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Abstract

Audio-visual segmentation (AVS) focuses on segmenting sound sources within video sequences, necessi-
tating a detailed understanding of the connections between audio and visual elements at the pixel level.
As the Segment Anything Model (SAM) has profoundly influenced various dense prediction challenges,
recent research has focused on integrating SAM into AVS with audio prompts. However, SAM’s de-
sign primarily addresses single-frame segmentation, which does not fully leverage the temporal dynamics
inherent in audio-visual data. To address this, our study explores enhancing SAM’s functionality to
encompass sequences of audio-visual scenes by examining the intermodal relationships across frames.
We introduce a Spatio-Temporal, Bidirectional Audio-Visual Attention (ST-BAVA) module to dynami-
cally refine audio-visual features and reinforce the spatio-temporal alignment between video frames and
corresponding audio tracks. Extensive experiments demonstrate that our proposed model outperforms
the state-of-the-art methods on AVS benchmarks, especially with an 8.3% mIoU gain on a challenging

multi-sources subset.

Keywords Audio-visual learning, sound source localization, audio-visual segmentation, Segment Any-

thing, spatio-temporal attention
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Chapter 1. Introduction

ST-BAVA
bt

(a) SAM (b) Prior approaches [2, 3] (c) SAM with ST-BAVA (Ours)

Figure 1.1: Segmentation results of different models on a film A Dog’s Purpose (2017). (a) Segment
Anything Model (SAM) segments target objects in the image with their regions guided by user prompts.
(b) Prior works [2, 3] have adapted SAM to segment objects that sound with a corresponding audio
prompt per frame. (¢) We propose a spatio-temporal, bidirectional audio-visual attention (ST-BAVA),
enabling SAM to fully leverage the relationships between the subsequent video frames and audio streams
in a bidirectional way. In Fig. 1.1c, our model successfully segments the human and the dog on the

frames where they make sounds.

Segment Anything Model (SAM) [4] is a foundation model in image segmentation with points, boxes,
and text prompts (Fig. 1.1a). Tremendous works have shown SAM’s outstanding performance in various
dense prediction problems [5, 6, 7, 8, 9, 10, 11, 12, 13] by adapting it to specific domains. For instance,
Cen et al. [5] extended the segmentation ability of SAM to 3D scenes through NeRFs. Wu et al. [7]
adapted SAM into the medical domain, showing generalized segmentation performance on CT, MRI,
ultrasound, fundus, and dermoscopic images.

In light of the success of SAM in various tasks, pioneering works [14, 2, 3] have attempted to introduce
a prompt in the novel modality, audio, into the SAM (Fig. 1.1b). They aim to segment the object that
makes the sound in the audible video, defined as an Audio-Visual Segmentation (AVS) problem [1]. Mo
et al. [14] explored a spatial fusion of the audio-visual features for audio prompting of SAM. Liu et al. [2]
and Wang et al. [3] presented prompt tuning techniques [15] by inserting the light-weight adapters into
the image encoder and decoder of SAM respectively, achieving high performance on the AVS benchmark.

Nevertheless, since they divide the video into individual frames in a single-frame manner constrained
by SAM, the contextual information provided by the audio-visual scene across subsequent frames has been
neglected. Furthermore, while the effectiveness of bidirectional modeling with the interaction between
the image frame and the corresponding prompt has been demonstrated in the SAM-based referring
video object segmentation (RVOS) [12] and tracking [13], it has not been sufficiently explored for the
audible video data. As the AVS requires comprehensive pixel-level correspondence across two different

modalities, leveraging the complementary relationship between audio-visual cues in a bidirectional way



becomes more essential to this task.

To this end, we study the extension of SAM’s segmentation capabilities to the subsequent frames
with corresponding audio, proposing a Spatio-Temporal, Bidirectional Audio-Visual Attention module
(ST-BAVA) (Fig. 1.1c¢). It aims to convey the spatio-temporal relationships between input images and
audio prompts to SAM through bidirectional adjustments of audio-visual features in the middle of the
pipeline. Our proposed method exhibits two advantages compared to the previous approaches [2, 14, 3].
First, we enable SAM to leverage the contextual information presented in the audio-visual scene of
multiple frames. Second, we mutually align the image and audio features based on their spatial and
temporal correspondences across the video. Through the bidirectional aggregation of the spatio-temporal
relationship across the sequence of the audio-visual frames, our model effectively identifies the distinct
visual and auditory cues from the objects that could emerge or disappear. Extensive experimental
results (Sec. 5, 6) demonstrate that the proposed method achieves high performance in localizing the
sound source with only a few trainable parameters (<4% of SAM), thanks to the audio-visual relationship
exploited by ST-BAVA. In particular, it achieves improvements of 8.3% in mIoU on the AVS benchmark’s
multi-sources subset, as shown in Table 6.1.

