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초 록

비디오 음원 위치 추정 문제는 프레임 상에서 소리의 음원에 해당하는 물체의 위치를 예측하는 문제로, 이

는 픽셀 수준에서 오디오와 시각 요소 간의 연결에 대한 자세한 이해를 요구합니다. 최근 발표된 Segment

Anything Model (SAM)이다양한이미지분할문제에서우수한성능을보임에따라, SAM에오디오프롬프

트를도입하여음원위치추정문제를해결하는방법이제안되습니다. 그러나이러한방법들은모두 SAM의

단일 이미지 분할 기능에 기반하여 작동하기 때문에, 비디오 데이터에 표현된 여러 프레임 간의 관계 정보를

충분히 활용하지 못합니다. 이에 대응하여, 본 연구는 SAM이 복수 프레임 간의 관계를 활용하여 소리가

있는 비디오 장면에 대한 맥락적 이해를 높이고 음원 위치 추정의 높은 성능을 달성하는 방안을 탐구합니다.

이를달성하기위해시공간적양방향교차모달리티어텐션모듈을도입하여오디오-이미지특성을정제하고

비디오 프레임과 해당 오디오 트랙 간의 시공간 정합성을 이해하도록 합니다. 실험을 통해 제안된 모델이

음원 위치 추정 벤치마크에서 최신 방법들을 능가함을 보였으며, 특히 다중 음원이 등장하는 벤치마크에서

8.3%의 mIoU 향상을 달성함을 보입니다.

핵 심 낱 말 시청각 학습, 음원 위치 추정, 시청각 영상 음원 위치 분할, Segment Anything, 시공간 어텐션

Abstract

Audio-visual segmentation (AVS) focuses on segmenting sound sources within video sequences, necessi-

tating a detailed understanding of the connections between audio and visual elements at the pixel level.

As the Segment Anything Model (SAM) has profoundly influenced various dense prediction challenges,

recent research has focused on integrating SAM into AVS with audio prompts. However, SAM’s de-

sign primarily addresses single-frame segmentation, which does not fully leverage the temporal dynamics

inherent in audio-visual data. To address this, our study explores enhancing SAM’s functionality to

encompass sequences of audio-visual scenes by examining the intermodal relationships across frames.

We introduce a Spatio-Temporal, Bidirectional Audio-Visual Attention (ST-BAVA) module to dynami-

cally refine audio-visual features and reinforce the spatio-temporal alignment between video frames and

corresponding audio tracks. Extensive experiments demonstrate that our proposed model outperforms

the state-of-the-art methods on AVS benchmarks, especially with an 8.3% mIoU gain on a challenging

multi-sources subset.

Keywords Audio-visual learning, sound source localization, audio-visual segmentation, Segment Any-

thing, spatio-temporal attention
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Chapter 1. Introduction
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Figure 1.1: Segmentation results of different models on a film A Dog’s Purpose (2017). (a) Segment

Anything Model (SAM) segments target objects in the image with their regions guided by user prompts.

(b) Prior works [2, 3] have adapted SAM to segment objects that sound with a corresponding audio

prompt per frame. (c) We propose a spatio-temporal, bidirectional audio-visual attention (ST-BAVA),

enabling SAM to fully leverage the relationships between the subsequent video frames and audio streams

in a bidirectional way. In Fig. 1.1c, our model successfully segments the human and the dog on the

frames where they make sounds.

Segment Anything Model (SAM) [4] is a foundation model in image segmentation with points, boxes,

and text prompts (Fig. 1.1a). Tremendous works have shown SAM’s outstanding performance in various

dense prediction problems [5, 6, 7, 8, 9, 10, 11, 12, 13] by adapting it to specific domains. For instance,

Cen et al. [5] extended the segmentation ability of SAM to 3D scenes through NeRFs. Wu et al. [7]

adapted SAM into the medical domain, showing generalized segmentation performance on CT, MRI,

ultrasound, fundus, and dermoscopic images.

