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초 록

본 학위논문은 비디오에 나타나는 모션을 이해하는 핵심이 되는 비디오 모션 러닝에 대해 탐구한다. 이를

위해, 광학흐름과 운동학 필드의 두 가지의 모션 표현에 대해서 다룬다.

광학흐름은 비디오의 2차원 모션에 대해 다룬다. 광학 흐름은 주로 딥 네트워크에 의해 학습되는데,

이때 정확한 광학흐름 네트워크 학습을 위한 참값을 얻는 것은 어렵다. 본 학위논문의 연구는 이러한 배경을

고려하여, 학습을 위한 참값이 존재하지 않는 경우에 딥러닝으로 광학흐름을 학습하는 일련의 연구를 수행

한다. 첫째, 비지도학습(unsupervised learning)을 이용하여 참값이 존재하지 않는 경우에도 새로운 유사도

기법을 제안하여 비지도학습 손실 함수를 통한 광학흐름을 개선하는 연구를 수행한다. 둘째, 준지도학습

(semi-supervised learning)을 통해 렌더링으로 생성한 학습 참값 데이터를 활용하여 참값이 없거나 적은

목표 도메인으로 네트워크를 적응시키는 연구를 수행한다.

광학흐름은 2차원 비디오 프레임에서 모션을 인식하지만, 운동학 필드는 3차원 공간에서 시간에 따른

움직임을 표현한다. 본 연구는 최근 4차원 방사 필드 기술의 진보를 이용하여 모션 필드인 운동학 필드를

운동학에 기반하여 학습한다. 이를 위해 비디오 데이터에서 방사 필드와 운동학 필드의 물리 기반 통합적

학습방법론을제시한다. 이러한방법론은더정확한모션인식과기하정보재건을가능케하여 3차원비디오

재건을 향상한다.

핵 심 낱 말 광학흐름, 비지도학습, 준지도학습, 동적 방사 필드.

Abstract

This dissertation explores the video motion learning, a key element of computer vision that enables the

understanding of motion within videos. We focus on two different motion representations: optical flow

and kinematic fields.

Optical flow describes 2D motion in a video, which can be learned by a deep networks. The

challenge lies in the acquisition of ground-truth data necessary for training deep networks to accurately

learn optical flow. Thus, this dissertation presents a series of research aiming to the absence of ground-

truth in deep learning of optical flow, mainly powered by self-supervised deep features. First, we study

unsupervised optical flow to investigate a learning situation where no ground-truth dataset is available,

where we propose a novel similarity measure for the unsupervised objective function. Second, we propose

a semi-supervised approach for optical flow learning, which can effectively utilize a synthetic dataset with

ample rendered ground-truth samples, then can adapt to unlabeled target domain which is unlabeled or

labeled on few samples.

While optical flow captures motion within 2D frames, kinematic fields represent motion in 3D space

over time. Our research capitalizes on the recent progress in spatio-temporal radiance field techniques

to refine motion fields inspired by kinematics, referred to as kinematic fields. A novel approach for the

joint learning of radiance and kinematic fields from video data is introduced, grounded on physics-based

priors. This method not only enables more precise motion capture but also improves the reconstruction

of geometry, leading to enhanced 3D video reconstruction.

Keywords Optical flow, unsupervised learning, semi-supervised learning, dynamic radiance fields.
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Chapter 1. Introduction

Perceiving motion plays an important role for our visual system to understand our surroundings.

For instance, we decide how dangerous a car is by its velocity, perceived by our visual system. Thus,

computer vision researchers have devised a number of vision tasks to design a suitable algorithm for

motion understanding. For example, action recognition is one of the tasks, where movement of objects

decides a category of a video clip. An interesting discovery in action recognition is that a two-stream

architecture which processes color appearance and low-level motion of a scene separately is essential for

a better recognition accuracy [11, 12]. In addition to the two-stream architecture, neuroscientists have

claimed that the motion perception is separate to other visual perception (e.g., color), so that a patient

can lose only the ability to perceive motion even with the intact perception of color [13]. The evidences in

the aforementioned studies indicate that a low-level motion perception technique is critical in computer

vision, as it is in the biological vision system.

In exploring how computer vision systems can learn to perceive motion from videos (i.e., video

motion learning), our research examines two different motion representations: optical flows and kinematic

fields. Optical flow represents 2D motion within video frames. Our optical flow research focuses on

leveraging deep feature priors to enhance self-supervised optical flow learning in both unsupervised and

semi-supervised settings. Additionally, we investigate the representation of kinematic fields, motivated by

the understanding that motion in natural videos is three-dimensional and governed by physical laws. Our

findings suggest that kinematic fields, with their inherent priors about the three-dimensional world and

kinematics, can improve the reconstruction of 3D structures and motion from 2D information.

1.1 Learning Optical Flow using Deep Feature Priors

Optical flow is a low-level computer vision task for motion perception, which has been a fundamental

step towards developing certain motion-related tasks. The definition of optical flow is the displacement

of a point within two consecutive frames, where the point is often all the pixels in an image, resulting

in a dense optical flow field. Since the optical flow field usually has the same dimension with the given

image, it gives a few useful properties. For example, we can use the same system to process the image

and the optical flow field [11], and optical flow can be used to modify images in pixel-wise manner [14].

Thanks to the useful properties, optical flow has fertilized various computer vision tasks, such as activity

recognition [11, 12], video inpainting [14], novel pose generation [15], video stabilization [16].

Estimating optical flow from videos is a long-standing problem and it has been studied for decades.

Basically, the objective of optical flow is to match the same visual patterns in two images, which can be

formulated with the brightness constancy assuming that the brightness of a point does not change by a

movement [17]. However, the brightness constancy cannot fully solve the pixel-wise correspondence due

to the aperture problem. Thus, early stage of optical flow research focuses on how to solve the ambiguity

by smoothness assumption [17] and combining neighboring pixels [18]. Until 2010s, a line of research

based on the brightness assumption had dominated [19, 20], until deep learning-based methods showed

promising results.

The concept of learning optical flow from a training dataset is explored in the line of the brightness

assumption work, where a filter comparing brightness patterns is learned from training data [21]. Since the
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brightness assumption is often violated in the videos, the learning-based method enables to compensate

for the violated values and shows the benefits compared to non-learnable counterparts. Apart from the

violation of brightness constancy and the aperture problem, real-world videos have a lot more to overcome:

motion blur, occlusion, deformation, and so on. In terms of the challenges in the wild, deep convolutional

networks (CNNs) are shown to be highly effective in optical flow estimation, as they are in various other

vision tasks.

Deep learning of optical flow is dominating top-rank of optical flow benchmarks [22, 23], whose

testing samples usually contain challenging motion blur and lighting conditions. Deep networks for optical

flow estimation [24, 25, 26, 27] have made architectural progresses, resulting in significant improvements

in terms of flow accuracy, efficiency, and generalization capability.

For supervised optical flow training, large-scale synthetic datasets, e.g., FlyingChairs [24], have been

primarily used. While there are real-world datasets including Middlebury [9] and KITTI [28, 23], their

sizes are limited to few hundred images and each of them is limited to a specific scenario. This limitation

is mainly due to the extremely prohibitive cost to obtain or manually label accurate matching points in

thousands of video frames in the wild.

In this dissertation, our research focuses on deep learning of optical flow, when we do not have access

to the training labels required for supervised learning.

For the purpose, unsupervised learning of optical flow has been studied extensively from the research

community [29, 30]; we can plug in the brightness assumption from the classical methods [17] to loss

functions for deep learning. We propose a novel unsupervised optical flow learning by deep feature

similarity (Chap. 2). Deep unsupervised learning for optical flow uses a loss function which measures image

similarity with the warping function parameterized by estimated flow. The census transform, instead

of image pixel values, is often used for the image similarity. In our work, rather than the handcrafted

features i.e. census or pixel values, we propose to use deep self-supervised features with a novel similarity

measure, which fuses multi-layer similarities.

Although the unsupervised method shows remarkable results even without a label, supervised methods

which only utilize a large-scale synthetic dataset outperforms the unsupervised work in some cases [8, 31].

Thus, we propose to improve the supervised network on unlabeled target domain by a semi-supervised

learning strategy (Chap. 3) to take advantage of both supervised and unsupervised strategies. A training

pipeline for optical flow CNNs consists of a pretraining stage on a synthetic dataset followed by a fine

tuning stage on a target dataset. We propose a practical semi-supervised fine tuning method to adapt a

pretrained model to a target dataset without ground truth flows, which has not been explored extensively.

Specifically, we propose a flow supervisor for self-supervision, which consists of parameter separation

and a student output connection. This design is aimed at stable convergence and better accuracy over

conventional self-supervision methods which are unstable on the fine tuning task.

1.2 Learning 3D Motion using Physics-based Priors

Dynamic radiance fields have been used to reconstruct 3D spatio-temporal appearance from 2D

videos. Based on the volume-rendering technique [32], dynamic radiance fields enable novel view and

time synthesis; shortly, it makes 3D video from 2D video inputs.

In scenarios where scenes are captured with multi-view cameras, dynamic radiance fields generally

present geometrically accurate and temporally consistent appearances [33]. However, the requirement

for multi-view camera setups is often impractical for many video capturing environments. Consequently,
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research has focused on developing dynamic radiance fields from monocular videos [34, 35, 36].

For monocular video reconstructions, integrating the learning of appearance with motion has proven

beneficial. For example, the Neural Scene Flow Fields (NSFF) model [34] utilizes a displacement field to

maintain temporal coherence across different frames.

Based on the physics-based nature of the real world, we introduce kinematic fields, a novel physics-

based motion representation (Chap. 4). Kinematic fields are defined with the kinematic quantities,

including velocity, acceleration, jerk, and so on. These quantities are learned in an unsupervised manner

by the photometric loss intertwined with dynamic radiance fields. Thanks to the physics-based design of

kinematic fields and learning objectives, our dynamic radiance fields and kinematic fields presents better

appearance and motion than the baseline models which are not physics-based.
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Unsupervised optical flow allows an artificial intelligence model to learn to perceive motion autonomously,

without the need for external supervision. This figure is created by DALL.E (ChatGPT).

Chapter 2. Unsupervised Learning of Optical Flow

In computer vision, optical flow estimation is a fundamental step towards motion understanding. It

describes the velocity of each point in the 3D world as the projection of points to the 2D motion field.

Thanks to its effective motion description, it has been largely used for many applications, e.g., video

recognition [11, 37], frame interpolation [9, 38], and inpainting [14], to name a few.

Recently, end-to-end deep networks for optical flow estimation [24, 25, 26, 27] have made architectural

progresses, resulting in significant improvements in terms of flow accuracy, efficiency, and generalization

capability. For supervised optical flow training, large-scale synthetic datasets, e.g., FlyingChairs [24], have

been primarily used. While there are real-world datasets including Middlebury [9] and KITTI [28, 23],

their sizes are limited to few hundred images and each of them is limited to a specific scenario. This

limitation is mainly due to the extremely prohibitive cost to obtain or manually label accurate matching

points in thousands of video frames in the wild.

To train deep networks without ground-truth flows, unsupervised approaches have been proposed.

In principle, unsupervised methods exploit an assumption that two matching points have similar features

and learn to generate flows maximizing the similarity. In this line of research, choosing appropriate

features is critical for accurate optical flow estimation. The early work [29, 39] applies RGB pixel values

and image gradients as the feature, and recently it has been shown that the census transform [40] is

highly effective for optical flow learning [30, 1].

Another interesting aspect of the unsupervised optical flow networks is that a network learns more

than just the loss it is trained with. A recent work [1] found that configuring the loss function only with
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Figure 2.1: This figure shows different similarity maps of the reference point at time step t to all pixels

in the target image at t+ 1; red means higher similarity. We compare the similarity computed by our

deep feature against ones computed by census transform and RGB. The fused similarity shows improved

discriminative response, while the census transform tends to be sensitive to local edge appearance and

RGB shows high similarity with similar colors. For simple visualization, we compute similarity in the

spatial domain

the data term does work without the smoothness term. This observation implies that the network feature

learns meaningful patterns in moving objects only with the photometric constancy assumption. A similar

observation is also found in the literature on self-supervision [41, 42], where deep features learn semantic

patterns by conducting simple unsupervised tasks like a jigsaw puzzle or guessing rotation.

In this work, we learn self-supervised network features and use them to improve the unsupervised

optical flow. To learn from self-features, we propose to use the similarity based on the product fusion of

multi-layer features (Sec. 2.2.2). We visualize similarity maps computed by different features in Fig. 2.1.

Our fused similarity demonstrates discriminative matching points highlighting the matching pair, while

lessening unmatched areas. On the other hand, the similarity map (e.g., computed by the cosine) with

RGB or the census transform shows many high-response points across the whole area. This is mainly

because those features only encode patterns in a local area and do not represent semantic meanings. We

propose three loss functions utilizing the feature similarity for optical flow training (Sec. 2.2.3). Across

various quantitative and qualitative validations, we demonstrate the benefits of the proposed feature

similarity and the loss function. (Sec. 2.3). When compared to other deep unsupervised methods, our

method achieves state-of-the-art results under various measures across FlyingChairs, MPI Sintel, and

KITTI benchmarks.

2.1 Related Work

End-to-end supervised deep methods. FlowNet [24] is the first end-to-end framework that exploits

a deep network for optical flow estimation. To train the network, a large-scale labeled dataset called

FlyingChairs was constructed [24]. Following the first work, FlowNet2 [25], SpyNet [26], and PWC-

Net [27] have made architectural progresses, resulting in significant improvements in terms of flow accuracy,

efficiency, and generalization capability.

Datasets. Large-scale synthetic datasets are available for supervised optical flow training including

FlyingChairs [24]. Following FlyingChairs, FlyingThings3D [43] and FlyingChairs-Occ [44] datasets are

incorporated into the collection with improved reality and additional information. Real-world datasets

annotated with a rich optical flow are lacking. Middlebury [9] and KITTI [28, 23] are the most commonly

used ones. However, not only the scenes they have are limited to few hundreds of images, but also they
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Figure 2.2: This shows the overview of our method, which is end-to-end trainable for both optical flow

and self-supervised deep features

are constrained to specific scenarios: indoor static objects for Middlebury and driving for KITTI. This

limitation is mainly due to the prohibitive cost to obtain or manually label accurate matching points in

thousands of video frames in the wild.

End-to-end unsupervised deep methods. To make use of deep networks for optical flow without

expensive ground-truth flows, deep unsupervised approaches have been proposed. Earlier methods [29, 39]

brought ideas from the classical variational methods, which adopt the energy functional containing the

data and smoothness terms into loss functions of deep learning. The loss function in unsupervised methods

can be calculated using the warping technique [45].

In unsupervised optical flow learning, how to filter out unreliable signals from its loss is critical for

achieving better results. In terms of the data term, the census transform [40] has been proven to be

effective in deep unsupervised optical flow [30, 1]. Similarly, occlusion handling [30, 46] can eliminate

possibly occluded points from the loss calculation, where no target pixels exist due to occlusion. Rather

than just giving up supervision on occluded ones, hallucinated occlusion [1, 5] can be helpful to give

meaningful loss for those occluded points. Additionally, training with multiple frames improves the

noisy loss signal. Janai et al. [47] use the constant velocity assumption and Liu et al. [5] build multiple

cost-volumes to give more information to a model.

Deep features for matching. In the fields of matching and tracking keypoints or objects, deep network

features have been used for robust matching [48, 49, 50]. At a high level, matching techniques are related

to optical flow estimation [51, 20, 52, 53, 54, 55]. However, addressing all the pixels and their matching

in a dense manner (cf. sparse keypoints) is challenging. To the best of our knowledge, deep features have

not been exploited in objective functions for optical flow estimation. On the other hand, there has been

successful exploitation of deep features in pixel-wise tasks, e.g., depth estimation [56] and generation by

warping [57]. In our evaluations, the Zhan’s method [56], which was proposed for stereo matching, or the

losses more direct to optimize the deep features, e.g., the triplet losses, have shown poor performance in

unsupervised optical flow estimation. Given the high level of noise due to occlusion, deformation, motion

blur, and the unsupervised settings of optical flow, the level of optimization, i.e., the loss function for

features, needs to be carefully designed.

2.2 Approach

In this work, we successfully learn and exploit deep features for improving unsupervised optical flow

estimation. The proposed framework simultaneously improves the features and optical flow while adding

a small additional cost for training and no extra cost at runtime. For effective training, we build new
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loss functions (Sec. 2.2.3) utilizing the fused similarity (Sec. 2.2.2). The feature separation loss separates

certain and uncertain matchings by our fused similarity like a contrastive loss. Noting that even the best

features can fail in cases like occlusions, the separation mechanism effectively improves resulting flows by

discouraging to match uncertain pixels, as well as encoraging to improve certain ones. Additionally, the

regulated census loss and conditional smoothness loss make use of the census features and the smoothness

constraint adaptively considering the deep similarity to compensate for the low precision of deep features.