We summarize our contributions as follows:

e We extend SAM into the auditory and temporal dimensions to segment the sound sources on the

subsequent video frames using corresponding audio as a prompt.

e We propose a Spatio-Temporal, Bidirectional Audio-Visual Attention module (ST-BAVA), enabling
SAM to exploit the spatio-temporal correspondences between subsequent image frames and audio

streams.

e Through experiments, we demonstrate that the proposed method outperforms the state-of-the-art
methods on the AVS. Furthermore, we showcase the effectiveness of the main components in our

approach through extensive ablation studies.



Chapter 2. Related Work

2.1 Audio-Visual Segmentation

In audio-visual learning, the relationship between audio and visual data has been explored to under-
stand the scene in multimodal. Researchers pioneered the audio-visual correspondence (AVC) [16, 17]
with a binary classification to predict whether the image and audio data correspond. The relationship
exploited in AVC has been extended into the spatial dimension, evolving into the task named sound
source localization (SSL) that aims to localize the region of sound sources in the frame [18, 19, 20].
With a remarkable achievement of SSL, Zhou et al. [1] introduced an advanced segmentation challenge
called Audio-Visual Segmentation (AVS). Diverse approaches have focused on learning effective multi-
modal representations to comprehend the pixel-level audio-visual correspondences in the video scene.
Mao et al. [21, 22] introduced the multimodal VAE and conditional latent diffusion model to learn the
advanced audio-visual representation. Huang et al. [23] and Gao et al. [24] utilized the transformer-
based architecture with the interaction between audio-conditioned object queries and visual features.
Liu et al. [25] proposed the two-stage framework: segmenting all potential objects from the visual data
and verifying sounding objects using an audio-visual semantic matching. In this work, we introduce a
bidirectional cross-modal feature interaction module to extend the capabilities of the Segment Anything
Model (SAM) [4] to the AVS.

2.2 Segment Anything Model

SAM is a foundation model for generality and broad applications in image segmentation problems
with point, box, mask, and text prompts, pre-trained on 1B masks from 11M images [4]. Extensive works
have studied the SAM’s ability with various problems, including 3D vision tasks [5, 6], medical image
segmentation [7, 8], and shadow detection [9, 10]. Within this context, the extension of SAM to handle
the video data has been explored [13, 12, 11]. For instance, Cheng et al. [11] proposed a user-interactive
video object tracking framework by supporting SAM’s insufficient temporal and semantic understanding
of the object. They employed Grounding Dino [26], a vision-language model, to interactively convert the
user’s description into the box prompt for SAM. Beyond these approaches, our work introduces SAM’s

temporal extension with audio as a new input modality without relying on the existing prompts.



Chapter 3. Preliminary

In this chapter, we formulate the audio-visual segmentation problem, where the model predicts the pixel-
level segmentation mask of sounding objects on the video frames with the corresponding audio prompts

(Sec. 3.1). Also, we revisit the image segmentation process of SAM as a baseline of our method (Sec 3.2).

3.1 Problem Formulation

The video data for the audio-visual segmentation consists of a series of visual frames and audio
spectrograms. For the video n with a length of T seconds, denoted as (I™,S™), the image frames
are represented as I" = {z?}thl with an image 7 € R¥*H:*Wi at timestep ¢. Each video frame is
extracted at the end of each second. The audio spectrograms are represented as S™ = {5?}3;1 with
st € RExWs  The spectrogram is processed via a short-time Fourier transform of the 1-second audio
clip. The model outputs the segmentation map of the sound source as a binary mask Y™ = {yf}thl with
yp € {0, 1}Hixwi. Each pixel in y;' represents whether it is a sounding object. Multiple sound sources
can be depicted within the single mask y;* without considering semantic differences for each object. The
target segmentation mask is also provided as a binary mask M™ = {m?}thl with mp e {0,1}7".