In light of the success of SAM in various tasks, pioneering works [14, 2, 3] have attempted to introduce

a prompt in the novel modality, audio, into the SAM (Fig. 1.1b). They aim to segment the object that

makes the sound in the audible video, defined as an Audio-Visual Segmentation (AVS) problem [1]. Mo

et al. [14] explored a spatial fusion of the audio-visual features for audio prompting of SAM. Liu et al. [2]

and Wang et al. [3] presented prompt tuning techniques [15] by inserting the light-weight adapters into

the image encoder and decoder of SAM respectively, achieving high performance on the AVS benchmark.

Nevertheless, since they divide the video into individual frames in a single-frame manner constrained

by SAM, the contextual information provided by the audio-visual scene across subsequent frames has been

neglected. Furthermore, while the effectiveness of bidirectional modeling with the interaction between

the image frame and the corresponding prompt has been demonstrated in the SAM-based referring

video object segmentation (RVOS) [12] and tracking [13], it has not been sufficiently explored for the

audible video data. As the AVS requires comprehensive pixel-level correspondence across two different

modalities, leveraging the complementary relationship between audio-visual cues in a bidirectional way

1



becomes more essential to this task.

To this end, we study the extension of SAM’s segmentation capabilities to the subsequent frames

with corresponding audio, proposing a Spatio-Temporal, Bidirectional Audio-Visual Attention module

(ST-BAVA) (Fig. 1.1c). It aims to convey the spatio-temporal relationships between input images and

audio prompts to SAM through bidirectional adjustments of audio-visual features in the middle of the

pipeline. Our proposed method exhibits two advantages compared to the previous approaches [2, 14, 3].

First, we enable SAM to leverage the contextual information presented in the audio-visual scene of

multiple frames. Second, we mutually align the image and audio features based on their spatial and

temporal correspondences across the video. Through the bidirectional aggregation of the spatio-temporal

relationship across the sequence of the audio-visual frames, our model effectively identifies the distinct

visual and auditory cues from the objects that could emerge or disappear. Extensive experimental

results (Sec. 5, 6) demonstrate that the proposed method achieves high performance in localizing the

sound source with only a few trainable parameters (<4% of SAM), thanks to the audio-visual relationship

exploited by ST-BAVA. In particular, it achieves improvements of 8.3% in mIoU on the AVS benchmark’s

multi-sources subset, as shown in Table 6.1.

We summarize our contributions as follows:

• We extend SAM into the auditory and temporal dimensions to segment the sound sources on the

subsequent video frames using corresponding audio as a prompt.

• We propose a Spatio-Temporal, Bidirectional Audio-Visual Attention module (ST-BAVA), enabling

SAM to exploit the spatio-temporal correspondences between subsequent image frames and audio

streams.

• Through experiments, we demonstrate that the proposed method outperforms the state-of-the-art

methods on the AVS. Furthermore, we showcase the effectiveness of the main components in our

approach through extensive ablation studies.

2



Chapter 2. Related Work

2.1 Audio-Visual Segmentation

In audio-visual learning, the relationship between audio and visual data has been explored to under-

stand the scene in multimodal. Researchers pioneered the audio-visual correspondence (AVC) [16, 17]

with a binary classification to predict whether the image and audio data correspond. The relationship

exploited in AVC has been extended into the spatial dimension, evolving into the task named sound

source localization (SSL) that aims to localize the region of sound sources in the frame [18, 19, 20].

With a remarkable achievement of SSL, Zhou et al. [1] introduced an advanced segmentation challenge

called Audio-Visual Segmentation (AVS). Diverse approaches have focused on learning effective multi-

modal representations to comprehend the pixel-level audio-visual correspondences in the video scene.

Mao et al. [21, 22] introduced the multimodal VAE and conditional latent diffusion model to learn the

advanced audio-visual representation. Huang et al. [23] and Gao et al. [24] utilized the transformer-

based architecture with the interaction between audio-conditioned object queries and visual features.