Figure 2.2 illustrates our method. Our method is an end-to-end trainable network, which takes a

sequence of images as an input for optical flow estimation; we use PWC-Net [27] structure as a base model

of the encoder and the decoder, and train it using self-features, i.e., spatial conv features. In the training

phase, we add a similarity branch in which similarities of predicted flows are calculated and fused; the

resulting fused similarity is actively used in our training process. The aggregated similarity over layers

resolves disagreement among multiple-layer features. We apply three loss functions to be minimized upon

the fused similarity: feature separation loss, regulated census loss, and conditional smoothness loss. In

the learning process, both the encoder and decoder are initialized using the conventional unsupervised

optical flow loss. Then, the proposed feature-based losses are minimized. The method converges under

different initialization and parameter settings.

2.2.1 Background on Unsupervised Optical Flow Learning

The learning-based optical flow method commonly works on a dataset to train a model that has

a set of spatio-temporal images X = {X1, X2, . . . , XN}, Xi ∈ RH×W×T×C , and ground-truth flows

Y = {F1, F2, . . . FN}, Fi ∈ RH×W×T−1×2, where H and W denote height and width, T is its sequence

length, and C and N are the numbers of channels and data, respectively. The goal is to train a model

fθ that calculates flow F̂i from the spatio-temporal sequence Xi ∈ X . In a supervised case, we train a

network by minimizing regression loss: Ls = 1
N

∑N
i ||Fi − F̂i||22. In an unsupervised case, however, we

cannot access Y, but only X . We thus configure an unsupervised loss term, Lp, with the photometric

consistency assumption:

Lp =
1

N

N∑
i

∑
(x,y,t)∈Ω

Ψ(Xi(x, y, t)−Xi(x+ u, y + v, t+ 1)), (2.1)

where Ω contains all the spatio-temporal coordinates, (u, v) = F̂i(x, y, t) is an estimated flow at (x, y, t),

and Ψ is the robust penalty function [1]; Ψ(x) = (|x|+ϵ)q. Note that X(x+u, y+v, ·) includes the warping
operation using bilinear sampling [45], which supports back-propagation for end-to-end optimization. In

this paper, we use the census transform in Lp with the same configuration used in [1] for all experiments

unless otherwise stated.

Occlusion handling is performed by checking consistency [30] between forward and backward flows.

The estimated occlusion mask is denoted with Ĉo
i (x, y, t), which is 1 if F̂i(x, y, t) is not occluded, otherwise

0. This geometrically means the backward flow vector should be the inverse of the forward one if it is not

occluded. Our loss terms use the occlusion map as previous work [30].

In this work, we use the data distillation loss [1] for occluded pixels:

Ld =
1

N

N∑
i

∑
(x,y,t)∈Ω

Ψ(F̂ s
i (x, y, t)− F̂ t

i (x, y, t))Mf (x, y, t), (2.2)

where F̂ t
i is a flow from a teacher model, F̂ s

i is a flow from a student model, and Mf is a valid mask. In
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Figure 2.3: We visualize the occlusion mask (Ĉo) and the similarity map (simf ). By comparing the

ground-truth error map and the fused similarity, we can observe that the similarity is low when the error

is high. The bottom row shows occlusion mask and the similarity. Since the occlusion mask does not

consider matching confidence, it does not represent how confident the matching is. On the other hand, our

fused similarity marks whether the predicted flow is confident. Furthermore, we can use back-propagation

since the similarity is differentiable.

short, the teacher model processes inputs without artificial synthetic occlusion, and the student model

gets inputs with the generated occlusion. The student flow then learns from the teacher flow.

2.2.2 Feature Similarity from Multiple Layers

We use a model fθ that estimates optical flow, where the model can be decomposed into an encoder

fe
θe

and a decoder fd
θd
, such that fθ(Xi) = fd

θd
(fe

θe
(Xi)); θ = θe ∪ θd. The encoder fe is a function that

outputs L-layered features hi = (h1
i , h

2
i , . . . , h

L
i ); a lower numbered layer indicates a shallower layer in

the deep network.

Given a matching F̂ (x, y, t), we define the similarity between Xi(x, y, t) and Xi(x+ u, y+ v, t+1) in

a layer l to be:

siml(x, y, t;h
l
i, F̂i) =

hl
i(x, y, t) · hl

i(x+ u, y + v, t+ 1) + 1

2
, (2.3)

where (u, v) = F̂i(x, y, t). Since we use l2-normalization for hl
i, the function sim(·) is equivalent to the

normalized cosine similarity between the reference feature and the target feature. Note that, for flows

going out of the frame, no gradient is propagated during training. Additionally, we update encoder

weights by indirect gradient, i.e., back-propagation through the decoder, while ignoring direct gradient

from siml to hl
i. That strategy is chosen because the direct gradient easily bypasses the decoder, and the

encoder easily suffers from overfitting, in the end, the output flow is downgraded.

Fused similarity. To utilize features from all layers, we propose to fuse multi-layer feature similarities

(sim1, sim2, . . . , simL). In CNNs, lower layer features tend to show high response for low-level details, e.g.

edge, color, etc., while higher layers focus on objects [58]. As a result, similarity response of a lower layer

usually bursts around the whole image, while similarity of a deeper layer has few modes. Therefore, to get

stable, yet discriminative feature similarity response as shown in Fig. 2.1, we define the fused similarity
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as product of multiple features:

simf (·) =
L∏

l=1

siml(·;hl
i, F̂i). (2.4)

For efficient calculation during training, we downsample the flow field F̂i to the size of each layer

feature using area interpolation before calculating the similarity; we use area interpolation, since it can

propagate gradient to all source points, while other interpolation methods, e.g., bilinear interpolation,

only update few nearest source points.

2.2.3 Learning Optical Flow with Feature Similarity

In this section, we propose three loss functions to effectively use the similarity map for optical flow

estimation.

Feature separation loss. Given deep similarity, a model can learn flow by simply maximizing

sim(· · · ;hi, F̂i), since larger similarity possibly means better matching solution. However, this simple

approach in practice leads to worse results, because matchings between pixels under occlusion do not

get better, even as we increase the similarity. In other words, maximizing the similarity for these points

makes the flows incorrectly matched to random pixels with higher similarity.

To address this matching issue with uncertainty, we suppress flows with lower similarity by minimizing

their similarity further, while refining flows with higher similarity by maximizing their similarity. First,

we define a similarity threshold k, which we separate the values from:

k =
1

2
(knoc + kocc), (2.5)

where knoc and kocc are average similarities of non-occluded pixels and occluded pixels: knoc =
∑

Ω(simf ·Ĉi)∑
Ω(Ĉi)

,

kocc =
∑

Ω(simf ·(1−Ĉi))∑
Ω(1−Ĉi)

. Since occlusion is an effective criterion to set the boundary value, so that other

kinds of difficulties can also be covered as shown in the experiments (Fig. 2.6).

We then formulate the feature separating loss term as:

Lf =
1

N

N∑
i

∑
(x,y,t)∈Ω

−(simf (x, y, t)− k)2. (2.6)

Lf is a quadratic loss function encouraging the similarity to be far from k, which serves as a boundary value

that decides the direction of update. In other words, it suppresses uncertain flows, i.e. simf (x, y) < k,

down towards 0, and certain flows, i.e. simf (x, y) > k, up towards 1. This can be also interpreted as

minimizing entropy in semi-supervised learning [59]; we make a network output more informative by

regularizing the similarity to be at each polar. A similar approach separating feature similarity from a

different domain, image retrieval, has been shown to be effective [60].

One may concern that minimizing the similarity of uncertain flows, i.e., simf < k, can lead to an

arbitrary matching solution. However, the product operation in the fused similarity (Eq. 2.4) makes siml

with a higher similarity relatively retained, while changing smaller similarity much faster. Given any a, b

s.t. 1 ≤ a, b ≤ L, whose similarity is not 0, one can derive the following equation:

∂Lf

∂sima(x, y, t)
=

simb(x, y, t)

sima(x, y, t)

(
∂Lf

∂simb(x, y, t)

)
. (2.7)

That is, the scale difference between the two gradients is proportional to the fractional ratio of them,

which can grow much faster when the denominator becomes smaller in the scale of the multiplicative
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inverse. As a result, Lf is minimized by the smaller similarity approaching zero; higher layer similarities

can be preserved to prevent arbitrary matching.

Regulated census loss. Since Lf (Eq. 2.6) is fully self-regulated, using only Lf for training can mislead

the network itself. Thus, by modifying the well-known unsupervised loss (Eq. 2.1), we additionally use a

regulated census loss, Lr, controlled by similarity:

Lr =
1

N

N∑
i

∑
(x,y,t)∈Ω

Ψ(·)Ĉo
i (x, y, t)simf (x, y, t). (2.8)

The warping operation used in Eq. 2.1 is the bilinear sampling. This can only take into account four

nearest pixels, making it difficult to address the pixel position far from the estimation, as also pointed

by Wang et al. [46]. Therefore, the unsupervised loss (Eq. 2.1) does not give a correct direction when

the current estimation is far from the desired target flow; whatever the loss is, it would be a noise in

that case. In contrast, deep features have larger receptive fields with global context, so does the fused

similarity. Thus, we can suppress the noise signal by multiplying the similarity; the similarity is designed

to indicate whether the current estimation is near the desired target point.

Conditional smoothness loss. We use the smoothness prior for spatial locations with low similarity. In

general, using the smoothness prior for all pixels degrades the accuracy because the flow-field is blurred.

Meanwhile, if clear matching is not found, the smoothness constraint can help by being harmonized with

surrounding flows. We thus define our smoothness prior loss considering similarity as:

Ls =
1

N

N∑
i

∑
(x,y,t)∈Ω

(|∇u|2 + |∇v|2)Ml(x, y, t), (2.9)

Ml(x, y, t) =

1, if simf (·) < k,

0, otherwise.
(2.10)

Loss for training. We jointly use the aforementioned losses to train our model with stochastic gradient

descent. Our final loss function is sum of these loss functions:

L = Lr + λfLf + λsLs + λdLd, (2.11)

where λs are weight parameters, and Ld is the data distillation loss defined in Eq. 2.2.

2.3 Experimental Results

Our network structure is based on PWC-Net [27], which is a deep network that contains warping,

cost-volume, and context network to cover large displacements. We train the network from scratch using

Adam optimizer [61] for stochastic gradient descent. In all experiment, we set the mini-batch size to 4.

Training procedure. Overall, we follow the training process of DDFlow [1] to initialize the network. To

train the model, we first pretrain our network with FlyingChairs [24] and finetune it with each target

dataset. For pretraining, we use the conventional photometric loss with RGB (Eq. 2.1) for 200k steps and

additional 300k steps with occlusion handling. The resulting weights become the base network parameters

for the following experiments. Next, using each target dataset, we finetune the base network. From this

stage, we use the census transform for photometric loss. We train the model for 200k steps with occlusion

handling. We then apply the final loss L (Eq. 2.11). We run first 1k steps without Ld, i.e. λd = 0. Then,

the teacher network (Sec. 2.2.1) is fixed to use Ld and continues training using all the losses to 50k steps.

We set hyper-parameters to λs = 10−4 and λf = 4. We follow λd = 1 from the previous work [1].
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Figure 2.4: Training graphs of end-point-error (EPE) on two datasets. For DD(Ld), we use census,

occlusion handling and Ld, which is the same setting to [1]. For ours(L), we use the full loss function L

(Eq. 2.11). Ours performs consistently better during training

Data augmentation. For better generalization, we augment the training data using random cropping,

random flipping, random channel swapping and color jittering; color jittering includes random brightness

and saturation. We normalize the input RGB value into [−0.5, 0.5].
FlyingChairs. The FlyingChairs [24] is a synthetic dataset created by combining chair and background

images. The dataset consisting of 20 k pairs of images has a given train/test split, thus we use its training

set for training our network and evaluate our model on its test set.

MPI Sintel. MPI Sintel [22] is a rendered dataset, originally from an open-source movie, Sintel. For

training, we use 1k images from the training set and upload our results of the test set to its benchmark

server for evaluation. We use both versions of rendering, i.e., clean and final, for training.

KITTI. KITTI [28] has a driving scene from the real world. This dataset has only 200 pairs of images

with ground-truth flows. We thus train our model using unlabeled images from a multi-view extension

set of KITTI without duplicated images in the benchmark training or testing sets, following the previous

work [46].

2.3.1 Evaluation on Benchmarks

Ablation study. The results on benchmark datasets show that the network better learns to estimate

flows with the feature similarity (Table 2.1). As can be seen in the last row of the table, our final

method (Ld + Lf + Lr) works better in most cases than the other settings on both datasets. Due to

low localization precision of deep features, however, using only Lf without Lr does not much improve

the result. Interestingly, Lr that adaptively regulates the the conventional census loss is highly effective.

When Lr is combined together with Lf , the combined loss (Lf + Lr) performs the best.

In Sintel where we report EPE on NOC and OCC, Lf improves better on OCC than on NOC. It

implies that the suppression part in Lf takes effect, which discourages matching with higher similarity

for uncertain flows. Table 2.2 shows that our method effectively covers various ranges of displacements.

We have also tested direct feature learning by the triplet loss [62], it did not improve the baseline

accuracy DDFlow [1] i.e. Ld + Lp alone in the experiments. The proposed losses and learning strategy

are crucial to unsupervised learning of feature and optical flow.
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Figure 2.5: (a-c) We measure the distance from the boundary k (Eq. 2.5) to fused similarity on Sintel

Final dataset. (a-c) show distance distributions of different steps; we show EPE inside parenthesis.

During training, our feature separation loss pushes fused similarity away from the boundary k; note that

the greater the distance is, the more separation we have. (d-e) show average simf − k for occluded /

non-occluded pixels. Note that occluded pixels show negative value. We measure the distance using

ground-truth (GT) flows to observe the effect mainly on the encoder feature excluding the effect from the

decoder side.

Loss parameter. We show results with different parameter settings in Table 2.3. Our smoothness

constraint helps the network refine flows with lower similarity, when set to lower weight values; with a

high weight value, the flow field becomes over-smoothed. With respect to λf , a weight greater than 4

can deteriorate the learning. As can be seen in Figure 2.4, our final loss (Eq. 2.11) converges well and it

achieves higher performance than the baseline of using Ld.

Analysis on similarity. During training, our method gradually improves flow and encoder feature.

Figure 2.5 illustrates the fused similarity with respect to each training step. Fig. 2.5a shows the distribution

before we apply our feature separation loss. After 20k steps of training with our method, the distribution

(Fig. 2.5b) becomes similar to ground-truth distribution (Fig. 2.5c). Figure 2.5d-2.5e plots average

difference, i.e., (simf − k), of each types of pixels, where we observe the feature similarity becomes more

discriminative gradually; average similarities of non-occluded pixels and occluded pixels become higher

and lower respectively. The last result using GT flows shows solely on the feature factor (encoder) without

flow estimation factor (decoder), which confirms the updated, more discriminative features.

Qualitative results. Training with our feature similarity loss makes the flow and similarity much

discriminative. During training, the similarity map changes in a way that higher similarity becomes
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Table 2.1: Ablation study on various settings. Average end-point error (EPE) is used as a metric.

For Sintel, the results are evaluated over all (ALL), non-occluded (NOC), and occluded (OCC) pixels.

Results in parenthesis are achieved by testing the model using the data that the model is trained on.