For simplicity, we omit the notation n afterward.

3.2 Revisiting SAM

SAM is an architecture designed to solve the image segmentation problem. It has three main
components: an image encoder, a prompt encoder, and a mask decoder. For the image encoder, a Vision
Transformer (ViT) [27] pre-trained with MAE [28] is used to extract the spatial image features. A prompt
encoder supports two subsets of prompts: sparse (points, boxes, and text) and dense prompts (masks).
Sparse prompts are embedded by the shallow encoder, and dense embedding is summed with the image
embedding. These embeddings are fed into the mask decoder, providing the regional information about
the target objects to segment.

We elaborate on the operation of the SAM decoder, which is essential to guiding the target’s loca-
tion through user prompts (Fig. 3.1). The decoder block uses prompt self-attention and bidirectional
cross-attention to update both prompt and image embedding. The decoder’s cross-attentions capture
the spatial correspondence of the prompt and visual features at each time step to update both. The
final similarity map between the fused image embedding and the prompt token is used as a final mask

prediction of the target object.
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Figure 3.1: Details of the SAM’s lightweight mask decoder from the paper by Kirillov et al. [4].



Chapter 4. Method

4.1 Extending SAM into Auditory and Temporal Dimensions

While SAM utilizes visual prompts to address various image segmentation problems, enabling SAM
to support the audio prompts within multi-frame video requires an alternative approach. In the pipeline
of SAM, the guidance of prompts about where to segment is done in the lightweight mask decoder
with cross attention between the image and prompt embeddings as elaborated in Sec. 3.2. Considering
this, a straightforward approach to processing the audio in SAM is to forward the audio embeddings
as the prompt into the decoder, as introduced by Liu et al. [2]. However, using audio to represent
the target objects in images is more complicated than using points and boxes, making it challenging
for the lightweight decoder to comprehend the intricate audio-visual relationship [2]. Moreover, as the
decoder operates the cross attention per frame, the temporal dependencies among subsequent frames are
insufficiently leveraged. To solve these challenges, we propose the intermediate audio-visual interaction
module ST-BAVA before the decoder. This module aggregates the spatio-temporal relationship of the
audio-visual features extracted from the subsequent video frames and audio streams. These updated
features by ST-BAVA are handed to the subsequent decoding process of the segmentation map, enabling

the SAM’s decoder to utilize the audio-visual correspondence in spatial and temporal dimensions.

4.2 SAM with ST-BAVA

Fig. 4.1a shows the pipeline of SAM with the proposed ST-BAVA module. SAM’s image encoder
embeds input images I to get the visual embedding V' € RT*HWxC where H, W represent the spatial size
of the visual embeddings and C' represents a channel dimension. The audio backbone encoder, followed
by the learnable linear layer, encodes the audio spectrograms S to the audio embedding A € RT*¢,
aligning with the channel dimension of visual embedding. V and A are forwarded to the ST-BAVA,
where the spatial and temporal attention operates sequentially. Spatial attention computes the spatial
correspondence between V' and A for each time step, and temporal attention analyzes their audio-
visual correlation across consecutive frames per pixel. By the bidirectional operation of the spatial and
temporal attention, ST-BAVA produces the audio-queried visual embedding V,q and visual-queried audio
embedding A,4. Both are inserted into the SAM’s mask decoder where V., serves as the dense prompt
and A, as the sparse prompt, replacing the original point or box prompts. The following decoding steps
are carried out in the same way as in image segmentation. As the objective function for the AVS, we
adopt the binary cross-entropy loss with the ground truth pixel mask M for prediction Y, represented
as L =BCE(Y,M).