Liu et al. [25] proposed the two-stage framework: segmenting all potential objects from the visual data

and verifying sounding objects using an audio-visual semantic matching. In this work, we introduce a

bidirectional cross-modal feature interaction module to extend the capabilities of the Segment Anything

Model (SAM) [4] to the AVS.

2.2 Segment Anything Model

SAM is a foundation model for generality and broad applications in image segmentation problems

with point, box, mask, and text prompts, pre-trained on 1B masks from 11M images [4]. Extensive works

have studied the SAM’s ability with various problems, including 3D vision tasks [5, 6], medical image

segmentation [7, 8], and shadow detection [9, 10]. Within this context, the extension of SAM to handle

the video data has been explored [13, 12, 11]. For instance, Cheng et al. [11] proposed a user-interactive

video object tracking framework by supporting SAM’s insufficient temporal and semantic understanding

of the object. They employed Grounding Dino [26], a vision-language model, to interactively convert the

user’s description into the box prompt for SAM. Beyond these approaches, our work introduces SAM’s

temporal extension with audio as a new input modality without relying on the existing prompts.
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Chapter 3. Preliminary

In this chapter, we formulate the audio-visual segmentation problem, where the model predicts the pixel-

level segmentation mask of sounding objects on the video frames with the corresponding audio prompts

(Sec. 3.1). Also, we revisit the image segmentation process of SAM as a baseline of our method (Sec 3.2).

3.1 Problem Formulation

The video data for the audio-visual segmentation consists of a series of visual frames and audio

spectrograms. For the video n with a length of T seconds, denoted as (In, Sn), the image frames

are represented as In = {int }
T
t=1 with an image int ∈ R3×Hi×Wi at timestep t. Each video frame is

extracted at the end of each second. The audio spectrograms are represented as Sn = {snt }
T
t=1 with

snt ∈ RHs×Ws . The spectrogram is processed via a short-time Fourier transform of the 1-second audio

clip. The model outputs the segmentation map of the sound source as a binary mask Y n = {ynt }
T
t=1 with

ynt ∈ {0, 1}Hi×Wi . Each pixel in ynt represents whether it is a sounding object. Multiple sound sources

can be depicted within the single mask ynt without considering semantic differences for each object. The

target segmentation mask is also provided as a binary mask Mn = {mn
t }

T
t=1 with mn

t ∈ {0, 1}Hi×Wi .

For simplicity, we omit the notation n afterward.

3.2 Revisiting SAM

SAM is an architecture designed to solve the image segmentation problem. It has three main

components: an image encoder, a prompt encoder, and a mask decoder. For the image encoder, a Vision

Transformer (ViT) [27] pre-trained with MAE [28] is used to extract the spatial image features. A prompt

encoder supports two subsets of prompts: sparse (points, boxes, and text) and dense prompts (masks).

Sparse prompts are embedded by the shallow encoder, and dense embedding is summed with the image

embedding. These embeddings are fed into the mask decoder, providing the regional information about

the target objects to segment.

We elaborate on the operation of the SAM decoder, which is essential to guiding the target’s loca-

tion through user prompts (Fig. 3.1). The decoder block uses prompt self-attention and bidirectional

cross-attention to update both prompt and image embedding. The decoder’s cross-attentions capture

the spatial correspondence of the prompt and visual features at each time step to update both. The

final similarity map between the fused image embedding and the prompt token is used as a final mask

prediction of the target object.