In left columns we show types of losses we use: occlusion handling (Ĉ), data-distilation [1] (Ld), and

ours: feature separation (Lf ) and regulated census (Lr). The first two rows show the performance of our

pretrained network trained with FlyingChairs

Base
Ĉ Ld Lf Lr

FlyingChairs Sintel Clean Sintel Final

feature ALL ALL NOC OCC ALL NOC OCC

RGB 4.01 5.61 3.01 38.64 6.44 3.76 40.45

RGB � 3.64 4.40 2.12 33.33 5.42 3.02 36.01

Census � 3.10 (3.22) (1.26) (28.14) (4.37) (2.25) (31.25)

Census � � 2.93 (3.15) (1.49) (24.35) (3.86) (2.11) (26.16)

Census � � � 2.87 (3.25) (1.46) (25.95) (4.15) (2.27) (28.01)

Census � � � 2.81 (2.91) (1.29) (23.40) (3.62) (1.95) (24.98)

Census � � � � 2.69 (2.86) (1.28) (22.85) (3.57) (1.94) (24.38)

Table 2.2: Average EPE on different displacements. ALL: all pixels. a-b: pixels displaced within [a, b)

Sintel clean Sintel final

ALL 0-10 10-40 40+ ALL 0-10 10-40 40+

Lp (3.22) (0.59) (3.86) (20.45) (4.37) (0.83) (5.41) (27.17)

Ld (3.15) (0.59) (4.02) (19.51) (3.86) (0.71) (5.06) (23.63)

Ours (2.86) (0.49) (3.45) (18.36) (3.57) (0.64) (4.49) (22.36)

higher and lower similarity goes lower. As a result, the network can improve its prediction by reinforcing

clear matching and suppressing uncertain matching. In Figure 2.6, we visualize how the similarity loss

can be beneficial to flow learning. In the examples, our loss effectively improves the flow estimation by

pushing similarity to each polar; that is why our method performs well in uncertain regions. In Figure 2.7,

we compare ours with SelFlow [5]. In the first two examples, the uncertain snow regions are the most

challenging part, so that the state-of-the-art SelFlow fails in such regions. On the other hand, our method

is able to handle such regions effectively, since the similarity loss suppresses the flows in that regions.

Quantitative comparison to state-of-the-art. We compare our method with existing deep unsu-

pervised methods in Table 2.4. Our method effectively improves the baseline framework [1] and shows

competitive results against other unsupervised methods. For Sintel, SelFlow gets a better result in the

Sintel Final testset; it is trained on 10 k additional Sintel movie frames, while our model uses 1 k frames

from the MPI Sintel dataset. Since our method can be used jointly with hallucinated occlusion and

multiple-frame schemes from SelFlow [5], we expect a much stronger unsupervised model if the two are

combined. In the real dataset KITTI, our method effectively improves over our baseline model (DDFlow),

and reduces the percentage of erroneous pixels to 13.38% in the test benchmark. Overall, our approach

achieves top-1 or top-2 consistently across different benchmarks. This demonstrates the robustness of our
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Table 2.3: Average EPE depending on loss weighting parameters

(a) Smoothness weight

λs 10−2 10−3 10−4 10−5

FlyingChairs 3.27 2.84 2.85 2.83

Sintel Final (4.41) (4.34) (4.16) (4.41)

(b) Separation weight

λf 2.0 3.0 4.0 5.0

FlyingChairs 2.95 2.90 2.85 3.21

Sintel Final (4.33) (4.31) (4.16) (4.36)

Table 2.4: Comparison to state-of-the-art deep unsupervised optical flow methods. Results in parentheses

indicates it is evaluated using data it is trained on. We report average end-point-error for most categories

and percentage of erroneous pixels for KITTI testset calculated from benchmark server. Best results in

red and second best results in blue.

Method
Chairs Sintel Clean Sintel Final KITTI 2015

test train test train test train test(Fl)

BackToBasic [29] 5.3 - - - - - -

DSTFlow-ft [39] 5.52 (6.16) 10.41 (6.81) 11.27 16.79 39%

OccAwareFlow-best [46] 3.30 (4.03) 7.95 (5.95) 9.15 8.88 31.2%

UnFlow-CSS-ft [30] - - - (7.91) 10.22 8.10 23.30%

MultiFrameOccFlow-ft [47] - (3.89) 7.23 (5.52) 8.81 6.59 22.94%

DDFlow-ft [1] 2.97 (2.92) 6.18 (3.98) 7.40 5.72 14.29%

SelFlow-ft-Sintel [5] - (2.88)† 6.56† (3.87)† 6.57† 4.84 14.19%

Ours-Chairs 2.69 3.66 - 4.67 - 16.99 -

Ours-ft-Sintel 3.01 (2.86) 5.92 (3.57) 6.92 12.75 -

Ours-ft-KITTI 4.32 5.49 - 7.24 - 5.19 13.38%

†: pretrained on the original Sintel movie

approach and benefits of utilizing deep self-supervised features and fused similarity.

Failure cases. Most unsupervised methods tend to estimate motion in a larger area than it really is,

and it occurs more frequently for smaller and faster objects. In contrast, since our method estimates

the similarity of a matching and refines it with the similarity, it sometimes reduces flows for small and

fast-moving objects. In the last example in Figure 2.7, ours fails to catch the movement of few birds

flying fast over the stairs.
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Figure 2.6: Fused similarity of models trained w/o and w/ the feature similarity loss, denoted by DD

and ours, respectively. The similarity loss suppresses similarity of the background snow texture behind

the fighting man, resulting in the similarity map in the second row. In the second example, the sky region

is expanded since the simlilarity increases by the similarity loss. As a result, the flow field effectively

separates the brown wing of the dragon and the sky in brown

Image GT flow SelFlow Ours

Figure 2.7: Comparison to SelFlow [5] on the Sintel testset. We retrieve the resulting images and the

visualizations of ground-truth from its benchmark website [6]; it provides only twelve test samples for

each method
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Chapter 3. Semi-Supervised Learning of Optical Flow

Optical flow describes the pixel-level displacement in two images, and is a fundamental step for

various motion understanding tasks in computer vision. Recently, supervised deep learning methods

have shown remarkable performance in terms of overcoming challenges – such as motion blur, change

of brightness and color, deformation, and occlusion – and predicting more accurate flows. The key to

success is end-to-end learning from large-scale data. For optical flow learning, large-scale datasets have

been released [24, 25, 22] and deep architectures have been advanced [24, 27, 8].

Building a good optical flow model on a target dataset is critical; most training data are synthetic,

and it requires tremendous effort to label random video frames by pixel-wise dense correspondences. Thus,

to obtain a good model on a target dataset, synthetic training set generation [2, 63] and GAN-based

adaptation [64, 65] have been studied. In addition, unsupervised loss functions [30, 31] – used without

ground truth – have been proposed. However, generating a synthetic dataset for a target domain is often

computationally expensive or confined to a specific domain. Moreover, unsupervised losses do not reach

the state-of-the-arts, compared to supervised methods. Therefore, there have been needs for a simpler,

general, and high-performance method to build a better model on a target dataset.

In this paper, we propose a fine tuning strategy for semi-supervised optical flow learning, which helps

to build a better model on unlabeled or partly-labeled target datasets. Fig. 3.1 demonstrates the concept

of our approach. Our method is a fine tuning method, where the pretrained network is adapted to the

unlabeled target data. In the fine tuning stage, we use a labeled dataset with an unlabeled target dataset,

further reducing errors on the target dataset.

To build our method, we investigate unsupervised and self-supervised approaches, where a network

learns optical flow by unlabeled samples. However, the existing unsupervised loss does not show better

performance in the fine tuning stage (Fig. 3.1). Moreover, self-supervision methods tend to show highly

unstable behavior or lower performance in the fine tuning stage. To address the issue, we propose our

flow supervisor with two strategies: the parameter separation and passing student outputs, which are

effective for higher performance and stable semi-supervised learning. As shown in Fig. 3.1, our fine tuning

method clearly reduces the error of the pretrained model, even without a label of the target dataset.

To summarize, we propose a semi-supervised fine tuning strategy to improve an optical flow network

on a target dataset, which has not been explored extensively. Our strategy is distinguished by the flow

supervisor module, designed with the parameter separation and passing student outputs. We show the

effectiveness of our method by comparing it with alternative self-supervision methods, and confirm that

our approach stabilizes the learning process and results in better accuracy. In addition, we test our

method on Sintel and KITTI benchmarks and achieve meaningful improvements over the state-of-the-arts

by exploiting additional unlabeled data.

3.1 Related Work

Supervised optical flow has been studied with the development of datasets for optical flow learning [24,

25, 2] and the advances of deep network architectures [24, 27, 8]. Due to the high annotation cost and

label ambiguity in a raw video, synthetic datasets have been made, where optical flow fields are generated

together with images [63, 24, 25, 2]. Along with the datasets, network architectures for optical flow have
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Figure 3.1: End-point-error on Sintel. Our method is used to adapt a pretrained model to a target

domain without a target domain label; it is designed to overcome an unstable convergence and low

accuracy in traditional methods. For instance, our method outperforms the unsupervised loss (Eq. 3.2) in

fine tuning, which makes our method favorably better

been significantly improved by the cost-volume [24, 27, 66], warping [25, 27], and refinement scheme [44, 8].

Although generalization has been improved thanks to the synthetic datasets and the network architectures,

it is still difficult to achieve better performance while being blind to a target domain [67].

Unsupervised optical flow is another stream of optical flow research, where optical flow is learned

without an expensive labeling or label generation process [30, 68, 69, 31]. With the advanced deep

architectures from supervised optical flow, unsupervised optical flow studies have focused on designing

loss functions. Previous work has mainly focused on the fully unsupervised setting, while we explore

semi-supervised optical flow where labeled data is accessible in addition to unlabeled target domain data.

Semi-supervised optical flow has been studied to utilize unlabeled target domain data with existing

labeled synthetic data [64]. The experimental setting – similar to unsupervised domain adaptation [70] – is

designed since it is relatively easier to exploit synthetic training datasets than annotating images of a target

dataset. A simple baseline method for a target domain would be using a traditional unsupervised loss [30]

and supervised learning, which, unfortunately, has shown inferior performance than the supervision-only

training [64, 67] (Table 3.1). Thus, reducing the domain gap [64] and stabilizing unsupervised loss

gradients [67] have been proposed.

In this work, we introduce the flow supervisor, which consists of the separate parameters and the

student output connection. We found our design scheme is superior to the baseline designs in terms of

training stability and performance in the semi-supervised setting.

Knowledge distillation and self-supervision in neural networks are proposed to train a network

under the guidance of a teacher network [71, 72] or itself [73, 74]. Interestingly, the technique can build a

better student network even when the same network architecture is used for both student and teacher,
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i.e., self-distillation [71, 72]. In the optical flow field, knowledge distillation and self-supervision have

been studied actively in the context of unsupervised optical flow [75, 5, 31]. Generally, these methods

can be interpreted as learning using privileged information [76], in that a student usually sees a limited

view, e.g., cropped images, while a teacher is given a privileged view, e.g., full images. In this work, we

investigate the effectiveness of self-supervision in terms of semi-supervised optical flow, which has not

been explored in previous work. In addition, we found that the traditional self-supervision method for

optical flow [31] tends to make a loss diverge in the semi-supervised setting.

Thus, we propose a novel self-supervision method to ameliorate the unstable convergence; we found

that the parameter separation of a teacher model and passing student output are the key components

to make the training stable. By applying our method, a network can successfully exploit the unlabeled

target data in the semi-supervised setting. In addition, we show that our method can address the lack of

a target labeled dataset, e.g., 200 labeled pairs for KITTI, by the ability to utilize unlabeled samples.

3.2 Approach

3.2.1 Preliminaries on Deep Optical Flow

Deep optical flow estimation is defined with an optical flow estimator fθ(x1,x2), which predicts

optical flow ŷ ∈ RH×W×2 from two images x1,x2 ∈ RH×W×C , where H is height, W is width, and C is

channel.

In supervised learning, we train fθ by minimizing the supervised loss:

Lsup(θ) = E(x1,x2,y)∼ps
[ℓsup(fθ(x1,x2),y)], (3.1)

where ps is the labeled data distribution, y is the ground truth optical flow, and ℓsup is L1, L2 [27] or the

generalized Charbonnier loss [30].

On the other hand, an unsupervised method defines a loss function with a differentiable target

function ℓunsup(·) which can be computed without a ground truth y, resulting in the unsupervised loss:

Lunsup(θ) = E(x1,x2)∼pu
[ℓunsup(fθ(x1,x2),x1,x2)], (3.2)

where pu is an unlabeled data distribution. Most commonly, ℓunsup is defined with the photometric

loss ℓphoto = ρ(warp(x2, ŷ)− x1) where ρ is the Charbonnier loss [30] and warp(·) is the differentiable

backward warping operation [45].

3.2.2 Problem Definition and Background

We train our model on labeled data and unlabeled data, which is similar to experimental settings

that appear in [64, 67]. For instance, FlyingThings3D (rendered scene) and KITTI (driving scene) can be

considered as labeled and unlabeled datasets, respectively. We aim to build a high-performance model on

a target domain, with only a labeled synthetic dataset and an unlabeled target dataset. This is a practical

scenario since a synthetic dataset is relatively inexpensive and publicly available, whereas specific target

domain data is rarely annotated.

We focus on designing a self-supervision method with a stable convergence and better accuracy,

since it is not trivial to adopt unsupervised losses and self-supervision for semi-supervised learning. First,

unsupervised loss functions often lead a network to a worse local minimum when it is naively fine tuned

from supervised (pretrained) weights. Second, traditional self-supervision strategies for semi-supervised
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Figure 3.2: (a) Self-supervision for optical flow is configured with a teacher network which is given

privileged images as an input, i.e., full images before cropping. (b) Flow supervisor reviews the student

flow ŷs and outputs the pseudo-label ŷFS to supervise the student without ground truth flows. We use

the separate flow supervisor with parameter ϕ, which improves the stability and accuracy

learning do not converge well. Thus, we propose a simple and effective practice for semi-supervised

learning, where we utilize synthetic datasets for better performance on a target dataset. By our strategy,

a network can successfully exploit the unlabeled target data for better fine tuning performance. Detailed

method is discussed in the next section.

3.2.3 Flow Supervisor

Our design for semi-supervised optical flow learning is based on self-supervised learning where a

student network learns from a pseudo-label predicted by a teacher network. This concept has been

explored in the optical flow field in terms of unsupervised learning, which is not directly applicable in the

semi-supervised case due to unstable convergence.

Thus, we introduce two distinctive design schemes compared to the existing self-supervision techniques

for optical flow, depicted in Fig. 3.2. First, we introduce a supervisor parameter ϕ, distinguished from the

student parameter θ, which learns to supervise the student network. Second, we add a connection from
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the student network to the supervisor network, which enables the supervisor network to learn conditional

knowledge, i.e., P (y|ŷs), instead of predicting from scratch.

We define the student network fθ and the flow supervisor network fϕ, as shown in Fig. 3.2b. The

student network fθ includes a feature encoder and a flow decoder; for simplicity, we abstract the feature

encoder and decoder parameters with θ. The flow decoder has the internal feature hs, and outputs

the predicted flow ŷs. The student network is the optical flow network used for inference, whereas the

supervisor network is only used for training; this results in no additional computational cost for the

testing time. In training time, we use the flow supervisor (FS) loss function LFS to supervise the student

flow ŷs with the teacher flow ŷFS:

LFS(θ) = Eds∼ps,du∼pu [ℓsup(ds) + αℓFS(du)], (3.3)

where ℓFS(·) = ρ(ŷFS − ŷs), α is a hyper-parameter weight and (ds, du) are sampled data from (ps, pu).

We use loss function LFS for the student network to learn from both labeled and unlabeled data.

Separate parameters. We empirically observed that the plain self-supervision (Fig. 3.2a) leads to

divergence in semi-supervised optical flow learning. This undesirable behavior is also observed in siamese

self-supervised learning, where preventing undesirable equilibria is important [74, 73]. As our solution,

we have the separate module, i.e., the flow supervisor to prevent the unstable learning behavior. Our flow

supervisor is related to the predictor module in self-supervised learning work [73], which also prevents the

unstable training. We also compare our design with the mean-teacher [77, 74] with exponential moving

average (EMA), and a fixed teacher [78] in Fig. 3.3, since these designs have been widely adopted in

semi-supervised learning.

Passing student outputs. We design our supervisor model to have input nodes for student outputs.

Thus, the teacher output flow is conditioned by the student output. Specifically, our teacher model

includes a residual function ∆fϕ(·), such that fϕ(x, ŷs,hs) = ∆fϕ(·) + ŷs. We realize this concept with

the residual flow decoder in the RAFT [8] architecture.

In residual learning, it has been believed and shown that learning a residual function ∆f(x) = f(x)−x,
instead of the original function f(x), is better for deeper inference [79] or domain discrepancy modeling [80].

With residual teacher function ∆fϕ, the flow supervisor loss is reformulated as:

ℓFS = ρ(ŷFS − ŷs) = ρ(fϕ(ŷs)− ŷs) = ρ(∆fϕ(ŷs)). (3.4)

Relation of fϕ(·) to a meta learner. Meta-learning [81, 82] defines how to learn by learning an

update rule ∆θt within the parameter update θt+1 ← θt +∆θt. The residual function ∆fϕ(. . . , ŷs) is

regarded as a meta learner predicting update rule ∆θt, conditioned by student predictions. Assuming ρ

is the square function, learning by LFS is equivalent to using the update rule ∆θt = −2∂ŷs

∂θt

T
·∆fϕ(ŷs);

where ϕ is the parameter of our flow supervisor. That is, the learning rule is learned by the supervisor

parameter ϕ to supervise the student parameter θ.

