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Abstract— This paper proposes a real-time system integrating
an acoustic material estimation from visual appearance and an
on-the-fly mapping in the 3-dimension. The proposed method
estimates the acoustic materials of surroundings in indoor
scenes and incorporates them to a 3-D occupancy map, as a
robot moves around the environment. To estimate the acoustic
material from the visual cue, we apply the state-of-the-art
semantic segmentation CNN network based on the assumption
that the visual appearance and the acoustic materials have a
strong association. Furthermore, we introduce an update policy
to handle the material estimations during the online mapping
process. As a result, our environment map with acoustic
material can be used for sound-related robotics applications,
such as sound source localization taking into account various
acoustic propagation (e.g., reflection).

I. INTRODUCTION

Thanks to wide adoption of AI speakers (e.g., Amazon
Alexa), attentions and demands for mobile robots that use
sound information to interact with people are increasing
recently. The crucial function required for this kind of
interactions between human and robots is to distinguish
the specific sound source and to know where the sound is
emitted. These tasks are known as sound source separation
(SSS) and sound source localization (SSL) [1], respectively.

The understanding of physical properties of sound is
necessary for the robots to properly process the sound
information. In the case of indoor environments, the sound
propagation reaches the robot by interacting with various
objects and structures of the indoor environment. In order
to perform the SSS or SSL, it is important to reconstruct
3-D geometric information of indoor rooms and grasp their
acoustic materials.

Various sensors such as LIDAR [2] or RGB-D camera
provide a high amount of sensor data to build the 3-D
representation of indoor scenes. Point clouds captured by
RGB-D sensor consist of the geometric points with color
observations, and are tend to take a high amount of the data,
hindering efficient processing in practice. For this reason,
various occupancy mapping structures based on a grid- [3]
and an octree-based approaches [4] were proposed. These
methods build the 3-D representation of an environment
consisting of the volumes with occupancy states and colors
of the surrounding objects.

Sound-related studies in the robotics area can be improved
by considering acoustic material that affect sound propaga-
tion. The acoustic material describes the interaction between
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(a) An example scene
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Fig. 1. An example of result of our integrated, real-time system between
the 3-D mapping and acoustic material estimation. Different colors of (c)
represent different acoustic materials (Fig. 3).

surface and incident sound wave, and it is generally used
for simulating immersive sound generation in the AR/VR
application. However, estimating the accurate acoustic ma-
terial is an expensive task. Recent SSL papers considering
reflection [5] and diffraction [6] only use the 3-D geometry
of indoor rooms for the real-time processing, without taking
into account acoustic material information.

Because accurate estimation of acoustic material is dif-
ficult, several approaches [7], [8] were proposed for the
approximate estimation using visual appearance without
sound information. These methods use RGB or RGB-D
images to perform the acoustic material estimation and the
3-D reconstructions. Due to the 3-D mesh reconstruction
from such images, it typically takes several hours to build
a whole environment map. In this paper, we propose a
new system that integrates real-time 3-D mapping and the
acoustic material estimation, which enables practical benefits
to sound-related applications with real-time performance.

II. RELATED WORK

A. Room acoustic modeling

Room acoustic modeling describes the behavior of sound
propagation in a closure room. This modeling is commonly
used to simulate sound propagation in a room, including
properties of sound such as reflection, scattering, and diffrac-
tion. Recent studies classify these models in two ways: wave-
based and geometrical acoustics (GA) [9]. Wave-based meth-
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Fig. 2. Pipeline of our framework.

ods directly solve a wave equation numerically to provide
accurate sound simulation. However, this approach requires
an expensive computational cost [10]. In GA methods, sound
signal is assumed to propagate as rays that ignore the wave
properties [11]. This assumption is valid at high-frequencies
when the wavelength of sound is short compared to the
interacted surface. Due to the ray assumptions, GA methods
get a less accurate result, but show a faster processing speed
than the wave-based approaches.