4
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Figure 3.1: Details of the SAM’s lightweight mask decoder from the paper by Kirillov et al. [4].
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Chapter 4. Method

4.1 Extending SAM into Auditory and Temporal Dimensions

While SAM utilizes visual prompts to address various image segmentation problems, enabling SAM

to support the audio prompts within multi-frame video requires an alternative approach. In the pipeline

of SAM, the guidance of prompts about where to segment is done in the lightweight mask decoder

with cross attention between the image and prompt embeddings as elaborated in Sec. 3.2. Considering

this, a straightforward approach to processing the audio in SAM is to forward the audio embeddings

as the prompt into the decoder, as introduced by Liu et al. [2]. However, using audio to represent

the target objects in images is more complicated than using points and boxes, making it challenging

for the lightweight decoder to comprehend the intricate audio-visual relationship [2]. Moreover, as the

decoder operates the cross attention per frame, the temporal dependencies among subsequent frames are

insufficiently leveraged. To solve these challenges, we propose the intermediate audio-visual interaction

module ST-BAVA before the decoder. This module aggregates the spatio-temporal relationship of the

audio-visual features extracted from the subsequent video frames and audio streams. These updated

features by ST-BAVA are handed to the subsequent decoding process of the segmentation map, enabling

the SAM’s decoder to utilize the audio-visual correspondence in spatial and temporal dimensions.

4.2 SAM with ST-BAVA

Fig. 4.1a shows the pipeline of SAM with the proposed ST-BAVA module. SAM’s image encoder

embeds input images I to get the visual embedding V ∈ RT×HW×C , whereH,W represent the spatial size

of the visual embeddings and C represents a channel dimension. The audio backbone encoder, followed

by the learnable linear layer, encodes the audio spectrograms S to the audio embedding A ∈ RT×C ,

aligning with the channel dimension of visual embedding. V and A are forwarded to the ST-BAVA,

where the spatial and temporal attention operates sequentially. Spatial attention computes the spatial

correspondence between V and A for each time step, and temporal attention analyzes their audio-

visual correlation across consecutive frames per pixel. By the bidirectional operation of the spatial and

temporal attention, ST-BAVA produces the audio-queried visual embedding Vaq and visual-queried audio

embedding Avq. Both are inserted into the SAM’s mask decoder where Vaq serves as the dense prompt

and Avq as the sparse prompt, replacing the original point or box prompts. The following decoding steps

are carried out in the same way as in image segmentation. As the objective function for the AVS, we

adopt the binary cross-entropy loss with the ground truth pixel mask M for prediction Y , represented

as L = BCE(Y,M).

4.3 Spatio-Temporal, Bidirectional Audio-Visual Attention

Fig. 4.1b elaborates ST-BAVA module architecture. The design of ST-BAVA is motivated by the

SAM decoder’s bidirectional image-prompt feature fusion, extending it into spatio-temporal dimensions

between the sequence of image and audio embeddings. As processing audible video data requires high

6
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Figure 4.1: Overview of the proposed SAM with ST-BAVA. (a) Our model takes a sequence of video

frames and audio streams as input and predicts the mask of the sound sources for each video frame.

(b) ST-BAVA module bidirectionally updates the image and audio features with spatial and temporal

attention in sequence. M.H. stands for the multi-head. The initial audio feature from the audio backbone

is used as a positional encoding for the audio feature.

computational costs [3], ST-BAVA uses the decomposed spatial and temporal cross-modal attention

to reduce the memory requirements [29]. The temporal attention weight αtime exploits the contextual

relationship between the audio-visual features per pixel, represented as follows:

αtime = softmax(
V A⊤
√
C

) ∈ RHW×T×T . (4.1)

Note that the time axis RT is used as the sequence dimension and the spatial axis RHW as the batch.

To match the shape of audio and visual features, spatial average pooling and repeating the input and

output of the attention are applied. In spatial attention, the score map αspace calculates the spatial

correspondence between V and A at each time step:

αspace = softmax(
V A⊤
√
C

) ∈ RT×HW×1, (4.2)

with the spatial axis RHW×1 used as the sequence dimension. This sequential operation of ST-BAVA

first produces the image-queried audio embedding Avq and uses it to produce the audio-queried im-

age embedding Vaq. Repeated L times, the ST-BAVA blocks aggregate the bidirectional audio-visual

relationship across the spatio-temporal dimensions to support the subsequent decoding process.