3.2.4 Supervision

Learning supervisor parameters ϕ is important for supervising the student network. Basically, the

supervisor learns to maximize the likelihood, e.g., logP (y − ŷs|x1,x2, ŷs, ϕ), where the student output

ŷs is inferred from an augmented input x̃1, x̃2. First, it is natural to give the conditional knowledge from
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the labeled data ps. For this purpose, we minimize LTS – which stands for supervised teacher loss – to

train the supervisor:

LTS(ϕ) = E(x1,x2,y)∼ps
[ℓsup(fϕ(x1,x2, fθ(x̃1, x̃2)),y)]. (3.5)

In addition to using the labeled data, we found that if a labeled dataset and an unlabeled dataset are

distant, e.g., Things ↔ KITTI, using the unsupervised loss is especially effective. The unsupervised

teacher loss LTU on unlabeled data pu is defined by:

LTU(ϕ) = E(x1,x2)∼pu
[ℓunsup(fϕ(x1,x2, ŷs),x1,x2)]. (3.6)

In the pretraining stage, we train the student model from scratch using the supervised loss Lsup,

resulting in a pretrained weight θ. In the fine tuning stage, we initialize ϕ with θ and jointly optimize θ

and ϕ on labeled and unlabeled datasets. Formally, we use stochastic gradient descent to minimize

L(θ, ϕ) = LFS(θ) + λTSLTS(ϕ) + λTULTU(ϕ), (3.7)

with hyper-parameter loss weights λTS and λTU.

3.3 Experiments

3.3.1 Experimental setup

Pretraining. Our pretraining stage follows the original RAFT [8]. We pretrain our student network

with FlyingChairs [24] and FlyingThings3D [25] with random cropping, scaling, color jittering, and block

erasing. The pretraining scheme includes 100k steps for FlyingChairs and additional 100k steps for

FlyingThings3D, with the same learning rate schedule of RAFT, on which we base our network. For the

supervised loss (Eq. 3.1), we use L1 loss.

Flow supervisor. The flow supervisor is implemented with the GRU update module of RAFT, which

performs an iterative refinement process with the output flow of the previous step. At the start of the

semi-supervised training phase, we initialize the supervisor model with the pretrained weights of the

GRU update module. To match the student prediction from cropped inputs to the supervisor module

with full resolution, i.e., privileged, we pad the student predictions with zero. In a training and testing

phase, we use 12 iterations for both the student and supervisor GRUs.

Semi-supervised dataset. To compare semi-supervised learning performance on Sintel [22] and

KITTI [23], we follow the protocol [69], which utilizes the unlabeled portion, i.e., testing set, of each

dataset for training; the difference is that we use a labeled dataset, e.g., FlyingThings3D, into training.

Specifically, we use the unlabeled portion of Sintel for fine tuning on Sintel and unlabeled KITTI multiview

dataset for fine tuning on KITTI; then the labeled splits are used for evaluation.

Optimization. We initialize our student and supervisor models with the pretrained weights, then

minimize the joint loss (Eq. 3.7) for 100k steps. We use α = 1.0, λTS = 1.0 and λTU = 0 by default and

λTU = 0.01 for the Things + KITTI setting, unless otherwise stated. Detailed optimization settings and

hyper-parameters are provided in the supplementary material and the code.
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Figure 3.3: Plots comparing finetuning stage. We use FlyingThings3D as labeled data, and each

target dataset as an unlabled data. The EPEs are measured on unseen portion of data

Method
Sintel KITTI

Clean Final EPE Fl-all (%)

Sup 1.46 2.80 5.79 18.79

Sup + Unsup 1.47 2.73 9.21 16.95

Sup + Self diverged diverged

Sup + EMA 1.40 2.63 diverged

Sup + Fixed 1.32 2.58 4.91 15.92

Sup + FS (Ours) 1.30 2.46 3.35 11.12

Table 3.1: Comparison to semi-supervised baselines. Semi-supervised baselines and ours are

compared, as well as the supervised loss only (Sup) result. We use widely-used metrics in optical flow:

end-point error (EPE) and ratio of erroneous pixels (Fl)

3.3.2 Empirical Study

Comparison to Semi-Supervised Baselines.

In Table 3.1 and Fig. 3.3, we perform an empirical study, comparing ours with several baselines for

semi-supervised learning. In the experiments, we use FlyingThings3D as the labeled data ps and each

target dataset as the unlabeled data pu.

Unsupervised loss. An unsupervised loss is designed to learn optical flow without labels. Exploring

the unsupervised loss is a good start for the research since we could expect a meaningful supervision

signal from unlabeled images.

In the second row of Table 3.1, we report results by the unsupervised loss. We use the loss function

in Eq. 3.2, which includes the census transform, full-image warping, smoothness prior, and occlusion

handling as used in the prior work [31]. Unfortunately, the unsupervised loss function does not give a

meaningful supervision signal when jointly used with the supervised loss, resulting in a degenerated EPE

on KITTI (5.79 → 9.21). Interestingly, applying the identical loss to our supervisor, i.e., LTU, results in

a better EPE on KITTI (5.79 → 3.35), see also Table 3.3.
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(a) Comparison to SemiFlowGAN [64]

Data Method
KITTI

EPE Fl-all (%)

C SFGAN [64] 17.19 40.82

C+K SFGAN [64] 16.02 (-6.8%) 38.77 (-5.0%)

C+T RAFT 5.79 18.79

T+K RAFT + FS 3.35 (-42.1%) 11.12 (-40.8%)

(b) Comparison to AutoFlow [2]

Method
Sintel KITTI

Clean Final EPE Fl-all (%)

RAFT† (C+T) [2] 1.68 2.80 5.92 -

RAFT (C+T) 1.46 2.80 5.79 18.79

RAFT† (A) [2] 1.95 2.57 4.23 -

RAFT + FS (Ours) 1.30 2.46 3.35 11.12

† model implemented by [2]

Table 3.2: Comparison to optical flow approaches. We report a percentage of improvement over

each baseline in the parentheses. We mark used datasets: FlyingChairs (C), FlyingThings (T), unlabeled

KITTI (K), and AutoFlow (A) [2]

Self- and teacher-supervision. We summarize the results of the self-supervision and teacher-based

methods in Table 3.1 and Fig. 3.3. The baseline models include the plain self-supervision (Self), the fixed

teacher (Fixed), and the EMA teacher (EMA). In the plain self-supervision, we use the plain siamese

networks (Fig. 3.2a). The fixed teacher [78] and the EMA teacher [77] are inspired by the existing

literature. The self-supervision loss used in the experiments is defined by:

ℓself = ρ[fθ(x̃1, x̃2)− stop grad(ft(x1,x2))], (3.8)

where ft is the teacher network of each baseline: t = θ for plain self-supervision, t = EMA(θ) for mean

teacher, and t = θpretrained for fixed teacher. The plain self-supervision (Self) quickly diverges during

the early fine tuning step for both Sintel and KITTI. In the EMA teacher (EMA) results, more stable

convergence is observed for Sintel, not KITTI. We speculate that this unstable convergence is caused by

the domain gap between the unlabeled data and the labeled data; there exists a wider domain difference

between FlyingThings3D (ps) and KITTI (pu) than the difference between FlyingThings3D (ps) and

Sintel (pu), since KITTI is a real-world dataset, while Things and Sintel are both three-dimensional

rendered datasets. When the fixed teacher (Fixed) is used, we can observe more stable learning. Our

method (FS), enabling the supervisor learning along with the student, shows superior semi-supervised

performance on both datasets than the EMA and the fixed teacher. We further analyze our method in

the following sections.

Comparison to SemiFlowGAN [64].

We compare our method with the existing semi-supervised optical flow method [64] in Table 3.2a.

SemiFlowGAN uses a domain adaptation-like approach by matching distributions of the error maps
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Experiment
Sintel KITTI

Clean Final EPE Fl-all

Parameter on 1.30 2.46 3.35 11.12

separation off diverged diverged

Passing full 1.30 2.46 3.35 11.12

student w/o res 1.34 2.50 6.16 12.34

output off 1.30 2.46 6.68 13.36

Shared on 1.30 2.46 3.35 11.12

encoder off 1.33 2.58 3.80 12.03

Teacher TS 1.30 2.46 4.69 14.48

loss type +TU 1.55 2.80 3.35 11.12

Teacher clean 1.30 2.46 3.35 11.12

input aug 1.33 2.56 4.17 11.55

Table 3.3: Ablation experiments. We underline the final settings

from each domain. Compared to SemiFlowGAN, our approach gives more direct supervision to optical

flow predictions from the supervisor model. Here, we evaluate how much a supervised-only baseline,

i.e., trained w/o KITTI, is able to be improved by exploiting the unlabeled target dataset, i.e. traind

w/ KITTI. We can clearly observe much larger performance improvement (-6.8% vs. -42.1%) when our

method is used.

Comparison to AutoFlow [2].

In Table 3.2b, we compare ours with AutoFlow, where our method shows better EPEs on both

Sintel and KITTI. AutoFlow is devised to train a better neural network on target datasets by learning to

generate data, as opposed to ours using semi-supervised learning. For instance, the AutoFlow dataset,

whose generator is optimized on Sintel dataset shows superiority over a traditional synthetic dataset, e.g.,

FlyingThings, in generalization on unseen target domains. On the other hand, our strategy is to utilize a

synthetic dataset and an unlabeled target domain dataset by the supervision of the flow supervisor; it

boosts performance on the target domain without labels.

Ablation Study.

In Table 3.3, we compare ours with several alternatives.

Parameter separation. Self-supervision with the shared network (see Self in Fig. 3.3) is unsuitable

for semi-supervised optical flow learning. On the other hand, having the separate parameters for the

supervisor network effectively prevents the divergence. This separation can be viewed as the predictor

strategy in the self-supervised learning context [73]. We also analyze the separate network as a meta-

learner, which learns knowledge specifically for supervision. We have shortly discussed this aspect in

Sec. 3.2.3.

Passing student outputs (ŷs,hs). Our architecture passes the student output flow and internal state

to the supervisor network to enable the supervisor to learn the residual function, as described in Eq. 3.4.
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Table 3.4: KITTI results of models trained on VKITTI [3]

Supervised Semi-supervised

Metric RAFT SepFlow [83] RAFT+FS (ours)

EPE 3.64 2.60 2.39

Fl-all (%) 8.78 7.74 7.63

In row 5 in Table 3.3, we show the results when we do not pass student outputs (ŷs,hs) to the teacher.

Interestingly, the Sintel results remain the same even without passing student outputs. while the KITTI

results benefit from passing student outputs. We ablate the residual connection from the network, while

still passing student outputs to the supervisor (w/o res). In this case (w/o res), we can observe the better

KITTI results over the no connection case (off), but worse than our full design. These results indicate

that conditioning supervisor with the student helps find residual function ∆fϕ(ŷs) ≈ y − ŷs, especially

on distant domains, i.e., Things ↔ KITTI. Overall, passing with residual connection (full) performs

consistently better.

Shared encoder. Shared encoder design results in a better flow accuracy, as shown in Table 3.3. Our

method uses the shared encoder design (Fig. 3.2b). Separating the encoder results in worse EPEs for

Sintel and KITTI. Not only the accuracy, but it also results in a less efficient training pipeline due to the

increased number of parameters by the encoder.

Teacher loss type. We propose to train the supervisor network with labeled and unlabeled data.

Supervised teacher (TS) loss utilizes the labeled dataset for supervisor learning. In both datasets, TS

improves the baseline performance. We additionally apply the unsupervised teacher loss (+TU), which

results in better EPE in KITTI but is ineffective for Sintel. This is related to the results of pure

unsupervised learning [31], where the loss is shown to be more effective on KITTI than on Sintel.

Virtual KITTI.

With our method, we can utilize a virtual driving dataset, VKITTI [3], for training a better model

for the real KITTI dataset. In Table 3.4, we show results obtained by VKITTI. In the supervised case,

our base network (RAFT) shows 3.64 EPE on KITTI, and SeperableFlow [83] shows 2.60 EPE. In the

semi-supervised case, our method leverages the unlabeled KITTI multiview set additional to VKITTI,

and we train the RAFT network for 50k steps; the resulting network performs better on KITTI.

Supervisor vs. student.

In Fig. 3.4, we show the performance of the student and the supervisor networks by training steps.

We use clean inputs for both the student and the supervisor networks for evaluation. Interestingly, we

observe that the student is better than the supervisor during fine tuning. In addition, we could observe

EPEs of the student and the supervisor are correlated, and they are both improved by our semi-supervised

training. In knowledge distillation, we can observe similar behavior [72], where a student model shows

better validation accuracy than a teacher model.
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Figure 3.4: Supervisor vs. student EPEs during semi-supervised fine tuning. EPEs measured on

unseen portion of data

3.3.3 Qualitative results

We provide qualitative results on KITTI (Fig. 3.5, 3.6) and Sintel (Fig. 3.7). Since the KITTI dataset

includes sparse ground truth flows, training by the ground truth supervision often results in incorrect

results, especially in boundaries and deformable objects (e.g., person on a bike). Thus, in this case, we can

expect better flows by exploiting semi-supervised methods. The Sintel Final dataset includes challenging

blur, fog, and lighting conditions as shown in the examples. Interestingly, the semi-supervision without a

target dataset label helps improve the challenging regions, when our method is used.

In Fig. 3.8, we show results on DAVIS dataset [7] by the pretrained models and our fine tuned

models; the dataset does not contain any optical flow ground truth. From the training set with 3,455

frames, we utilize 90% of frames for training and the rest for qualitative evaluation. Even though our fine

tuning does not utilize ground truth, we can observe a clear positive effect in several challenging regions.

Especially, our method improves blurry regions (e.g., moving hand of the dancer) and object boundaries.

3.3.4 Comparison to State-of-the-arts

Experimental settings. In this experiment we compare our method to the existing supervised methods.

The biggest challenge in supervised optical flow is that we do not have ample ground truth flows for our

target domains, e.g., 200 pairs labeled in KITTI. Thanks to our semi-supervised method, we can train

with related videos for better performance on the target datasets. For GMA, we use α = 0.25 (Sintel)

and α = 0.05 (KITTI).

Dataset configuration. Results evaluated on the training sets of each dataset are experimented with

the setting described in Sec. 3.3.1. On the other hand, the results on the test splits of the two benchmarks

are obtained by justifiable external datasets for semi-supervised training. Though our method is able to

utilize the unlabeled portion of Sintel, we bring another external set to avoid the relation to the testing

samples, as follows. To assist Sintel performance, we use Spring (abbr. to Spgu) [85], which is the ‘open

animated movie’ by Blender Institute, similar to Sintel [86]. In Spring, we use the whole frames (frame

no. 1-11,138) without any modification. Additionally, we use Sintel (train) with interval two as unlabeled.

For KITTI, we additionally use KITTI multiview dataset, which does not contain ground truth optical
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Figure 3.5: Qualitative results on KITTI. We visualize optical flow predicted by (b) supervised

on target dataset and (c) semi-supervised w/o target label. Note that sparse ground-truth (d) is not

sufficient to make a clear boundary of objects (marked with arrows), while our method shows better

results
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Figure 3.6: Qualitative results on KITTI testing samples. We compare the supervised model

(Sup) with the semi-supervised model (Ours). Both models exploit KITTI labels; ours utilizes additional

unlabeled KITTI for fine tuning
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Figure 3.7: Qualitative results on Sintel. We visualize optical flow predicted by (b) supervised on

FlyingThings3D and (c) semi-supervised without target label. Though ours trained without target labels,

it successfully adapts the pretrained model to the target domain. Improved areas are marked by arrows
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Figure 3.8: Qualitative results on DAVIS dataset [7]. We fine tune each pretrained network (Sup)

on Davis dataset by our semi-supervised method (Ours). Improved regions are marked with arrows.

