSION
In this paper, we have proposed a novel manifold learning method

that can be easily integrated into existing reconstruction models.

We have also demonstrated the benefits of our weakly-supervised

contrastive learning in path manifold across realistic test scenes.

Many interesting research directions lie ahead. Although we have

shown benefits of path disentangling loss, a type of contrastive loss,

numerous other forms of manifold losses have been explored in

deep learning and computer vision [Kaya and Bilge 2019]. For ex-

ample, it is well-known that a group of triplet losses shows better

robustness than contrastive losses since it samples both intra-class

and inter-class pairs and manipulates the distances simultaneously.

Exploring different types of manifold losses would give us further

improvement. In this paper, we have shown separate network struc-

tures between the path embedding network and reconstruction

model. A shared model between them can result in a more compact

and efficient model. Also, the layer-based approach [Munkberg and

Hasselgren 2020] recently mitigates the overhead of sample-based

networks using multiple image buffers rather than samples, which

can also be helpful to optimize our path-space embedding network.
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A PATH EMBEDDING NETWORK

Path Embedding Network
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Fig. 13. Architecture of our sample-based path embedding network that
adapts the sample-based feature extractor block. FC layers, implemented by
1-by-1 convolution, process a variable number of samples per pixel. We gen-
erate per-sample embeddings of path descriptor vectors using the first FC
layer. Then, we average them along the sample axis to leverage spatial cor-
relation of path embeddings by the image-space UNet. The UNet efficiently
extracts spatially correlated features from neighbor path embeddings by
3-by-3 convolution, pooling, and skip-connections. Finally, we repeat the
output of the UNet along the sample dimension and proceed it to another
FC layer to produce 𝑛-dimensional P-buffer.

B HYPERPARAMETERS

Table 4. Impact of hyperparameters on validation errors. We select the final
hyperparameters based solely on validation results but not test results to
prevent models from being optimized in the test set that should be unseen
by models. We empirically found that the performance strikes a balance
when the scales of manifold loss and regression loss are roughly the same
(𝜆 = 0.1). Compared to the balancing parameter, the number of channels of
path embeddings does not significantly affect validation errors.

balancing parameter (𝜆) 0.01 0.1 0.5

RelL2 (×10
−3
) 1.837 1.693 1.731

# of channels of P-buffer 3 6 12

RelL2 (×10
−3
) 1.693 1.681 1.644

C P-BUFFER VISUALIZATION

input KPCN-Manifold

diffuse branch

KPCN-Manifold

specular branch

reference KPCN-Path

diffuse branch

KPCN-Path

specular branch

Fig. 14. Visualization of P-buffers of Manifold and Path models. We train
KPCN-Manifold and -Path models with three channels of P-buffers. We
train two independent path embedding networks for diffuse and specular
branches of the KPCN framework, respectively, and visualize both diffuse
and specular P-buffers for each KPCNmodel. We clamped the P-buffers into
the range [0, 1] to plot them in image space. The results demonstrate that
P-buffers of the Manifold model capture complex geometries and reflections
in the scene. Also, the P-buffers are noticeably cleaner than the noisy input
and P-buffers of KPCN-Path. Best seen in zoom.

diffuse reference KPCN-Manifold

diffuse branch

KPCN-Manifold

specular branch

metallic reference KPCN-Manifold

diffuse branch

KPCN-Manifold

specular branch

Fig. 15. Visualization of P-buffers in the same scene with different back-
ground materials. Comparing the two diffuse P-buffers, it can be seen that
P-buffer is greatly affected by surface materials, intuitively. Also, we can
observe that P-buffer captures light propagation effects, such as colorful
lights reflecting off the wall or hookah reflecting off the floor, by the specu-
lar P-buffers. "Modern Hookah" by kexsz under CC BY 3.0.
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