In practice, GA methods are widely used to simulate sound
propagation in an indoor scene. To perform GA simulation,
it is important to obtain an accurate geometric model of the
room and the acoustic material of that model. The acoustic
material describes how incident sound interacts with the
surface [7]. It generally represents how the sound is reflected,
scattered, and transmitted through the surface of the geomet-
ric model. The commonly used representation of acoustic
material is a frequency-dependent absorption coefficient that
describes the fraction of incident sound absorbed with each
reflection [11]. This property is commonly measured in
reverberation chambers according to ISO 354 [12]. However,
estimating the acoustic characteristic of every surface in the
room using ISO 354 is impractical. For this reason, we
propose a new framework estimating the acoustic material
from the raw point cloud data obtained by a mobile robot.

B. Real-time occupancy mapping

Automatic systems using robots require understanding
their workspace to perform various tasks. In the robotics
field, various occupancy maps have been studied to represent
the geometry information and provide the 3-D representation
of the surroundings. As one of the mapping algorithms,
grid-based representations [3], [4] are widely used in many
systems such as RGB-D SLAM [13] and sound source local-
ization [5]. Compared to the learning-based approaches [14],
[15], the grid-based methods provide real-time updates to
handle the huge amount of data efficiently that a sensor
captures on-the-fly, as supported by recent work [16]. Based
on the benefit in practical usage, we opt to use the grid-
based approach to manage the estimated acoustic material
and represent the environment with them in real-time.

III. METHODOLOGY

A. Overview

Our proposed sturcuture for integrating a grid-based 3-
D map representation with acoustic material estimation is
depicted in Fig. 2.

Using a mobile robot equipped with a RGB-D sensor,
we capture the point cloud data sampled from the given
environment. Typical mapping methods perform the update
of occupancy information for the geometric representation
of an environment. In addition to the occupancy data, our
method handles the acoustic material information acquired
from the image-based estimation stage before the occupancy
updates. In this paper, the material estimation is performed
by utilizing the ResNet architecture [17] to recognize se-
mantic labels of the current frame. In order to assign the
acoustic property, objects with similar semantic labels are
considered to have an identical characteristic. After the
estimation process, we insert both the occupancy and the
estimated acoustic material information to the grid-based
map.

B. Acoustic material estimation

There are a few studies to estimate the acoustic material
using the visual cue. Schissler et al. [7] assume that there is a
strong relationship between visual appearance and its acous-
tic property. This method estimates the visual appearance
of the 3-D mesh using material classification CNN [18] and
matches the estimated visual material to the acoustic material
of various type of architectural components. Kim et al. [8]
also adopted a CNN-based acoustic material estimation from
the RGB-D image. These methods require additional costs
to reconstruct 3-D models from the image, which is used to
estimate the acoustic property. This cost could be very high,
i.e., 5 minutes [8], which is unsuitable for real-time robotic
applications.

In this paper, we propose a different method for estimating
the acoustic material from the 3-D point cloud obtained by a
robot sensor. Our approach utilizes a well-known grid-based
3-D map and performs a simple perspective projection to
assign the acoustic property of the environment directly to
the map without having expensive reconstruction steps.

To perform the material estimation from the point cloud,
we first reconstruct the image from the sensor data. Each
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TABLE I
DETECTED ACOUSTIC MATERIALS MATCHING TO DIFFERENT OBJECT

TYPES.

Object Material Object Material
Wall Concrete Floor Linoleum

Ceiling Plywood Window Thick glass
Furniture Wood Door Wood panel

Electronics Plastic Chair Carpet

point with RGB color obtained from the Kinect sensor
locates in the sensor coordinates. In the XY Z coordinate
system where Z represents depth from the sensor, we re-
construct an image by performing a perspective projection
of each measured point on the image plane located in a
distance F away from the current sensor position. Suppose
that the camera coordinate is (Xc, Yc, Zc). Each point pi
located to (Xi, Yi, Zi) is then projected to (X ′

i, Y
′
i ) of the

two-dimensional image through the Equation (1).

X ′
i = (Xi −Xc)× (F/Zi) +Xc,

Y ′
i = (Yi − Yc)× (F/Zi) + Yc.