These optical flows are inferred on unseen portion of the dataset
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Table 3.5: Comparison to state-of-the-arts. Data usage is abbreviated to FlyingChairs (C),

FlyingThings3D (T), Sintel (S), KITTI (K), HD1K [4] (H), Sintel unlabeled (Su), KITTI unlabeled (Ku),

and Spring (Spgu). For labeled datasets, we follow the training scheme detailed in each paper. RAFTtf is

our implementation in TensorFlow

Labeled Unlabeled Sintel (train) KITTI (train) Sintel (test) KITTI (test)

data data Method Clean Final EPE Fl-all (%) Clean Final Fl-all (%)

C+T
-

RAFT [8] 1.43 2.71 5.05 17.4 - - -

RAFTtf 1.46 2.80 5.79 18.8 - - -

GMA [84] 1.30 2.74 4.69 17.1 - - -

SeparableFlow [83] 1.30 2.59 4.60 15.9 - - -

Su/Ku RAFTtf+FS (Ours) 1.30 2.46 3.35 11.12 - - -

C+T+S+K+H

-

RAFT [8] (0.77) (1.27) (0.63) (1.5) 1.61 2.86 5.10

GMA [84] (0.62) (1.06) (0.57) (1.2) 1.39 2.47 5.15

SeparableFlow [83] (0.69) (1.10) (0.69) (1.60) 1.50 2.67 4.64

Spgu/Ku
RAFT+FS (Ours) (0.75) (1.29) (0.69) (1.75) 1.65 2.79 4.85

GMA+FS (Ours) (0.63) (1.05) (0.61) (1.47) 1.43 2.44 4.95

flows; we use the training split of the dataset to avoid duplicated scenes with testing samples.

Results. In Table 3.5, we report the C+T result, which is a commonly used protocol to evaluate the

generality of models. Since our method is designed to use unlabeled samples, our method exploits each

target dataset – which is not overlapped with each evaluation sample – without ground truth. The

results indicate we could achieve better accuracy than the supervised-only approaches. Interestingly, our

approach performs better than the advanced architectures, i.e., GMA [84] and SeperableFlow [83], in the

C+T category.

In ‘C+T+S+K+H’, we report the test results with the external datasets. In the KITTI test result

where we have access to 200 labeled samples, using additional samples results in better Fl-all (5.10 →
4.85, 5.15 → 4.95). For Sintel, we test on two base networks: RAFT and GMA. In two networks, our

method makes improvements on Sintel Final (test). However, our method does not improve accuracy on

Sintel Clean set. That is because we use the external Spring dataset, which includes various challenging

effects, e.g., blur, as Sintel Final, the student model becomes robust to those effects rather than clean

videos. Note that, for Sintel test, our improvement is made by the video of a different domain which is

encoded by a lossy compression, like most videos on the web.

3.3.5 Limitations

A limitation of our approach is that it depends on a supervised baseline, which is sometimes less

preferable than an unsupervised approach. A handful of unsupervised optical flow researches have achieved

amazing performance improvement. Especially, on KITTI (w/o target label), unsupervised methods have

performed better than supervised methods, and the recent performance gap has been widened (EPE: 2.0

vs 5.0). Unfortunately, we observe that our method is not compatible with unsupervised baselines; the

semi-supervised fine tuning of SMURF [31] with our method (T+Ku) results in a worse EPE (2.0 →
2.5) on KITTI. Thus, one of the future work lies upon developing a fine-tuning method to improve the

unsupervised baselines.

Nonetheless, our work contributes to the research by ameliorating the limitation of a supervised

method, suffering from worse generalization. A supervised method is often preferable than an unsupervised
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one for higher performance even without target labels; we show ours can be used in such cases. For

example, on Sintel Final, ours shows better EPE (2.46) than the supervised one [8] (2.71) and the

unsupervised method [31] (2.80).

3.4 Supplementary Material

3.4.1 Additional Results

Refinement Steps and Faster Inference
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Figure 3.9: Results w.r.t. the refinement iteration. (a-b) shows validation EPEs of the baseline

(Sup-only) and ours (Semi-Ours). (c) shows the inference time per frame with different resolutions:

KITTI (1242× 375) and Sintel (1024× 436). For the comparison of time, we use a single RTX 3090 GPU

(24GB VRAM) with our TensorFlow implementation of RAFT.

In Fig. 3.9, we show EPEs with respect to refinement steps. Since we base our network on RAFT [8],

setting an appropriate refinement step is crucial for the performance of estimation. By the experiments,

we observe that training with our self-supervision method results in a faster convergence. In Fig. 3.9a-3.9b,

we show that our semi-supervised learning method has a faster convergence iteration than the baseline

(Sup-only) model. That is the reason we choose shorter refinement steps, i.e., 12, than the original paper,

i.e., 32. Thanks to the fewer refinement steps, the inference time is reduced by about 50% (see Fig. 3.9c)

on a target dataset, when we set the iteration to 12 instead of 32.

Stopping Gradients

Our design choice for stop grad is to make the supervisor module an isolated module, which makes

gradient computation step for the flow supervisor more compact and efficient. Furthermore, stop-gradient

is a widely adopted technique in self-supervised learning to prevent a degenerated solution [73]. We

discovered that disabling stop grad for each module shows worse results on Sintel Final:

Teacher encoder hs ŷFS Ours (all enabled)

2.58 2.52 diverged 2.46

Note that stop grad for ŷs belongs to original RAFT.

More Qualitative Results on Sintel and KITTI

We show more qualitative comparisons in Fig. 3.12-3.13. Even though we do not exploit a ground

truth of the target dataset, our method clearly improves challenging regions. In the KITTI examples, our
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method is especially effective on objects near image frames and shadows. For Sintel – which includes

many motion blurs and lens effects – the network becomes robust to those challenging effects, as shown

in the examples.

3.4.2 Experimental Details

Architecture

We show the implementation of our method in Fig. 3.11. Our architecture is based on RAFT [8],

where the iterative refinement plays an important role. The self-supervision process is similar to the

supervised learning, where the intermediate flows ŷi
s are supervised by a target flow y. In the RAFT

paper, the decaying parameter 0 < γ ≤ 1 is used in the loss function:

ℓsup =

n∑
i=1

γn−i∥ŷi
s − y∥1. (3.9)

Similarly, we apply the decaying strategy in our self-supervision by minimizing:

ℓFS =

n∑
i=1

γn−iρ(ŷi
s − ŷn+m

FS ), (3.10)

where ŷn+m
FS is the pseudo label predicted by the flow supervisor. Specifically, we use γ = 0.8 (ℓsup),

γ = 0.8 (LFS), and γ = 1.0 (LTS). For KITTI, we use γ = 0.8 (LTS, LTU) for the supervisor model.

Padding Operation

As mentioned in the main text, we use a cropping operation to give supervision from the supervisor

network to the student network. Passing student outputs requires the student outputs to be aligned

with the uncropped images (i.e., teacher inputs). Since RAFT use 1/8 processing resolution, we use a

padding operation performed at 1/8 resolution, and the random offset coordinates for cropping operation

is constrained to multiples of 8; this results in sizes of all inputs – augmented, privileged, and crop offsets

– to be multiples of 8.

Optimization

In the fine tuining stage, we use batch size 1 each from a labeled dataset and an unlabeled dataset,

which requires a single RTX3090 GPU, and it takes about one day to converge. We use Adam optimizer [61],

and we decay the learning rate from 10−5 by 1/2 every 25,000 steps. Different from supervised training,

we use the generalized Charbonnier loss ρ(·) in ℓsup, ℓself, and ℓFS for semi-supervised training. Detailed

hyper-parameters and reproducible experimental settings are provided in our code.

Unsupervised Loss. In LTU and ablation results, we use the unsupervised loss ℓunsup(·) for com-

parison. As mentioned in the main paper, we use the photometric loss, occlusion handling, and the

smoothness loss, which are brought from SMURF implementation 1. Following the code, we use

census=1, smooth1=2.5, smooth2=0.0, and occlusion=’wang’ for Sintel; census=1.0, smooth1=0.0,

smooth2=2.0, and occlusion=’brox’ for KITTI. We do not use the self-supervision loss (selfsup=0.0)

since our method includes the similar self-supervision strategy.

1https://github.com/google-research/google-research/tree/master/smurf

30



+

Original 𝐱𝐱1 Original 𝐱𝐱2

Augmented �𝐱𝐱1 Augmented �𝐱𝐱2

Student flow �𝐲𝐲𝑠𝑠

Computed by GT: �𝐲𝐲𝑠𝑠 − 𝐲𝐲

Ground truth 𝐲𝐲

Predicted by FS: �𝐲𝐲𝑠𝑠 − �𝐲𝐲𝐹𝐹𝐹𝐹

𝑓𝑓𝜃𝜃

𝑓𝑓𝜙𝜙

Supervised learning

Previleged
information
(hidden by 

frame)

Correction by
privileged

information

Student

Flow
supervisor

𝐱𝐱1, 𝐱𝐱2

Pseudo label �𝐲𝐲𝐹𝐹𝐹𝐹

�𝐲𝐲𝐹𝐹𝐹𝐹 − �𝐲𝐲𝑠𝑠

Residual Flow

S E L F - S U P E R V I S I O N

Figure 3.10: Self-supervision example.

3.4.3 Self-Supervision Example

Our self-supervision is performed by the flow supervisor which is conditioned on the student outputs

and clean inputs. The process is summarized in Fig. 3.10. In the example, we show consecutive frames

from a driving scene, where the observer is moving forward, so that objects near the image frame are

hidden by the frame. For example, the tree on the right side is not visible in the second cropped image,

while the original second image contains the tree. Thus, the teacher prediction can correct the student

prediction by utilizing the privileged information, as shown in the figure. Compared to the ground truth,

we can observe the correcting direction ŷs − ŷFS is close to ŷs − y computed by GT. Thus, our flow

supervisor can generate a desirable supervision signal to guide the student network by the privileged

inputs.
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Figure 3.11: Detailed architecture. (a) summarizes the detailed structure of our flow supervisor.

Our flow supervisor shares the design of iterative refinement RNN module of RAFT. Since we feed full

images to the flow supervisor, we pad the outputs of student network to feed them to the supervisor. (b)

depicts one refinement step of RAFT with the feature encoder and context encoder. For technical details

of each layer, please refer to [8].

32



(a) Input (b) Sup-only (c) Semi-Ours (d) Ground truth

Figure 3.12: Qualitative results on KITTI. We compare results of RAFT trained on VKITTI.

(b) shows optical flows predicted by RAFT pretrained on VKITTI. (c) shows flows prediected by our

semi-supervised method, which utilizes an additional KITTI dataset without ground-truth. All results

are obtained on unseen samples.

(a) Input (b) C+T (Sup-only) (c) C+T (Semi-Ours) (d) Ground truth

Figure 3.13: Qualitative results on Sintel Final. We compare results of RAFT trained on C+T.

(b) shows optical flows predicted by RAFT pretrained on FlyingChairs and FlyingThings. (c) shows

flows prediected by our semi-supervised method, which utilizes an additional Sintel dataset without

ground-truth. All results are obtained on unseen samples.
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Real world is three-dimensional and physics-based. We propose kinematic fields to represent physically-

based motion in three-dimensional space to better reconstruct the dynamics and geometry of the world.

This figure is created by DALL.E (ChatGPT).

Chapter 4. Learning Kinematic Fields for Better

Reconstruction of Dynamic Radiance Fields

Recognizing motion is crucial to how we visually perceive the world [87], and video is the medium

that carries the motion to viewers in a remote place or at a different time. Through the lens of video, we

watch and enjoy movies, user-generated contents, and remote video chats. While videos carry motion in

a 2D portrayal, transforming videos into three-dimensional experiences can elevate our perception of the

content to co-presence via applications such as teleportation [88].

Dynamic radiance fields [89, 33, 35, 90, 91, 92] have been studied as a promising representation for

reconstructing 3D dynamic scenes; it enables realistic novel view and time synthesis, which can upgrade

2D videos into 3D videos. Since multi-view cameras can give more information about the geometry in

a scene, existing works have utilized camera rigs with dozens of cameras to capture multi-view video

datasets [33, 93, 90]. Although high-quality multi-view videos result in undeniably better quality than

monocular videos do, the multi-view devices and environments are prohibitive in most cases.

Thus, there have been efforts to reconstruct dynamic radiance fields from monocular videos [34, 36,

94]. Compared to multi-view videos, monocular videos provide sparser information, which makes the

reconstruction more challenging. For instance, there is scale ambiguity in monocular video, making it

difficult to accurately locate an object within a space [95]. Thus, dynamic scene reconstruction from

monocular videos has been considered an ill-posed problem.

In this paper, we incorporate kinematics to fill the gap between sparse monocular videos and real-
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world physics, potentially enhancing novel view and time synthesis. Our core idea is that motion within

the real-world is governed by the principles of kinematics in physics, implying that representations of this

world, such as videos, are inherently anchored in kinematics. Building on this foundation, we generalize

conventional displacement fields – often called scene-flow fields – to kinematic fields. In prior work,

motion in radiance fields has been controlled via the regularization in the frequency domain [96, 97],

displacement fields [34], and deformation fields [98].

Different from these approaches, our kinematic field regulates motion in radiance fields using

kinematics; it innately creates continuous trajectories and enables us to impose regularization based on

kinematic theory. We integrate physics-based regularizers to make the kinematic field physically plausible

and thus improve the dynamic radiance field accordingly. For instance, the rigidity regularizer based

on the first and the second invariant of the strain rate is applied on the kinematic field, suppressing

non-rigid motion in the field. We quantitatively and qualitatively validate the proposed regularizers on

the NVIDIA Dynamic Scenes dataset, showing the effectiveness of our method over the existing models.

Lastly, the kinematic field uncovers the kinematics within a scene without a ground truth; it estimates

not only point-wise 3D displacement within a scene, but also underlying velocity, acceleration, and jerk.

4.1 Related Work

Neural radiance fields. In recent years, neural radiance fields [32, 99, 100] have emerged as a promising

approach for learning an implicit neural representation of a 3D scene. Combined with the differentiable

volume rendering technique, it has enabled realistic novel-view synthesis [32, 99, 100, 101].

In essence, a radiance field FST maps a 5D vector (x, y, z, θ, ϕ) to a 4D output vector (cs, σs):

FST : (x, y, z, θ, ϕ)→ (cs, σs), (4.1)

where the view-dependent color cs = (r, g, b) and density σs are learned in relation to the spatial position

(x, y, z) and the viewing direction (θ, ϕ). With the volumetric representation learned via an iterative

optimization, volume rendering techniques [102, 103, 32] are employed to aggregate colors and densities

along a cast ray. Consequently, this leads to realistic novel-view synthesis from the inferred radiance,

after being trained on dozens of images.

Dynamic radiance fields. Radiance fields also facilitate the novel-view synthesis of scenes with moving

objects [33, 98, 104, 93, 90]. While this is more challenging than the static case, dynamic radiance fields

incorporating motion allow for the rendering of a frame at a desired time and viewpoint. As a result, it

can be utilized to make visual effects such as bullet time, stabilized, dolly zoomed, and stereo videos.

Commonly, the time-dependent radiance fields are referred to as dynamic radiance fields, a term we will

adopt throughout this paper.

In dynamic radiance fields, radiance is dependent on a varying time t. This modifies Eq. 4.1 by

introducing a time-dependent term, resulting in:

FDY : (x, y, z, t, θ, ϕ)→ (cd, σd), (4.2)

where the color and density are conditioned on time t. In this formulation, moving geometries of objects

(e.g., translation and deformation) and changing radiance (e.g., moving shadows) can be learned via

optimization.

Learning a dynamic representation presents inherent challenges due to the introduction of temporal

dimension. To optimize this representation, a high-quality multi-view dataset can be employed to
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obtain fine rendering results [33, 93, 90]. Meanwhile, realistically captured imagery of a scene tends

to be non-synchronized and is likely to be obtained with a limited number of cameras and restricted

displacements; this often results in a monocular setup [91, 98, 104, 34]. Previous researches have delved

into deformable models for monocular videos [105, 98, 104, 94]. In these methods, a deformation field

maps a spatio-temporal coordinate to a reference canonical space. While the canonical space aids in

maintaining radiance consistency across global time frames, it tends to exhibit reduced effectiveness in

generic monocular videos, where new objects might appear within a video [97]. In this study, we embrace

the concept of scene flow fields [34], which is constructed without canonical space and deformation

networks.

Regularization with kinematic priors. Monocular videos present challenges in reconstruction due to

the constrained viewpoints of moving objects. To address this, integrating auxiliary flow fields has proven

to be effective [34, 36, 106, 35]. Existing studies employ either scene flow fields [34, 36, 35] or velocity

fields [106] to capture spatial displacements between consecutive frames. Since the scene flows can give

spatial correspondences of the dynamic radiance field, it can be used to promote photometric consistency

between the renderings of a given ray and its time-deformed counterpart.

Physical priors incorporated with scene flow fields play a pivotal role in regulating the radiance field.

Regularization of motion has been applied to the dynamic field, bridging the gap between the sparse

visual data and plausible real-world motion. For instance, a smoothness regularizer ensures that the

displacements within close proximity are similar to each other, and kinetic energy regularizer promotes

consistency between forward and backward flows, resulting in smoother displacement fields [34]. More

deeply integrated with physics, the elastic energy regularizer minimizes the deformation between the

canonical space and the deformed space [98]. In fluid reconstruction works [107, 108], velocity fields

grounded in physics have been shown to be critical in accurate 4D reconstruction. For instance, Navier-

Stokes and transport equations can be integrated in reconstructing smoke [107] and fluid surfaces [108]

with dynamic radiance fields to reconstruct more physically plausible structures.