4.3 Spatio-Temporal, Bidirectional Audio-Visual Attention

Fig. 4.1b elaborates ST-BAVA module architecture. The design of ST-BAVA is motivated by the
SAM decoder’s bidirectional image-prompt feature fusion, extending it into spatio-temporal dimensions

between the sequence of image and audio embeddings. As processing audible video data requires high
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(a) Pipeline of SAM with ST-BAVA (b) ST-BAVA module architecture

Figure 4.1: Overview of the proposed SAM with ST-BAVA. (a) Our model takes a sequence of video
frames and audio streams as input and predicts the mask of the sound sources for each video frame.
(b) ST-BAVA module bidirectionally updates the image and audio features with spatial and temporal
attention in sequence. M.H. stands for the multi-head. The initial audio feature from the audio backbone

is used as a positional encoding for the audio feature.

computational costs [3], ST-BAVA uses the decomposed spatial and temporal cross-modal attention
to reduce the memory requirements [29]. The temporal attention weight atime exploits the contextual

relationship between the audio-visual features per pixel, represented as follows:

AT HWXTxXT
)ER X (4.1)
vC

Note that the time axis R” is used as the sequence dimension and the spatial axis RZ" as the batch.

Qitime = softmax(

To match the shape of audio and visual features, spatial average pooling and repeating the input and
output of the attention are applied. In spatial attention, the score map aspace calculates the spatial
correspondence between V and A at each time step:

AT
Ve

with the spatial axis R7W*1! ysed as the sequence dimension. This sequential operation of ST-BAVA

) G]RT><HW><17 (4'2)

Qtspace = softmax(

first produces the image-queried audio embedding A, and uses it to produce the audio-queried im-
age embedding V,q. Repeated L times, the ST-BAVA blocks aggregate the bidirectional audio-visual
relationship across the spatio-temporal dimensions to support the subsequent decoding process.

Fig. 4.2 shows the effect of temporal attention in the proposed ST-BAVA on leveraging contextual
information across multiple frames. This leads to more accurate predictions of the sound source among
visual candidates (violin in the left video) or judging the silent frame with no prediction (second frame

of the right video) than the results without temporal attention.

4.4 Adapters

Although our proposed ST-BAVA effectively adjusts the audio-visual features at the middle of the
pipeline, it relies exclusively on the visual embeddings extracted from the SAM’s pre-trained image
encoder that operates independently of the audio data. As Liu et al. [2] have revealed, audio-visual
feature fusion during the image encoding stage can further enhance AVS performance. To achieve this,

they have proposed Adapters that inject the audio feature into the image encoder. This work introduces



Violin Violin Man voice Silent

Video

Ground
Truth

Ours

Ours w/o
Temporal
Attention

Figure 4.2: Effect of temporal attention in ST-BAVA on the audio-visual segmentation results. Our
model leverages the temporal relationship across multiple frames, leading to accurate sound source

predictions. Wrong prediction without temporal attention is marked in red boxes.

audio adapters to assist the ST-BAVA module in effectively fusing the audio-injected image features.
Note that the Adapter does not utilize contextual or bidirectional relationships between multiple frames,
as it injects audio information into the corresponding image.

For the detailed methods, in the j-th image encoder layer stage, the j-th Adapter encodes the audio
embedding A from the audio backbone into A?Tm”pt € RTXHWXC that has repeated spatial dimension.
It is added to the output of the previous encoder layer £;_; to be the input of j-th layer X7, represented

as:
X; = Ej_1(Xj_1) + Arom?t, (4.3)

The image embedding generated by the encoder with the Adapters proceeds through the ST-BAVA and

mask decoder.



Chapter 5. Experiment

5.1 Dataset

We use the AVSBench dataset [1] designed for the audio-visual segmentation. It contains two
video subsets: Single Sound Source Segmentation (S4) includes 4,932 videos, and Multi Sound Source
Segmentation (MS3) contains 424 videos. In S4, a single sound source consistently appears in each
video, whereas multiple sources can appear or vanish as frames progress in MS3. The videos cover 23
categories, including human voice, playing instruments, etc. Each 5-second video is split into five image

frames captured per second and five audio segments, each lasting 1 second.

5.2 FEvaluation Metrics

We use the mean Intersection over Union (mIoU) and F-score M x for the evaluation metrics follow-
ing [1]. The mIoU computes the mean IoU between the predicted mask and the ground truth of the five

frames. Note that mIoU is also known as Jaccard index M 7 in related works [1, 25, 23]. The F-score

_ (14B?)xprecisionxrecall 2 i
- B2 xprecision—+recall ﬂ 1s set

M £ is calculated with the precision and recall, represented as Mz

to 0.3 in our experiments.