Fig. 4.2 shows the effect of temporal attention in the proposed ST-BAVA on leveraging contextual

information across multiple frames. This leads to more accurate predictions of the sound source among

visual candidates (violin in the left video) or judging the silent frame with no prediction (second frame

of the right video) than the results without temporal attention.

4.4 Adapters

Although our proposed ST-BAVA effectively adjusts the audio-visual features at the middle of the

pipeline, it relies exclusively on the visual embeddings extracted from the SAM’s pre-trained image

encoder that operates independently of the audio data. As Liu et al. [2] have revealed, audio-visual

feature fusion during the image encoding stage can further enhance AVS performance. To achieve this,

they have proposed Adapters that inject the audio feature into the image encoder. This work introduces
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Figure 4.2: Effect of temporal attention in ST-BAVA on the audio-visual segmentation results. Our

model leverages the temporal relationship across multiple frames, leading to accurate sound source

predictions. Wrong prediction without temporal attention is marked in red boxes.

audio adapters to assist the ST-BAVA module in effectively fusing the audio-injected image features.

Note that the Adapter does not utilize contextual or bidirectional relationships between multiple frames,

as it injects audio information into the corresponding image.

For the detailed methods, in the j-th image encoder layer stage, the j-th Adapter encodes the audio

embedding A from the audio backbone into Aprompt
j ∈ RT×HW×C that has repeated spatial dimension.

It is added to the output of the previous encoder layer Ej−1 to be the input of j-th layer Xj , represented

as:

Xj = Ej−1(Xj−1) +Aprompt
j . (4.3)

The image embedding generated by the encoder with the Adapters proceeds through the ST-BAVA and

mask decoder.
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Chapter 5. Experiment

5.1 Dataset

We use the AVSBench dataset [1] designed for the audio-visual segmentation. It contains two

video subsets: Single Sound Source Segmentation (S4) includes 4,932 videos, and Multi Sound Source

Segmentation (MS3) contains 424 videos. In S4, a single sound source consistently appears in each

video, whereas multiple sources can appear or vanish as frames progress in MS3. The videos cover 23

categories, including human voice, playing instruments, etc. Each 5-second video is split into five image

frames captured per second and five audio segments, each lasting 1 second.

5.2 Evaluation Metrics

We use the mean Intersection over Union (mIoU) and F-score MF for the evaluation metrics follow-

ing [1]. The mIoU computes the mean IoU between the predicted mask and the ground truth of the five

frames. Note that mIoU is also known as Jaccard index MJ in related works [1, 25, 23]. The F-score

MF is calculated with the precision and recall, represented as MF = (1+β2)×precision×recall
β2×precision+recall . β2 is set

to 0.3 in our experiments.

5.3 Implementation Details

We use pre-trained ViT-H SAM [4] for weight initialization of the SAM. The resolution of input

video frames is resized to 1024 × 1024. We use AudioSet [30] pre-trained VGGish [31] as an audio

encoder. We set the frame length T = 5, following [1]. During training, the parameters of the SAM’s

image encoder and the audio backbone encoder are not updated. We set the depth of ST-BAVA layers L

to 5 in S4 and 7 in MS3. We set the attention order in ST-BAVA based on slightly better performance,

but there was no significant difference. The model is trained for 250 epochs, where Adam is used as an

optimizer with a learning rate of 1e − 4. Adapters that consist of two-layer MLP are inserted into all

32 image encoder layers of SAM, following the prior work [2]. We train our model with Adapters for 15

epochs from separately pre-trained ST-BAVA and Adapters.
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Chapter 6. Result