We integrate kinematics to reconstruct dynamic radiance fields from generic monocular videos. We

introduce the kinematic field, which captures motion through kinematic quantities such as velocity,

acceleration, and jerk. Different from existing velocity field-based methods [107, 106, 95], our method has

higher-order terms (i.e., acceleration and jerk) as latent of spatio-temporal correspondences. Further

enhancing our approach, we incorporate physics-driven regularizers based on a transport equation [107]

and the strain rate tensor, addressing dynamics of moving particles and rigid motion.

4.2 Approach

4.2.1 Overview

Our system takes as input a video sequence, denoted as (Ii, ti, Pi)
N
i=1, where N is the number of

frames. For each frame, we have an image Ii ∈ RH×W×3, a timestamp ti ∈ R, and a precomputed camera

pose Pi ∈ SE(3) and intrinsic matrix Ki ∈ R3×3. From this input, our primary objective is to synthesize

an image, denoted as Îk, corresponding to a novel time and viewpoint (tk, Pk,Kk). The parameters tk,

Pk, and Kk are not restricted to those found in the original video input, allowing our system to render

images from previously unobserved times and viewpoints.

To achieve this image synthesis for novel times and views, we leverage the radiance-field-based volume

rendering [32]. Inspired by existing methods [34, 109], we train two distinct radiance fields (Fig. 4.1): a
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Figure 4.1: Radiance and kinematic fields. This figure summarizes the three fields our method

utilizes. The static and dynamic radiance fields are used for rendering, and the kinematic field is used in

the training phase, regularizing the dynamic radiance field.

dynamic radiance field, denoted as FDY (Eq. 4.2), and a static radiance field, denoted as FST (Eq. 4.1).

To blend the two fields, we utilize a technique from D2-NeRF [109], where rendering weights for dynamic

and static samples are derived from the volume densities.

Addressing the challenge of achieving physically plausible spatio-temporal structures, we introduce

the novel kinematic field. The kinematic field accounts for the kinematic quantities (e.g., velocity and

acceleration). These quantities can be converted into displacement (Eq. 4.8), enabling us to use the

photometric consistency loss (Eq. 4.14) for spatio-temporal regularization, as used in previous work [34].

With these kinematic estimations, we apply physics-based regularization techniques. These techniques

involve density transport (Eq. 4.12) and motion rigidity through the strain rate tensor (Eq. 4.11).

Combining the photometric loss (Eq. 4.14) with these techniques enhances the reconstruction of radiance

and geometry, leading to improved novel time and view synthesis performance from underdetermined

data such as a monocular video.

4.2.2 Dynamic and Static Radiance Fields

In monocular dynamic radiance field methods, it is common to decompose the radiance fields into

dynamic and static fields [34, 91, 94] to prevent undesirable motion in the static area. We employ

tensor-decomposition-based representations [90, 110] for both dynamic and static fields. Specifically, for

the dynamic radiance field FDY, we use HexPlane [90], and for the static radiance field FST, we use

TensoRF [110]. Further details on the tensor decomposition can be found in the supplementary material.

Definition. The dynamic and static radiance fields are defined in Eq. 4.1-4.2 (FST and FDY). Here,

the inputs correspond to the position (x, y, z), the timestamp t, and the viewing direction (θ, ϕ) from

the camera origin. Each field yields the color c and the volume density σ. Note that the static field is

independent of time t, ensuring a consistent structure throughout the whole time span.

Composite rendering. We use a composite rendering method to obtain the final rendering with the

two radiance fields. It is to be noted that individual components (i.e., dynamic-only and static-only)

can be rendered using the standard volume rendering technique [32]. To combine both fields, we employ

an additive composition method in which each field influences the transmittance of a ray [109]. Let’s
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(a) Dynamic only

(b) Static only

(c) Displacement

(d) Velocity

(e) Acceleration

(f) Jerk

Figure 4.2: Visualization of each predicted component. The top row presents synthesized views

at different times. In (a) and (b), the dynamic and static components of the scene at time t2 are depicted

separately. (b) In the case of an inobservable static area in the entire sequence (e.g., the space behind the

jumping people), radiance might not be correct. The displacement field (c) can be computed by Taylor

approximation (Eq. 4.8) with motion fields (d-f): velocity, acceleration, and jerk. Each field is visualized

through reprojecting each field to the camera view. The standard HSV visualization [9] is used to colorize

arrows.

consider a camera ray r(τ) = o+ τu, where o is the origin and u is the direction. With a predefined

range for the ray distance [τn, τf ], the rendering function is formulated as:

Ĉ(r, ti) =

∫ τf

τn

T (τ) (σs(τ) · cs(τ) + σd(τ, ti) · cd(τ, ti)) dτ, (4.3)

where T (τ) = exp

(
−
∫ τ

τn

(σs(u) + σd(u, ti))du

)
. (4.4)

Here, each notation for the sample point is simplified for concise representation (e.g., σs(τ) = σs(r(τ))).

We visualize the example of the composite rendering and separate rendering in the first and second rows

in Fig. 4.2.

Dynamic and static separation. To factorize a scene into static and dynamic parts, we use a metric

indicating the likelihood that a point belongs to the dynamic fields [109]. This metric is given by:

pd =
σd

σd + σs
, (4.5)

where σd and σs are density values sampled from a spatio-temporal point.

To facilitate the separation of the radiance fields, we employ the skewed binary entropy loss, as

proposed by [109]. The entropy loss is defined as:

Lb = −(pkd · log(pkd) + (1− pkd) · log(1− pkd)), (4.6)
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where the exponent k ≥ 1 is the skew factor, controlling a bias toward static explanation. This entropy-

based loss can encourage the radiance fields to have a clearer distinction between the static and dynamic

components.

4.2.3 Kinematic Field

The kinematic field has a spatio-temporal structure to facilitate spatial and temporal queries. We

use the tensor-decomposition-based representation [90] for the kinematic field. As depicted in Fig. 4.1,

the kinematic field serves to regulate the radiance field, ensuring that the motion in the radiance field is

physically plausible.

Definition. The kinematic field is defined as:

FK : (x, y, z, t)→ (v,a, j, · · · ), (4.7)

where each term represents velocity, acceleration, and jerk, such that v = (vx, vy, vz), a = (ax, ay, az),

and j = (jx, jy, jz). Note that we can extend the field into higher-order kinematic quantities such as snap

(4th), crackle (5th), and so on.

Displacement. Using the provided kinematic quantities, we can approximate a particle’s displacement

at position (x, y, z) and time t+∆t via the Taylor approximation, assuming that the kinematic quantities

are consistent within a local temporal range ∆t. The displacement d(x, y, z, t,∆t) can be approximated

by:

d(x, y, z, t,∆t) ≈ (∆t)v

1!
+

(∆t)2a

2!
+

(∆t)3j

3!
+ · · · . (4.8)

Computing the displacement of a point within a temporal range allows for computing the photometric

consistency loss (Eq. 4.14) and scene flows from the kinematic field.

4.2.4 Kinematic Regularization

Given the kinematic field, it is important to make sure the learned motion dynamics are physically

plausible. As Fig. 4.3 indicates, learning kinematic fields without adequate regularization may result in a

sub-optimal kinematic field. The subsequent sections elucidate regularization strategies.

Integrity of kinematic fields. Learning the kinematic field FK naively does not guarantee the integrity

of the kinematic quantities. During training, the quantities are supervised via the photometric consistency

loss (Eq. 4.14), which is applied upon the approximated displacement (Eq. 4.8). It is important to note

that even with supervision by the displacement, the physical relationships among the kinematic quantities

may not be correct, since the higher-order terms in the displacement equation (Eq. 4.8) make the system

underdetermined.

Given a velocity field, we can derive the acceleration field using the principle of advective acceleration.

Given acceleration a and velocity v at a spatio-temporal coordinate, the partial derivative and advection

yield a = ∂v/∂t + v · ∇v. Similarly, we can formulate the relationship between v, a and j as: j =

∂a/∂t+ v · ∇a.
To ensure kinematic consistency, we introduce the kinematic loss LK defined as:

LK =

∥∥∥∥a− ∂v

∂t
− v · ∇v

∥∥∥∥2
2

+

∥∥∥∥j− ∂a

∂t
− v · ∇a

∥∥∥∥2
2

+ ..., (4.9)

where ∇ is the Jacobian operation. To compute the partial derivatives and Jacobian matrices, we use a

numerical method1 as presented in a neural surface reconstruction work [111].

1f ′(x) = f(x+ϵ)−f(x−ϵ)
2ϵ
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RGB v a Adv. a j Adv. j

(a) Without kinematic regularization

RGB v a Adv. a j Adv. j

(b) With kinematic regularization

Figure 4.3: Effect of kinematic regularization. We visualize the rendered RGB and motion of each

field. Without kinematic regularization, motion fields tend to show granular patterns. Our kinematic

fields not only make the field smoother but also satisfy the kinematic property, i.e., a = ∂v/∂t+ v · ∇v.
We abbreviate the advective equation to ‘Adv.’ in the figure.

Physics-informed regularization. In the context of regularizing radiance fields through the use

of an auxiliary kinematic field, it is important to acknowledge the highly underdetermined nature of

the problem. Essentially, there exists a broad spectrum of possible potential kinematic field solutions

that could perfectly fit the observed training views. This complexity necessitates the introduction of

a regularization strategy that can guide the motion representation toward more accurately reflecting

real-world physics.

While not universally ideal, rigidity [98] and incompressiblility [107, 108] have been identified as

effective metrics for encapsulating real-world dynamics; in videos that we normally encounter, objects in

a scene have nearly consistent density and are mostly rigid in a short time range.

Rigidity. One benefit of having a velocity field is that we can measure the rate of deformation by its

derivatives. A strain rate tensor D defines a kinematic property of a deformation; it captures the rate

at which a material undergoes deformation, and it is crucial for ensuring that objects maintain their

structural integrity during motion.

In this paper, we propose using the invariants of strain rate tensor [112, 113] as a measure of rigidity.

The velocity gradient ∇v sampled from the kinematic field, leads to the strain rate tensor D by:

D =
1

2

(
∇v + (∇v)T

)
. (4.10)

The rigidity loss function LR is formulated based on the first and second invariants of the strain rate
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Figure 4.4: Visualization of density variation by a spatial coordinate x. The plot displays the

gradient −∂LT/∂vσd
with arrows. With the velocity field directed to the right (i.e., vx = 0.3), we can

compute the gradient of the transport regularization LT w.r.t. the rate of density change vσd
= ∂σd/∂t.

Minimizing LT allows us to render the density at t+∆t aligned with the flow field.

tensor:

LR = λdiv(∇ · v)2︸ ︷︷ ︸
1st invariant

+
(1
2
(tr(D)2 − tr(D ·D))

)2︸ ︷︷ ︸
2nd invariant

, (4.11)

where tr(·) denotes the trace operator and λdiv controls the balance between the two terms. Note that

the first invariant of strain rate measures dilational change (i.e., volumetric change) with respect to time

and the second invariant of strain rate measures distortional change.

Transport. A transport equation has been adopted in physics-informed neural networks [107]. By

simplifying the Navier-Stokes equation, a transport loss can be defined as: ∂σ
∂t + v · ∇σ = 0. We leverage

the physics-informed regularizers based on the transport equation and the divergence of the velocity:

LT =

(
∂σd

∂t
+ v · ∇σd

)2

, (4.12)

where σd is the volume density used for volume rendering. This aligns the velocity field with the density

field (i.e., Fig. 4.4), preventing a sudden disappearance or appearance of objects in the dynamic radiance

field.

4.2.5 Learning Objectives

Cycle consistency. The cycle consistency is essential to ensure that the trajectories derived from the

kinematic field do not introduce misalignments [34]. We use cycle constraints among four timestamps t, i,

j, and γ. Given a reference time t, we randomly sample time i from the neighboring frames within a

threshold. We define j = t+ 2(i− t), making it twice the distance from t as i is from t. γ ∼ U(t, i) is an
intermediate time, uniformly sampled between t and i. With the time variables, we formulate our loss:

LC = ρ(dt→i + di→t) + ρ(dt→i→j − dt→j) + ρ(dt→γ→i − dt→i), (4.13)
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Figure 4.5: Photometric consistency loss. During optimization, we deform each ray from a reference

time and pose (t, Pt) to different timestamps γ and i. Here, we sample i from the neighboring frame

times, and we consequently sample an intermediate timestamp γ ∼ U(t, i). Given each timestamp, we

can deform a ray using Eq. 4.8. The photometric loss Lphoto is computed based on the color consistency

between the deformed ray and the original color, enhancing temporal consistency.

where ρ denotes the generalized chabonnier loss [114]. Here, we abbreviate the displacement d(·) (Eq. 4.8)
for conciseness: dt→i is shorthand for d(x, t, i− t), and dt→i→j simplifies d(x+ dt→i, i, j − i).

Photometric consistency loss. To enhance temporal coherency, we deform rays into nearby frame

times and enhance the consistency among them (Fig. 4.5). Specifically, given a reference ray rt at time t, a

pixel color Ĉ(rt, t) can be obtained using the volume rendering (Eq. 4.4). In addition to the reference ray,

we apply ray deformation based on the predicted kinematic quantities. As in cycle consistency (Eq. 4.13),

we sample time i from neighboring frames, and time γ ∼ U(t, i) between times t and i. Different from

existing approaches [34, 36], we deform rays with kinematic quantities using Taylor approximation. The

deforming process results in two deformed rays rt→i and rt→γ , and two rendered colors Ĉ(rt→i, i) and

Ĉ(rt→γ , γ), correspondingly. Based on the deformed rays, we apply the photometric consistency loss,

comparing the rendered color with the ground-truth color. The loss function is formulated as:

Lphoto = ∥Ĉ(rt, t)− C(rt, t)∥22
+ λα(rt)ρ(Ĉ(rt→i, i)− C(rt, t))

+ λα(rt)ρ(Ĉ(rt→γ , γ)− C(rt, t)),

(4.14)

where λ is a loss weight for the temporal consistency, and α(rt) is the sum of rendering weights of the

dynamic densities, representing the dynamic likelihood of the ray rt.

Final objective. Our final objective function, denoted as L, is the weighted sum of the various loss

terms discussed previously. To keep things simple with the variety of loss functions, we symbolize the

losses to Lphoto, Lkinematic, and Lreg. This results in the final loss:

L = Lphoto + Lkinematic + Lreg. (4.15)
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Here, Lkinematic is the weighted sum of the kinematic integrity LK, transport LT, and rigidity LR. The

additional regularization Lreg includes the skewed entropy Lb, the cycle consistency LC, total-variation

loss [110, 90], distortion loss [99], monocular depth supervision [34], normal regularization [115, 100] and

optical flow supervision [34].

4.3 Experiments

4.3.1 Dataset

We use the NVIDIA dynamic view synthesis dataset (NDVS) [116] to evaluate the effectiveness

of our model. For the monocular setup, we adopt the preprocessing steps proposed by NSFF [34] and

DynamicNeRF [36]. This dataset has 8 scenes and is captured with 12 synchronized cameras. When used

for a monocular video reconstruction task, the dataset shows relatively low effective multi-view factors

(EMFs) [91], compared to other monocular datasets; this means that the dataset is more challenging to

reconstruct due to the less camera motion and faster-moving objects.

Several different training and evaluation sequences for the monocular task have been proposed. In

this paper, we use three different sequences.

24-frames. In this sequence, a scene is configured with 24 training frames, and 264 test frames from

unseen multi-views. For a fair comparison, we utilize the dynamic mask, optical flow, and monocular

depth, extracted by the same model with the prior work [34]. We resize the height of all images and input

data to 288. In this protocol, we additionally report the quality in terms of dynamic regions using the

pixel mask provided in the dataset suite.

24-frames-sparse. To test the novel time synthesis, we reduce the 24-frames sequence into 12 frames by

sampling the even-numbered frames; we use the unseen inter-frames for testing.

12-frames. In this sequence, each scene has 12 training and 12 testing samples. We use the prepro-

cessed dynamic mask, optical flow, and monocular depth downloadable from the code repository of

DynamicNeRF [36].