5.3 Implementation Details

We use pre-trained ViT-H SAM [4] for weight initialization of the SAM. The resolution of input
video frames is resized to 1024 x 1024. We use AudioSet [30] pre-trained VGGish [31] as an audio
encoder. We set the frame length 7' = 5, following [1]. During training, the parameters of the SAM’s
image encoder and the audio backbone encoder are not updated. We set the depth of ST-BAVA layers L
to 5 in S4 and 7 in MS3. We set the attention order in ST-BAVA based on slightly better performance,
but there was no significant difference. The model is trained for 250 epochs, where Adam is used as an
optimizer with a learning rate of le — 4. Adapters that consist of two-layer MLP are inserted into all
32 image encoder layers of SAM, following the prior work [2]. We train our model with Adapters for 15
epochs from separately pre-trained ST-BAVA and Adapters.



Chapter 6. Result

Backbone Methods 5 MS3
mloU  F-score mloU F-score
TPAVI [1] 78.74 0.879 54.0 0.645
AVSC [25] 81.29 0.886 59.5 0.657
CATR [32] 81.4 0.896 59.00 0.700
PVTv2 AQFormer [23] 81.6 0.894 61.1 0.721
AVSegFormer [24] | 82.06 0.899 58.36 0.693
ECMVAE [21] 81.74 0.901 57.84 0.708
LDM [22] 81.38 0.902 58.18 0.709
GAVS [3] 80.06 0.902 63.70 0.774
SAM SAMA-AVS [2] 81.53 0.886 63.14 0.691
ST-BAVA (Ours) 82.46 0.906 69.01 0.776

Table 6.1: Quantitative comparison with other AVS methods on the Single-source (S4) and Multi-source
(MS3) subset of AVSBench dataset [1] regarding mIoU and F-score.

6.1 Quantitative Comparison

Quantitative comparisons between our method and other state-of-the-art works on the AVS bench-
mark are presented in Table 6.1. Our proposed ST-BAVA with SAM outperforms the state-of-the-art
methods on the AVSbench in all settings. It achieves a significant performance gap in MS3, with 5.31
(8.3%) mloU improvement compared to the previous best score (GAVS [3]). As MS3 presents the
challenging task of distinguishing multiple objects corresponding to the sound within the image frame,
achieving high performance on the MS3 indicates that the proposed model accurately identifies and lo-
calizes sound sources in the complex scene. We infer that our ST-BAVA supports SAM in leveraging the
audio-visual correspondence between multiple sources aggregated in spatial and temporal dimensions.

Note that the trainable parameters in our model are small (<4% of SAM), verifying its efficiency.

6.2 Qualitative Examples

Fig. 6.1 illustrates qualitative examples of the existing methods and ours. Our model provides
examples of accurately identifying the correct sound sources among visual candidate objects. In the
left video of the figure, our model successfully localizes the small sound source, the gun. In contrast,
SAMA-AVS [2], another SAM-based approach without leveraging the temporal audio-visual relationship,
incorrectly predicts the silent person as a sound source in several frames. It supports our claim that
the proposed approach benefits from utilizing temporal relationships to comprehend the scene with
more contextual information. It leads to the accurate distinction of the sounding objects among visual
candidates. Moreover, our model precisely delineates the gun’s refined boundaries, including the bottom
part of the gun. Another non-SAM-based approach (TPAVI [1]) mispredicts the hand holding the gun

10
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Figure 6.1: Qualitative comparison with existing methods. Our method accurately identifies sound
sources across multiple frames and describes detailed object shapes, achieving the most accurate seg-

mentation performance.

or unrelated backgrounds. In more challenging scenarios with multiple objects for the right video, our

model correctly identifies the piano and the man as the sound sources and precisely portrays their shapes.

6.3 Comparison to SAM with Visual Prompts

To verify the effectiveness of the proposed audio processing approach, we compare our model with
the zero-shot performance of vanilla SAM using visual prompts on the AVS benchmark in Table 6.2.
Since SAM does not inherently support audio prompts, we extract the points and boxes from the ground
truth mask M to guide the region of sound sources. It is an alternative to user prompts employed in
zero-shot approaches with SAM in various studies [8, 11]. In the case of points, we extract the largest
regions corresponding to the sound sources and select the center of mass (or random if the center doesn’t
lie on the object) point per region. For the boxes, the minimum external bounding boxes containing the
largest contour region of sound sources in M are used.