(1)

We now estimate the acoustic material from the recon-
structed image using the widely used CNN to predict visual
appearance. As mentioned in [7], [8], estimating the visual
aspect of an image can be considered as a kind of semantic
segmentation. In general, semantic segmentation tasks clas-
sify and separate various objects in the scene. However, there
are fewer types of objects that affect sound propagation in
indoor scenes. Some of them include furniture and ceiling, so
most labels (e.g., waterfall and airplane) that are not related
to the indoor setting or small objects need to be ignored out.

We utilize the pre-trained network with MIT ADE20k
dataset [19], [20] that is the largest for semantic segmentation
and scene parsing. This network is trained for 150 objects,
but we select only eight labels (Table I) for the final result
because of the simplicity of the acoustic property in the
indoor environment. In order to assign the accurate acoustic
material to each point cloud, we apply dense CRF [21] to
predict a label at every pixel. CRF consists of two energy
function, the unary term, and the pairwise term. In general,
the probability of estimated label is used to the unary term.
The pairwise term considers the similarity of the location
and color value of pixels. We use the details of the energy
function of CRF from [18], which uses the LAB color space
for the pairwise energy term.

As the next step, we match each semantically classified
object to one of available measured materials, whose acoustic
materials are measured in a controlled setting [22], [23]. Ta-
ble I shows the corresponding acoustic materials that match
the eight selected labels. After assigning the material to all
pixels in the reconstructed 2-D image, we pass this label
information to the original raw point cloud. To realize this
process, we maintain the relationship between the 3-D point
cloud and the location of corresponding pixels, when we
project the point cloud into the 2-D image using Equation (1).

Concrete Plywood
Thick glass

Wood

Carpet 

Wood panel 
PlasticLinoleum

Fig. 3. An example of our acoustic material histogram. Colors assigned to
different materials will be used for material visualization later (e.g., Fig. 6).

The point cloud with the information of acoustic material is
passed to the next step for mapping the current environment.

C. Real-time 3-D mapping with acoustic material

An occupancy grid discretizes the world into a set of
the cells containing the occupancy information such as the
occupied or free states. Each cell of the map has a volumetric
representation, voxel, of the partitioned space where multiple
points of a point cloud can be assigned to. Unlike the
traditional occupancy grid, our system handles a point cloud
consisting of the points with the color measurements as well
as the estimations of acoustic material. Therefore, we modify
a design of the cell with the occupied state to hold this data
about the material.

In this work, we use a mobile robot to construct our occu-
pancy grid with acoustic material for the applications related
to sound. When the robot roams around the workspace, our
approach incrementally updates the various information, i.e.,
occupancy, color, and estimated sound material, of each cell
associated with the measured points on-the-fly. We adopt the
policy for updating the occupancy probability and the color
based on the outcome of the prior work [4]. However, in the
case of the acoustic material, we cannot easily integrate the
estimated labels to a single value on a simple manner like
averaging the estimated labels.

We, therefore, propose a histogram-based method to effi-
ciently update and determine the acoustic material of the
cells for on-the-fly mapping. In our occupancy grid, we
design each cell to have its own histogram, which counts
the estimated labels of the material to each bin (Fig. 3).
Our method then determines the material of a cell as the
most frequently-appearing estimation to the acoustic material
at the points mapped to the cell. For the example shown
in Fig. 3, our method selects the wood as the acoustic
material of the cell, since the estimated label has the largest
density among the identifications of the acoustic material.
This histogram-based approach is useful to manage and filter
the noisy estimations from the points assigned to the cell.

IV. IMPLEMENTATION

Fig. 4 shows our tested robot used for estimating the
room structure. This robot is based on a Turtlebot2 equipped
with Microsoft Kinect sensor that located 1.08m from the
ground. The sensor captures 30k points each frame. We
tested our proposed system in the common office rooms,
whose dimensions are 6.7×6.8×2.5m. We acquire the 3-D
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(a) Our robot (b) Tested indoor scene

Fig. 4. Our tested robot and scene

point cloud of the room as the robot moves along a given
path.