4.3.2 Implementation Details

Fields configuration. Our radiance and kinematic fields are configured with HexPlane [90] and

TensoRF [110]. After features are sampled from the point queries, small MLP decoders process the

features to yield colors and kinematic outputs. For density outputs, we use a linear layer following the

practices in [90, 110]. We use the coarse-to-fine strategy to learn the voxels properly, where we upsample

each voxel at 100; 1,000; 2,500; 5,000; 10,000; 20,000; 30,000 steps by the logarithmic voxel growth

algorithm [110]. We set the initial number of voxels to range from 16,000 to 32,768 depending on the

datasets, and we upscale the number to 27,000,000 (300× 300× 300) at the last stage of training. For

the maximum motion order, we use 3 (jerk) for the NDVS 24-frame sequences and 2 (acceleration) for

the NDVS 12-frame sequences.

Training. We use 70,000 steps to optimize our models, which takes about 7 hours with one NVIDIA

V100 or A100 GPU. We initialize the static field for 5,000 steps, taking approximately 5 minutes. After

finishing the initialization of the static field, we jointly train the fields: dynamic, static, and kinematic

fields. During the joint training, we lower the learning rate of the static field by the factor of 0.1 at

predefined iterations to prevent dynamic objects from being portrayed as static objects.
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Table 4.1: Ablation study on Balloon1 scene of the NDVS dataset (24-frames-sparse).

Novel Times Seen Times

Full Dynamic Only Full Dynamic Only

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSFF [34] 13.18 0.146 0.603 14.21 0.201 0.574 12.49 0.153 0.499 13.16 0.202 0.487

HexPlane [90] 19.84 0.668 0.145 18.12 0.419 0.251 18.93 0.649 0.137 17.74 0.429 0.202

Ours 25.67 0.865 0.064 21.16 0.625 0.170 25.80 0.867 0.050 21.35 0.632 0.121

w/o Higher order motion 24.36 0.842 0.077 19.93 0.556 0.200 24.63 0.846 0.061 20.22 0.572 0.145

w/o Lkinematic 24.96 0.853 0.068 20.15 0.568 0.185 25.30 0.858 0.052 20.65 0.594 0.129

w/o Kinematic Integrity 25.46 0.862 0.066 20.78 0.607 0.179 25.57 0.865 0.051 21.02 0.620 0.126

w/o Rigidity 25.11 0.856 0.066 20.40 0.582 0.181 25.43 0.860 0.051 20.82 0.603 0.123

Flow.

Vel.

Acc. N/A

Dyn. 
RGB

Full w/o higher order motion w/o w/o Kinematic Integrity

PSNR=26.11 PSNR=24.87 PSNR=24.25 PSNR=25.57 PSNR=24.45

w/o rigidity

Figure 4.6: Comparative visualization of kinematic fields. The first row shows RGB values

rendered from our dynamic radiance field, showing PSNR values from a ground truth RGB image. From

the second to the last row, we show flow (i.e., displacement), velocity, and acceleration.

Evaluation metrics. We report peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and

perceptual similarity (LPIPS). These three metrics have been used as standard in prior studies to evaluate

the quality of renderings.

4.3.3 Baseline Model

HexPlane. Since our model is based on tensor-decomposed radiance fields, we compare our models with

HexPlane [90]. The baseline model is the dynamic radiance field FDY, without the static radiance field

FST and the kinematic field FK. For a fair comparison, we use monocular depth supervision both to the

baseline model and our models, although the original HexPlane model does not support the supervision

from monocular depth. Since the base HexPlane model does not have an auxiliary flow field, we do not

use the optical flow supervision and the photometric consistency loss.
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Figure 4.7: Motion Order. Reconstruction Accuracy for the Balloon1 Scene (24-frames-sparse): The

x-axis of each plot categorizes maximum motion order as follows: velocity (1), acceleration (2), jerk (3),

snap (4), and crackle (5). The metric utilized for each plot is specified at the top.

4.3.4 Evaluation of Kinematic Fields

Ablation of kinematic losses. To show the effectiveness of our approach, we conduct a comprehensive

ablation study on the Balloon1 scene of the NDVS dataset, focusing on kinematic loss components. In

Table 4.1, we show ablative results from seen and unseen frame times. Our findings indicate that the

model achieves optimal performance when all components are integrated.

Fig. 4.6 delves into the kinematic field analysis. Omitting higher order motion restricts the model to

utilizing only the velocity field, which proves insufficient for capturing non-linear motion. This limitation

hinders the model’s ability to minimize kinematic losses, leading to a suboptimal flow representation. In

the absence of Lkinematic, the radiance field suffers from reduced PSNR scores, which can be attributed

to the physically incorrect motion and geometry. Compared to the full model, the model without the

rigidity loss results in noisy, non-rigid motion, resulting in incorrect motion and the worse reconstruction

accuracy.

Motion order. Our study represents motion through various kinematic quantities. Adjusting the

kinematic field to include different orders of motion, we can model our system using just velocity [106, 107],

or extend to higher orders – fourth (snap) and fifth (crackle) – by extending the Taylor series (Eq. 4.8)

and the kinematic integrity (Eq. 4.9) equations. Fig. 4.7 illustrates the influence of motion order on

reconstruction accuracy for the NDVS dataset. As motion order increases, the reconstruction accuracy first

improves, peaking at jerk, but further orders degrades the accuracy. We conjecture that the augmentation

of model complexity with higher orders of kinematic quantities may render the model more susceptible to

overfitting.

4.3.5 Comparison with SOTA models

Quantitative results. NSFF [34] is a dynamic neural radiance field model, which utilizes scene-flow

fields for the regularization of a dynamic radiance field. Since NSFF is a neural model, the network

training takes about 2 days on two V100 GPUs (96 GPU hours), using the official code by the authors.

Note that optimizing a scene using our method takes about 7 hours per scene, which makes ours 12 times

faster than NSFF in terms of GPU hours. We compare our results with NSFF [34] in Table 4.2. In the

table, our method shows better accuracy in terms of all metrics. The per-scene results are reported in

Table 4.4. In addition, we report full results on NDVS (12-frames) in Table 4.3.

Qualitative results. Fig. 4.8 illustrates qualitative results, including the synthesized images, ground

truth, and their overlaid images. As shown in the first and third rows, our method improves the visual

45



Table 4.2: Average results on NDVS (24-frames).

Full Dynamic Only

Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [32]* 24.90 0.893 0.098 16.98 0.532 0.314

Luo et al. [117]* 21.37 0.746 0.141 16.97 0.530 0.207

Yoon et al. [116]* 21.78 0.761 0.127 17.34 0.547 0.20

NSFF [34]* 28.19 0.928 0.045 21.91 0.758 0.097

NSFF [34] 28.04 0.927 0.045 21.34 0.740 0.111

Ours 28.78 0.936 0.042 22.13 0.774 0.094

*Results reported in [34]

quality of the rendered views. Additionally, the overlaid images demonstrate the geometrical accuracy

of our model, showcasing its better alignment with the ground truth. This enhanced performance is

attributed to the kinematics and physics incorporated in our methodology, which is fundamental to the

improvement.

4.4 Supplementary Material

In this supplementary material, we provide additional experimental results. In addition, we describe

details of our method including the tensor-decomposition-based architectures, coordinate systems, and

detailed training strategies.

4.5 Additional Results

In this section, we show additional results, which can supplement the main paper’s results.

4.5.1 Ablation on Different Scenes

Quantitative results. In Table 4.5, we report additional ablation study results on the NDVS (24-frames-

sparse) scenes. In most scenes, our full model consistently surpasses alternative approaches. Especially,

the effectiveness of our method is most evident within dynamic regions (i.e., Dynamic Only metrics) of

the scenes, showing meaningful gaps over the ablated models.

Qualitative results. In Fig. 4.9-4.12, we visualize the rendered RGB maps and velocity fields inferred

from ablated models. In the figure, our full model not only shows better visual quality, but also presents

Table 4.3: Quantitative comparison on NDVS (12-frames).

PSNR↑/LPIPS↓ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

NeRF [32]* 20.99/0.305 23.67/0.311 22.73/0.229 21.29/0.440 19.82/0.205 24.37/0.098 21.07/0.165 21.99/0.250

NSFF [34]* 24.65/0.151 29.29/0.129 25.96/0.167 22.97/0.295 21.96/0.215 24.27/0.222 21.22/0.212 24.33/0.199

DynamicNeRF [36]* 24.68/0.090 32.66/0.035 28.56/0.082 23.26/0.137 22.36/0.104 27.06/0.049 24.15/0.080 26.10/0.082

HyperNeRF [104]* 18.34/0.302 21.97/0.183 20.61/0.205 18.59/0.443 13.96/0.530 16.57/0.411 13.17/0.495 17.60/0.367

RoDynRF [94]* 25.66/ 0.071 28.68/0.040 29.13/0.063 24.26/0.089 22.37/0.103 26.19/0.054 24.96/0.048 25.89/0.065

Ours 23.74/0.102 31.89/0.035 28.34/0.074 25.46/0.098 23.72/0.079 26.49/0.055 24.64/0.053 26.33/0.071

*Results reported in [94]
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Figure 4.8: Qualitative results on NDVS (12-frames). The second and fourth rows illustrate the

overlay of the synthesized and ground truth views of the scene.

Table 4.4: Quantitative comparison on NDVS (24-frames). Numbers that surpass their counterparts

by a margin greater than 5% are highlighted.

method Playground Balloon1 Balloon2 Umbrella

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSFF [34] full 24.80 0.865 0.056 24.14 0.848 0.064 29.34 0.918 0.034 24.46 0.787 0.087

(train: 96 h) dyn. 19.12 0.671 0.120 18.29 0.475 0.183 21.28 0.670 0.112 17.00 0.444 0.155

Ours full 26.65 0.911 0.042 27.26 0.893 0.043 29.50 0.916 0.035 26.24 0.792 0.098

(train: 7 h) dyn. 18.75 0.658 0.122 21.85 0.654 0.117 22.23 0.692 0.104 22.25 0.695 0.097

method Jumping DynamicFace Skating Truck

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSFF [34] full 26.84 0.893 0.053 26.993 0.947 0.022 35.10 0.969 0.018 32.70 0.940 0.022

(train: 96 h) dyn. 19.60 0.616 0.130 25.311 0.886 0.028 22.28 0.724 0.109 27.86 0.840 0.054

Ours full 26.55 0.895 0.049 29.15 0.967 0.011 32.33 0.959 0.024 32.57 0.930 0.033

(train: 7 h) dyn. 19.16 0.603 0.114 25.68 0.901 0.018 19.58 0.626 0.108 27.54 0.854 0.068

the most smooth and consistent velocity field. Notably, learning kinematic fields without the kinematic

integrity loss results in highly inconsistent flow field. In Fig. 4.13, we qualitatively compare ours with

existing works.

4.5.2 Motion Extrapolation

We have implemented an extrapolation application utilizing the kinematic field in Fig. 4.14. This

application leverages displacement calculations derived from the kinematic field combined with a pixel

splatting technique [10]. Our comparison illustrates that motion extrapolation based on our kinematic

field and proposed regularization yields higher accuracy compared to the counterparts, showcasing its

potential for motion prediction.

4.6 3D and 4D Volume Structures

Our method is configured with the dynamic radiance field FDY, the static radiance field FST, and

the kinematic field FK. The 4D fields FDY and FK require O(N3TF ) space, where N is the spatial, T is

the temporal resolutions, and F is the feature size for each voxel. Similarly, the 3D field FST which does
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Table 4.5: Ablation study on the NDVS dataset (24-frames-sparse).

(a) Balloon1
Novel Times Seen Times

Full Dynamic Only Full Dynamic Only

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSFF [34] 13.18 0.146 0.603 14.21 0.201 0.574 12.49 0.153 0.499 13.16 0.202 0.487

HexPlane [90] 19.84 0.668 0.145 18.12 0.419 0.251 18.93 0.649 0.137 17.74 0.429 0.202

Ours 25.67 0.865 0.064 21.16 0.625 0.170 25.80 0.867 0.050 21.35 0.632 0.121

w/o Higher order motion 24.36 0.842 0.077 19.93 0.556 0.200 24.63 0.846 0.061 20.22 0.572 0.145

w/o Lkinematic 24.96 0.853 0.068 20.15 0.568 0.185 25.30 0.858 0.052 20.65 0.594 0.129

w/o Kinematic Integrity 25.46 0.862 0.066 20.78 0.607 0.179 25.57 0.865 0.051 21.02 0.620 0.126

w/o Rigidity 25.11 0.856 0.066 20.40 0.582 0.181 25.43 0.860 0.051 20.82 0.603 0.123

(b) DynamicFace
Novel Times Seen Times

Full Dynamic Only Full Dynamic Only

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSFF [34] 10.95 0.131 0.539 8.98 0.064 0.628 10.77 0.120 0.545 8.88 0.055 0.636

HexPlane [90] 12.11 0.265 0.471 14.38 0.431 0.397 11.39 0.218 0.491 13.74 0.442 0.395

Ours 26.47 0.896 0.051 25.22 0.893 0.028 25.20 0.881 0.060 24.74 0.887 0.031

w/o Higher order motion 26.49 0.896 0.051 25.03 0.882 0.031 25.22 0.881 0.059 24.47 0.874 0.034

w/o Lkinematic 26.24 0.895 0.052 24.34 0.867 0.034 24.98 0.880 0.060 23.87 0.859 0.037

w/o Kinematic Integrity 26.24 0.898 0.050 24.65 0.871 0.032 25.02 0.884 0.057 24.08 0.861 0.036

w/o Rigidity 26.20 0.897 0.051 24.73 0.878 0.032 24.95 0.883 0.059 24.19 0.870 0.035

(c) Playgruond
Novel Times Seen Times

Full Dynamic Only Full Dynamic Only

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSFF [34] 12.54 0.113 0.581 11.58 0.072 0.629 12.15 0.117 0.515 11.41 0.067 0.530

HexPlane [90] 14.79 0.286 0.341 13.40 0.191 0.379 13.80 0.230 0.341 12.66 0.163 0.360

Ours 24.64 0.832 0.068 18.24 0.621 0.141 23.82 0.811 0.074 18.14 0.621 0.133

w/o Higher order motion 24.42 0.829 0.068 17.63 0.576 0.149 23.58 0.808 0.075 17.45 0.569 0.144

w/o Lkinematic 24.38 0.830 0.068 17.61 0.595 0.153 23.57 0.809 0.075 17.49 0.596 0.147

w/o Kinematic Integrity 24.52 0.830 0.069 17.93 0.605 0.150 23.69 0.809 0.075 17.81 0.605 0.140

w/o Rigidity 24.40 0.830 0.068 17.64 0.597 0.146 23.62 0.810 0.075 17.65 0.603 0.137

(d) Skating
Novel Times Seen Times

Full Dynamic Only Full Dynamic Only

Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NSFF [34] 18.18 0.411 0.418 12.41 0.136 0.608 17.20 0.397 0.364 11.75 0.124 0.513

HexPlane [90] 22.38 0.783 0.151 12.43 0.145 0.352 21.77 0.769 0.154 12.12 0.140 0.357

Ours 30.99 0.941 0.033 18.60 0.563 0.165 31.91 0.943 0.029 20.57 0.671 0.107

w/o Higher order motion 30.89 0.940 0.032 18.45 0.536 0.161 31.36 0.940 0.028 19.70 0.610 0.109

w/o Lkinematic 5.88 0.463 0.698 3.73 0.138 0.857 5.88 0.463 0.698 3.74 0.141 0.859

w/o Kinematic Integrity 26.04 0.916 0.059 14.59 0.316 0.267 26.50 0.918 0.055 14.94 0.372 0.228

w/o Rigidity 29.72 0.935 0.036 16.98 0.425 0.198 30.05 0.935 0.032 17.78 0.492 0.150
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Figure 4.9: Qualitative comparison on Balloon1 scene of the NDVS dataset (24-frames-sparse)
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Figure 4.10: Qualitative comparison on DynamicFace scene of the NDVS dataset (24-frames-sparse)
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Figure 4.11: Qualitative comparison on Playground scene of the NDVS dataset (24-frames-sparse)
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Figure 4.12: Qualitative comparison on Skating scene of the NDVS dataset (24-frames-sparse). Note

that the w/o Lkinematic model did not converge in this scene.
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Figure 4.14: Extrapolation using kinematic fields. In this example application, we combine 2D

displacements inferred from our kinematic field and a pixel splatting technique [10].

not depend on the time varible t, requires O(N3F ). As stated in the HexPlane paper [90] storing the

whole volume in a näıve data structure takes about 48GB memory when N = 512 and T = 32.