Backbone Methods
S4 MS3

mIoU F-score mIoU F-score

PVTv2

TPAVI [1] 78.74 0.879 54.0 0.645

AVSC [25] 81.29 0.886 59.5 0.657

CATR [32] 81.4 0.896 59.00 0.700

AQFormer [23] 81.6 0.894 61.1 0.721

AVSegFormer [24] 82.06 0.899 58.36 0.693

ECMVAE [21] 81.74 0.901 57.84 0.708

LDM [22] 81.38 0.902 58.18 0.709

SAM

GAVS [3] 80.06 0.902 63.70 0.774

SAMA-AVS [2] 81.53 0.886 63.14 0.691

ST-BAVA (Ours) 82.46 0.906 69.01 0.776

Table 6.1: Quantitative comparison with other AVS methods on the Single-source (S4) and Multi-source

(MS3) subset of AVSBench dataset [1] regarding mIoU and F-score.

6.1 Quantitative Comparison

Quantitative comparisons between our method and other state-of-the-art works on the AVS bench-

mark are presented in Table 6.1. Our proposed ST-BAVA with SAM outperforms the state-of-the-art

methods on the AVSbench in all settings. It achieves a significant performance gap in MS3, with 5.31

(8.3%) mIoU improvement compared to the previous best score (GAVS [3]). As MS3 presents the

challenging task of distinguishing multiple objects corresponding to the sound within the image frame,

achieving high performance on the MS3 indicates that the proposed model accurately identifies and lo-

calizes sound sources in the complex scene. We infer that our ST-BAVA supports SAM in leveraging the

audio-visual correspondence between multiple sources aggregated in spatial and temporal dimensions.

Note that the trainable parameters in our model are small (<4% of SAM), verifying its efficiency.

6.2 Qualitative Examples

Fig. 6.1 illustrates qualitative examples of the existing methods and ours. Our model provides

examples of accurately identifying the correct sound sources among visual candidate objects. In the

left video of the figure, our model successfully localizes the small sound source, the gun. In contrast,

SAMA-AVS [2], another SAM-based approach without leveraging the temporal audio-visual relationship,

incorrectly predicts the silent person as a sound source in several frames. It supports our claim that

the proposed approach benefits from utilizing temporal relationships to comprehend the scene with

more contextual information. It leads to the accurate distinction of the sounding objects among visual

candidates. Moreover, our model precisely delineates the gun’s refined boundaries, including the bottom

part of the gun. Another non-SAM-based approach (TPAVI [1]) mispredicts the hand holding the gun
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Figure 6.1: Qualitative comparison with existing methods. Our method accurately identifies sound

sources across multiple frames and describes detailed object shapes, achieving the most accurate seg-

mentation performance.

or unrelated backgrounds. In more challenging scenarios with multiple objects for the right video, our

model correctly identifies the piano and the man as the sound sources and precisely portrays their shapes.

6.3 Comparison to SAM with Visual Prompts

To verify the effectiveness of the proposed audio processing approach, we compare our model with

the zero-shot performance of vanilla SAM using visual prompts on the AVS benchmark in Table 6.2.

Since SAM does not inherently support audio prompts, we extract the points and boxes from the ground

truth mask M to guide the region of sound sources. It is an alternative to user prompts employed in

zero-shot approaches with SAM in various studies [8, 11]. In the case of points, we extract the largest

regions corresponding to the sound sources and select the center of mass (or random if the center doesn’t

lie on the object) point per region. For the boxes, the minimum external bounding boxes containing the

largest contour region of sound sources in M are used.