We reconstruct the 2-D RGB image from the captured
point cloud. Fig. 5-(a) shows the reconstructed 2-D image
from the raw point cloud. Due to the properties of the point
cloud from the sensor, the reconstructed 2-D image includes
empty pixels, i.e., holes, that are unobserved from the sensor.
Since this unobserved points degrade the performance of
image-based semantic segmentation, we apply a mean filter
to fill these area with the average color of adjacent pixels.

The reconstructed images are used as the input of se-
mantic segmentation network. We use the pretrained ResNet
[17] architecture with MIT ADE20k dataset [19], [20] for
semantic segmentation. Since only eight classes are used
to estimate the acoustic material of indoor objects among
the 150 classes, the unclassified pixels are represented by
unknown labels. Fig. 5-(b) shows the initial segmentation
result that contains the unclassified pixels represented by the
black color. In order to fill this area, we apply the dense CRF
[21] to assign a label to every pixel as shown in Fig. 5-(c).
We then add this information to the original point cloud and
pass it to the environment mapping stage.

Our occupancy map updates the representation of the
geometry as well as the acoustic material from the point
cloud. We implemented the occupancy grid using the library
published in the prior work [16].

V. RESULT AND DISCUSSION

Fig. 6 shows the results of our proposed system at the
tested room. Fig. 6-(a) and -(b) show the reconstructed
image using the mean filter to remove empty pixels and
the result of semantic segmentation with dense CRF, re-
spectively. After the segmentation, we assign the material
information to each point according to the matching strategy
summarized in Table I, as shown in the Fig. 6-(d). In our
tested scene, various objects generate occlusion producing a
higher frequency of unobserved areas. Particularly, specular
surfaces or transparent objects influence a negative effect on
the point cloud sensing and cannot receive data, as shown in
the Fig. 6-(a) such as a monitor and glass. These problems
produce in poor segmentation results, but it is possible to

(a) Reconstructed 2-D image

(b) Initial semantic segmentation (c) After dense CRF

Fig. 5. Segmentation result of reconstructed image

assign reasonable acoustic material to dominant objects in
the scene.

Our proposed method mainly depends on the performance
of semantic segmentation. Using the point cloud data rather
than RGB-D images makes it easier to reconstruct 3-D
environment map, but there is a problem that it is hard
for the employed sensor to acquire points for specular or
transparent objects as mentioned above. Commonly used
networks for semantic segmentation learn from photographs
taken from the human’s view. However, in the case of images
obtained using a robot, the point of view of the camera also
locates low. We found that this difference of views causes
the misprediction of the semantic structure. To solve this
misprediction, we increased the height of the robot camera’s
view, as shown in Fig. 4-(a). We expect that this problem
also can be solved by learning networks from the various
data acquired by robots. However, dataset construction from
the robot sensor is an expensive task. In this reason, we plan
to design a new network and dataset for material estimation
as a part of future work.

In our experiment, we considered only eight types of
materials in the room for efficiency. However, there are
various objects and materials in the wild, and we need to
make an accurate estimation of each of them. It is inefficient
to construct the object-material matching table for every
object. Therefore, we plan to perform the environment-
independent material estimation using acoustic information.

VI. CONCLUSION

This study aimed to design an on-the-fly system that
predicts acoustic material with visual appearance and con-
ducts an environment mapping using a 3-D point cloud,
based on the assumption that visual information is highly
correlated with acoustic material. The material of each point
is estimated by reconstructing the 2-D image from the 3-D
point cloud received from the Kinect sensor and assigning
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(a) Reconstructed image (b) Segmented results (c) 3-D color map (d) 3-D labeled map

Fig. 6. Example of our proposed system

an acoustic information that matches each semantic object
by the result of segmentation on the reconstructed image.
Finally, the overall environment map has the estimated
material as well as occupancy information for each voxel.

Since the estimation is based on the visual information,
it has approximate acoustic information. Also, because this
estimation process highly depends on the performance of the
segmentation network and the quality of the reconstructed
2-D image, the segmented result may include mispredicted
labels. However, the productivity of sound-related researches
can be increased by automating the assignment of acoustic
materials, which can be improved by considering various
other acoustic properties.
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