Thus, we use a tensor-decomposition-based structure, HexPlane [90], to compress the large space

into a more compact representation so that we can make the framework feasible. Our 3D feature volume

V3D ∈ RXY ZF and 4D feature volume V4D ∈ RXY ZTF are defined as:

V3D =

R1∑
r=1

MXY
r ◦ vZ

r ◦ v1
r +

R2∑
r=1

MXZ
r ◦ vY

r ◦ v2
r +

R3∑
r=1

MY Z
r ◦ vX

r ◦ v3
r , (4.16)

V4D =

R1∑
r=1

MXY
r ◦MZT

r ◦ v1
r +

R2∑
r=1

MXZ
r ◦MY T

r ◦ v2
r +

R3∑
r=1

MY Z
r ◦MXT

r ◦ v3
r , (4.17)

where ◦ is the outer product, MAB
r ∈ RAB is a plane representing A-B dimensions, vC

r ∈ CC is the vector

along the C-axis, vn
r ∈ RF is the vector along the F -axis, and Rn is the number of low-rank components.

Note that, we adopt the notations from the HexPlane paper [90].

When querying a coordinate (x, y, z, t, θ, ϕ), we sample F -dimensional feature from each volume; here,

we leverage multi-resolution sampling method [94] to sample features from the volumes. We configure

each radiance field with two volumes representing density and RGB, respectively. For density fields, we

employ an MLP-free design that does not depend on a ray direction (θ, ϕ). On the other hand, we use a

tiny MLP which takes as inputs the sampled feature and the ray direction for the RGB. These designs

are mostly equivalent to the default configuration of HexPlane [90]. For the kinematic field, we use a
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tiny MLP to produce the kinematic quantities, but without the ray direction as an input; this makes the

motion and density of particles in a scene be independent of a ray direction.

Table 4.6: Number of low-rank components in HexPlane (or TensoRF) structures.

X-Y Y-Z X-Z Z-T Y-T X-T

Dy. Density 16 4 4 16 4 4

Dy. RGB 48 12 12 48 12 12

St. Density 16 4 4 16† 4† 4†

St. RGB 48 12 12 48† 12† 12†

Kinematic 32 16 16 32 16 16

†: VM-factorization [110].

Plane and vector sizes. We report the number of low-rank components used for HexPlane (or TensoRF)

structures in Table 4.6. Note that the number of low-rank components defines the feature dimension of

each plane; if the X-Y plane has 48 components, then the shape of the plane becomes X × Y × 48. We

use multiply followed by concat for the feature fusion design since the combination shows better results

than alternative designs [90].

4.7 Details on Kinematic Fields

4.7.1 Coordinate Systems

Since a volume-rendering method requires sampling color and density from a bounded space, learning

a radiance field model from unbounded scenes might produce undesired artifacts in the regions outside

the sampling boundaries. Thus, there have been various methods to solve this problem [32, 101, 118].

One common solution for unbounded forward-facing scenes is using the normalized device coordinates

(NDC) [32], where a camera frustum with the unbounded z-axis is transformed into a [−1, 1]3 cube.

Further details regarding the conversion from NDC to world space are provided in Sec. 4.8.

Thus, we use NDC to learn the radiance fields for unbounded forward-facing scenes. However, the

physics-related elements should be computed in the world space, rather than in the NDC space. Therefore,

the kinematic quantities are represented in the world space in our method.

Let g(·) be a transformation which converts a coordinate in NDC to world:

g(xndc) = xworld, (4.18)

where xndc in NDC corresponds to xworld in world space. Then, our kinematic field FK takes a NDC and

produce outputs in world space:

FK(xndc) = (vworld,aworld, jworld), (4.19)

where vworld, aworld, and jworld are velocity, acceleration, and jerk defined in the world space. To compute

the displacement in world space, it is trivial to use Eq. 8, resulting in a displacement in the world space.

On the other hand, in the case of computing the photometric consistency loss (Eq. 15) and the cycle

consistency loss (Eq. 14), we need to compute displacement in NDC. A displacement in NDC can be

computed as:

dndc(xndc, t,∆t) = g−1(g(xndc) + d(g(xndc), t,∆t))− xndc, (4.20)

where g(·) transforms an NDC into the world space, and g−1(·) is the inverse of g(·).
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4.7.2 Computing Numerical Gradients

As noted in the main paper, numerical gradients can be computed as:

∂f(x)

∂x
≈ f(x+ ϵ)− f(x− ϵ)

2ϵ
, (4.21)

where ϵ > 0 is a small offset. Regarding this numerical method, we need to consider two factors: how to

set ϵ and how to deal with the NDC system.

How to set ϵ. Since we leverage an explicit feature representation for radiance and kinematic fields,

our voxel structure has a certain resolution in each phase of training. Hence, we can leverage the voxel

resolution to decide ϵ [111].

When dimensions of the radiance and kinematic fields are X,Y , Z, and T we set ϵ to 2λ
X for the

spatial axis and 2λ
T for the temporal axis, where λ is the constant controlling the scale. Note that we

increase the spatial resolution from 22× 22× 22 to 300× 300× 300; during the upsampling process, ϵ

decreases accordingly. In all experiments, we use λ = 0.2.

How to deal with NDC. Since the voxel features are defined in the NDC space, we compute initial ϵ

in the NDC voxel space. However, to compute Jacobians of the kinematic quantities we need to have ϵ in

the world space to correctly compute the gradient (Eq. 4.21). Thus, we convert ϵ from NDC to ϵworld in

world space by:

ϵworld = 0.5 · ∥g(x+ ϵ, y, z)− g(x− ϵ, y, z)∥2, (4.22)

where g(·) is the transformation from NDC to world, and we will omit y, z for concise notations in the

following equation. Having ϵworld computed, we can rewrite Eq. 4.21 to:

∂f(x)

∂x
≈ f(g−1(g(x) + ϵworld))− f(g−1(g(x)− ϵworld))

2ϵworld
, (4.23)

where g−1 is the world to NDC transformation. Note that we can extend Eq. 4.23 into y and z axis

trivially. For t-axis, it is not required to convert the space from NDC to world; we can simply use Eq. 4.21

to compute derivatives with respect to time t.

4.8 Normalized Device Coordinates

In neural radiance fields, reconstructing scenes without considering unbounded regions can generate

undesirable artifacts. The normalized device coordinate (NDC) is proposed to deal with a scene unbounded

in the z-axis (i.e., infinite depth), which is effective in covering mostly forward-facing scenes. Since a

short monocular clip is usually forward-facing, NDC has been frequently utilized for 4D reconstruction

from a monocular video [34, 94, 36]. Similarly, we utilize NDC for the fields defined in our framework.

In this section, we describe about the conversion between the world coordinates and the normalized

device coordinates (NDC).

4.8.1 Projection Matrix

In this description, we follow the notation given in the supplementary material of the NeRF paper [32].

The conversion between the two spaces is defined using the perspective projection matrix with the near
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plane n, the far plane f , the right bound r, and the left bound l. The projection matrix M is defined by:

M =


n
f 0 0 0

0 n
t 0 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

 . (4.24)

The projection M projects a homogeneous coordinate (x, y, z, 1) in world space to NDC. The projected

coordinates in NDC are mapped to a [−1, 1]3 cube.


n
f 0 0 0

0 n
t 0 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0



x

y

z

1

 (4.25)

∝


n
r

x
−z

n
t

y
−z

f+n
f−n −

2fn
f−n

1
−z

1

 =


xndc

yndc

zndc

1

 , (4.26)

where the coordinate (x, y, z) in world space is converted into the coordinate (xndc, yndc, zndc) in NDC

space. Note that, it is trivial to inverse the process to convert a homogeneous coordinate in NDC into

world space.

4.8.2 Density Transformation

Following the notation used in Sec. 4.7.2, let g(·) be the NDC to world transformation, where a point

xndc in the NDC is converted to x = g(xndc) in world space.

In the transport loss (Eq. 12), we need to compute∇σ, with respect to the spatial coordinate x in world

space. However, if we formulate the rendering equation in NDC, the density value is referenced in NDC

space, not in world space. Thus, we need to define a density transformation function σ = gd(σndc,xndc),

which transforms density σndc defined at xndc into the density σ in world space.

Given two different coordinate systems A and B, a small volume element VA in coordinate system A

and the corresponding volume element VB in coordinate system B can be expressed as:

VB = |det(Jf (xA))|VA, (4.27)

where det(Jf (xA)) is the determinant of the Jacobian matrix Jf of the coordinate transfomation f at

point xA.

Thus, we formulate density transformation gd as:

gd(σndc,xndc) =
Cσndc

|det(Jg(xndc))|
= σ, (4.28)

where C is a constant. Note that relationship between density ρ, mass m, and volume V is given by the

formula ρ = m/V . Assuming equal mass in two spaces, we can use Eq. 4.28.

57



4.9 Training Details

4.9.1 Fields

As mentioned in the main paper, our radiance and kinematic fields consist of HexPlane [90] and

TensoRF [110]. The feature sizes of the planes and the vectors are specified in Table 4.6.

For RGB and kinematic outputs, we use a tiny 3-layer MLP; we use 64 dimension and 128 dimension

in hidden layers for RGB and kinematic fields, respectively. When we concatenate a direction vector, we

do not use positional encoding; we use the ℓ2-normalization of a ray direction vector as an input to an

MLP.

During training, we upsample the size of hexplanes at 100; 1,000; 2,500; 5,000; 10,000; 20,000; 30,000

steps by the logarithmic voxel growth algorithm [110]. The initial size is from 16,000 to 32,768 depending

on the datasets, and we increase the size to 27,000,000 (300× 300× 300). Similarly, the dimension of

time-axis grows from N − 1 to 2N , where N is the number of frames in the monocular video.

4.9.2 Losses

Total variation (TV) loss. For the total-variation (TV) loss [110], we use 0.001 as the loss weight.

Since using TV loss for the kinematic fields often results in an equilibrium where all feature values are

identical, we do not leverage the TV loss for the kinematic field.

Photometric loss. In the photometric loss (Eq. 14) and the cycle loss (Eq. 13), we need to define the

maximum hop we sample i within. Like the logarithmic voxel growth algorithm [110], we increase the

maximum hop from a two-frame gap to a three-frame gap during the training phase.

Trajectory smoothness. Since higher-order kinematic quantities can generate a jerky trajectory, we

regularize on the predicted higher-order terms and partial derivatives using an L2 penalty regularizer:

LS = ∥a∥22 + ∥j∥22 + ∥∂v/∂t+ v · ∇v∥22 + ∥∂a/∂t+ v · ∇a∥22. (4.29)

In addition to this loss, we start training with the first order, and gradually add higher order kinematic

quantities to prevent jerky trajectories.

Initialization w/o kinematic loss. For stable training, we apply the kinematic loss from the 1000 th

iteration; before the 1000 th, we only utilize Lphoto and Lreg in the total loss L (Eq. 15).
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Chapter 5. Summary and Conclusion

This dissertation explores various aspects of video motion learning across different types of motion

representations. Initially, we discussed deep optical flow estimation, focusing on the lack of ground

truth required for supervised learning. Thus, we introduced the unsupervised approach where a deep

feature similarity helps a network better learn flows and features from a sequence of images in the

unsupervised way. We observed that, using the feature separation loss, the flows are updated to make

the fused similarity more discriminative, while suppressing uncertain flows and reinforcing clear flows.

The experiments showed that the proposed method achieves competitive results in both qualitative and

quantitative evaluation. The promising results confirm that, without labels, the self-supervised features

can be used to improve itself.

Second, we presented a self-supervision strategy for semi-supervised optical flow, which is simple, yet

effective. Our flow supervisor module supervises a student model, which is effective in the semi-supervised

optical flow setting where we have no or few samples in a target domain. Our method outperforms various

self-supervised baselines, shown by the empirical study. In addition, we showed that our semi-supervised

method can improve the state-of-the-art supervised models by exploiting additional unlabeled datasets.

The unsupervised and semi-supervised approaches have proven the self-supervised deep features can be

effectively used to improve video motion learning.

Last, we extended our video motion learning into 3D space, using physics-based priors. Incorporated

with dynamic radiance fields, kinematic fields are modeled based on kinematics. Our novel formulation

enables the physics-based regularizers, which are effective in filling the gap between 2D input video and

real-world dynamics.

Overall, our research introduces highly effective methods for utilizing self-supervised deep features

and physics-based priors in video motion learning. Our work primarily targets low-level perception, which

forms a robust foundation for high-level video understanding and contributes to the broader goal of

achieving artificial general intelligence. We anticipate that our findings will pave the way for developing

systems that are capable of understanding motion in the world, and improving by themselves. We believe

these capabilities potentially help an AI model approach human-level intelligence.
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웹서버에게도 감사를 드립니다.
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Curriculum Vitae in Korean

이 름: 임 우 빈

생 년 월 일: 1993년 08월 04일

웹 사 이 트: iwbn.github.io

학 력

2012. 3. – 2016. 2. 연세대학교 컴퓨터과학과 (학사)

2016. 3. – 2018. 2. 한국과학기술원 전산학부 (석사)

2018. 3. – 2024. 8. 한국과학기술원 전산학부 (박사)

경 력

2023. 2. – 2023. 8. CLOVA Video, 네이버 클라우드 (인턴)

프 로 젝 트

2018. 3. – 2024. 7. SGVR 연구실 홈페이지 리뉴얼 및 관리 (sgvr.kaist.ac.kr)

2023. 9. – 2024. 7. GPU Cluster 구축 및 관리 (sgvr.kaist.ac.kr/ml-research-environment)

연 구 업 적

(Full list: iwbn.github.io/#publication)

1. Woobin Im, Geonho Cha, Sebin Lee, Jumin Lee, Ju-hyeong Seon, Dongyoon Wee, and Sung-Eui

Yoon. Regularizing Dynamic Radiance Fields with Kinematic Fields, Under Review, 2024.

2. Xu Yin, Woobim Im, Dongbo Min, Yuchi Huo, Fei Pan, and Sung-Eui Yoon. Fine-grained

Background Representation for Weakly Supervised Semantic Segmentation, IEEE Transactions on

Circuits and Systems for Video Technology (TCSVT), 2024.

3. Juhyeong Seon, Woobin Im, Sebin Lee, Jumin Lee, Sung-Eui Yoon. Extending Segment Any-

thing Model into Auditory and Temporal Dimensions for Audio-Visual Segmentation, International

Conference on Image Processing (ICIP), 2024.

4. Jumin Lee, Sebin Lee, Changho Jo, Woobin Im, Ju-hyeong Seon, and Sung-Eui Yoon. SemCity:

Semantic Scene Generation with Triplane Diffusion Conference on Computer Vision and Pattern

Recognition (CVPR), 2024.

5. Sebin Lee, Woobin Im, and Sung-Eui Yoon. Multi-resolution distillation for self-supervised monoc-

ular depth estimation, Pattern Recognition Letters, 2023.
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6. Jumin Lee, Woobin Im, Sebin Lee, and Sung-Eui Yoon, Diffusion Probabilistic Models for Scene-

Scale 3D Categorical Data, Workshop on Image Processing and Image Understanding (IPIU), 2023.

7. Woobin Im, Sebin Lee, and Sung-Eui Yoon. Semi-Supervised Learning of Optical Flow by Flow

Supervisor, European Conference on Computer Vision (ECCV), 2022.

8. Changho Jo, Woobin Im, and Sung-Eui Yoon. In-N-Out: Towards Good Initialization for Inpainting

and Outpainting, British Machine Vision Conference (BMVC), 2021.

9. Woobin Im, Tae-Kyun Kim, and Sung-Eui Yoon. Unsupervised Learning of Optical Flow with Deep

Feature Similarity, European Conference on Computer Vision (ECCV), 2020.

10. Abhilasha Nanda, Woobin Im, Key-Sun Choi, and Hyun Seung Yang. Combined Center Dispersion

Loss Function for Deep Facial Expression Recognition, Pattern Recognition Letters, 2020.

11. Woobin Im, Sungeun Hong, Sung-Eui Yoon, and Hyun S. Yang. Scale-Varying Triplet Ranking

with Classification Loss for Facial Age Estimation, Asian Conference on Computer Vision (ACCV),

2018.

12. Sungeun Hong, Woobin Im, and Hyun S. Yang. CBVMR: Content-Based Video-Music Retrieval

Using Soft Intra-Modal Structure Constraint, Proceedings of the ACM international conference on

Multimedia Retrieval (ICMR), 2018.

13. Sungeun Hong, Jongbin Ryu, Woobin Im, and Hyun S. Yang. D3: Recognizing dynamic scenes

with deep dual descriptor based on key frames and key segments, Neurocomputing, 2018

14. Sungeun Hong, Woobin Im, Jongbin Ryu, and Hyun S. Yang, SSPP-DAN: Deep Domain Adaptation

Network for Face Recognition with Single Sample Per Person, International Conference on Image

Processing, 2017.
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