Results in Table 6.2 show that our model performs comparable to or even better than the zero-shot

performance of SAM using the ground truth regions of sound sources as a visual prompt. It verifies our

method’s effectiveness in handling AVS by adapting SAM with the direct capability to process audio

without relying on manual prompts such as points and boxes. Note that our approach leverages the

temporal cross-modal context across the multi-frame, while the vanilla SAM with visual prompts does

not.
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Approach Methods
S4 MS3

mIoU F-score mIoU F-score

Visual Prompts
1 Point 42.45 0.637 33.01 0.523

from G.T. mask
3 Points 68.57 0.839 54.51 0.701

without Training
1 Box 76.01 0.867 63.46 0.713

3 Boxes 76.75 0.874 66.76 0.813

w/o fusion module [2] 81.53 0.886 63.14 0.691

+ TPAVI [1] 81.68 0.902 64.78 0.749

Audio Prompts + HAN [33] 80.56 0.896 64.14 0.739

with Training + CMRAN [34] 81.46 0.899 65.09 0.747

+ JCA [35] 81.99 0.903 65.44 0.751

+ ST-BAVA (Ours) 82.46 0.906 69.01 0.776

Table 6.2: Comparison of different approaches to handle the AVS with SAM. (Top) SAM receives point

or box prompts guiding the region of the sound sources extracted from the ground-truth (G.T.) mask.

(Bottom) For training SAM, intermediate feature fusion modules are inserted into SAM.

6.4 Ablation on Feature Fusion Modules with SAM

To prove the effectiveness of the ST-BAVA in adapting the SAM to AVS, we conducted an ab-

lation study on the intermediate feature fusion module. For comparison, we adopt the audio-visual

feature fusion modules proposed in audio-visual segmentation (Temporal Pixel-wise Audio-Visual In-

teraction [1, 21, 22]), audio-visual video parsing (Hybrid Attention Network [33]), audio-visual event

localization (Cross-Modal Relation-Aware Networks [34]), and dimensional emotion recognition (Joint

Cross-Attention [35]).

Results in Table 6.2 show that the proposed ST-BAVA outperforms other methods with SAM in the

AVS benchmark. From the SAM without intermediate fusion module [2], the performance improvement

by introducing the intermediate fusion module demonstrates its significance in supporting the SAM’s

decoder to learn complex audio-visual correspondences. However, all other fusion modules perform less

than the ST-BAVA. In the case of TPAVI [1], the single integrated spatio-temporal attention is susceptible

to implicit and redundant representations [29, 23], whereas the ST-BAVA separately operates spatial

and temporal attention. Furthermore, bidirectionally updating audio-visual features adopted by ST-

BAVA enhances their subsequent cross-attention in the SAM’s mask decoder. Other modules, HAN [33],

CMRAN [34], and JCA [35], struggle with adapting SAM into the AVS, as they are not designed to

consider the spatial visual features that are not essential to solving their tasks.

6.5 Analysis on Attention Maps

To qualify the effect of the proposed ST-BAVA on the cross-modal features, we visualize the spatial

attention score map between the audio-visual features in the middle of our model pipeline. Since the

mask decoder uses the attention map to get a final prediction mask, the intermediate maps present

valuable cues affecting the model’s output.

In Fig. 6.2, the attention maps before the ST-BAVA module do not include any information related

to the sound sources, simply depicting the boundaries of objects on the image by the pre-knowledge

of the backbones. In contrast, the attention map after ST-BAVA clearly shows the high values in the

sources’ location, while the values in the backgrounds and the silent objects are low. It leads to the
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Figure 6.2: Spatial attention maps of the audio and visual embedding in the middle of our model

pipeline. The attention map before ST-BAVA is calculated using features extracted from the backbones.

After the ST-BAVA, the map separately represents the region of sound sources within the frames, which

leads to the correct segmentation of the sources in the predicted mask. Green-boxed regions show the

visual information aggregated from other frames by temporal attention (the man with multiple arms).

accurate segmentation results observed in the predicted masks, showing the effectiveness of the ST-

BAVA module in judging the pixel-level audio-visual correspondence. Interestingly, after ST-BAVA,

each map aggregates the visual information of other frames by temporal attention. In the green-boxed

region, the man on the map has multiple arms appearing in other frames, which does not disrupt the

precise prediction masks at each time step.

6.6 Ablation on Model Components

We conduct an ablation study to investigate the effectiveness of the proposed components in Ta-

ble 6.3. The baseline uses spatial and unidirectional audio-to-image attention in ST-BAVA without

Adapter [2]. All of the proposed components yield performance improvements in both subsets in the

AVS benchmark, highlighting the effectiveness of the ST-BAVA. Notably, our proposed model without

the Adapter performs well with no training or prompt-tuning of the SAM’s image encoder. Utilizing

the Adapter helps improve cross-modal interaction in ST-BAVA with the audio-adapted image feature,

further enhancing the AVS performance.

Also, we report the performance change with the varying depth of ST-BAVA layers in Fig. 6.3. Our

model performs best at the depth of 5 in the S4 subset and 7 in the MS3. It’s obvious that within the

MS3, there is an evident enhancement in performance beyond a depth of 6. In contrast, the S4 exhibits
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S4 MS3
Methods

mIoU F-score mIoU F-score

Baseline (Spatial A2V Attn.) 76.65 0.857 61.54 0.703

w/o Temporal Attn. 80.72 0.892 65.37 0.752

w/o Bidirectional Attn. 80.09 0.887 65.17 0.749

w/o Adapter 80.02 0.888 66.06 0.743

Full 82.46 0.906 69.01 0.776

Table 6.3: Ablation on the components of our methods.

Figure 6.3: Ablation study on the depth of ST-BAVA module with mIoU of S4 and MS3 subset.

relatively consistent performance across varying depths.
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Chapter 7. Discussion
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Figure 7.1: Qualitative examples where semantically similar objects appear.

15



7.1 Semantically Similar Object Cases

We provide examples in the scenario where semantically similar objects appear in Fig. 7.1. In the

top-left videos, there are two chainsaws, but only one on the human hand emits sound. Other models

are distracted by the silent chainsaw lying on the ground, whereas our model selects the correct sound

source. It verifies that our approach benefits from the contextual information that the man moves the

sounding chainsaw across multiple frames. Similar results are shown in the right video, where only one of

the two females is singing. Nevertheless, there are also cases where our model shows insufficient results.

In the bottom-left video, the prediction of our model is distracted by the adjacent cars in several frames.

Moreover, in the bottom-right video, where the available visual cue is not easily noticeable, our model

mispredicts the silent dog as a source in several frames. Further semantic modeling considering the

instance-wise relationship could be one option for handling these cases.

7.2 Future work

1 second (train sound)
Figure 7.2: Our model’s AVS prediction on the 10 FPS video in a novel category (train) that doesn’t

appear in AVSBench.

As SAM [4] stands as a foundation model for various image segmentation tasks [5, 6, 7, 8, 9, 10, 11,

12, 13], the generalization power of the proposed SAM with ST-BAVA can be investigated in generalized

settings in terms of the sound source category, or different frame rates. For example, we test our model

with a video in the evaluation set of AudioSet [30] (Fig. 7.2). The video is not in the AVSBench’s

23 categories and has 10 times higher FPS than the AVSBench. The result in Fig. 7.2 highlights the

potential of our model on the generalization performance regarding to the novel categories and a higher

frame rate.
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Chapter 8. Conclusion

We have proposed the extended Segment Anything Model (SAM) to address the Audio-Visual Seg-

mentation (AVS) task in videos with sound. Our approach includes the Spatio-Temporal, Bidirectional

Audio-Visual Attention (ST-BAVA) module, designed to analyze the spatio-temporal dynamics between

multiple image and audio frames. This module, positioned between SAM’s image encoder and mask

decoder, enhances SAM’s ability to process audio-visual information across both spatial and temporal

dimensions. Within ST-BAVA, spatial attention identifies pixel-level audio-visual correlations for each

video frame, while temporal attention explores the cross-modal relationships over successive frames. Our

extensive experimental evaluations demonstrate that our model achieves meaningful performance on AVS

benchmarks, outperforming existing state-of-the-art methods.
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