Results in Table 6.2 show that our model performs comparable to or even better than the zero-shot
performance of SAM using the ground truth regions of sound sources as a visual prompt. It verifies our
method’s effectiveness in handling AVS by adapting SAM with the direct capability to process audio
without relying on manual prompts such as points and boxes. Note that our approach leverages the
temporal cross-modal context across the multi-frame, while the vanilla SAM with visual prompts does

not.

11



S4 MS3
mloU F-score mloU F-score

1 Point 42.45 0.637 33.01 0.523

Approach Methods

Visual Prompts

3 Points 68.57 0.839 54.51 0.701
from G.T. mask

1 Box 76.01 0.867 63.46 0.713
without Training

3 Boxes 76.75 0.874 66.76 0.813

w/o fusion module [2] | 81.53 0.886 63.14 0.691

+ TPAVI [1] 81.68 0.902 64.78 0.749
Audio Prompts + HAN [33] 80.56 0.896 64.14 0.739
with Training + CMRAN ([34] 81.46 0.899 65.09 0.747

+ JCA [35] 81.99 0.903 65.44 0.751

+ ST-BAVA (Ours) |82.46 0.906 69.01 0.776

Table 6.2: Comparison of different approaches to handle the AVS with SAM. (Top) SAM receives point
or box prompts guiding the region of the sound sources extracted from the ground-truth (G.T.) mask.

(Bottom) For training SAM, intermediate feature fusion modules are inserted into SAM.

6.4 Ablation on Feature Fusion Modules with SAM

To prove the effectiveness of the ST-BAVA in adapting the SAM to AVS, we conducted an ab-
lation study on the intermediate feature fusion module. For comparison, we adopt the audio-visual
feature fusion modules proposed in audio-visual segmentation (Temporal Pixel-wise Audio-Visual In-
teraction [1, 21, 22]), audio-visual video parsing (Hybrid Attention Network [33]), audio-visual event
localization (Cross-Modal Relation-Aware Networks [34]), and dimensional emotion recognition (Joint
Cross-Attention [35]).

Results in Table 6.2 show that the proposed ST-BAVA outperforms other methods with SAM in the
AVS benchmark. From the SAM without intermediate fusion module [2], the performance improvement
by introducing the intermediate fusion module demonstrates its significance in supporting the SAM’s
decoder to learn complex audio-visual correspondences. However, all other fusion modules perform less
than the ST-BAVA. In the case of TPAVI [1], the single integrated spatio-temporal attention is susceptible
to implicit and redundant representations [29, 23], whereas the ST-BAVA separately operates spatial
and temporal attention. Furthermore, bidirectionally updating audio-visual features adopted by ST-
BAVA enhances their subsequent cross-attention in the SAM’s mask decoder. Other modules, HAN [33],
CMRAN [34], and JCA [35], struggle with adapting SAM into the AVS, as they are not designed to

consider the spatial visual features that are not essential to solving their tasks.

6.5 Analysis on Attention Maps

To qualify the effect of the proposed ST-BAVA on the cross-modal features, we visualize the spatial
attention score map between the audio-visual features in the middle of our model pipeline. Since the
mask decoder uses the attention map to get a final prediction mask, the intermediate maps present
valuable cues affecting the model’s output.

In Fig. 6.2, the attention maps before the ST-BAVA module do not include any information related
to the sound sources, simply depicting the boundaries of objects on the image by the pre-knowledge
of the backbones. In contrast, the attention map after ST-BAVA clearly shows the high values in the

sources’ location, while the values in the backgrounds and the silent objects are low. It leads to the
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Man voice Man voice  Man voice Man voice  Man voice

Video

Attn. map | :
before
ST-BAVA

Attn. map
after
ST-BAVA

Predicted
Mask

Figure 6.2: Spatial attention maps of the audio and visual embedding in the middle of our model
pipeline. The attention map before ST-BAVA is calculated using features extracted from the backbones.
After the ST-BAVA, the map separately represents the region of sound sources within the frames, which
leads to the correct segmentation of the sources in the predicted mask. Green-boxed regions show the

visual information aggregated from other frames by temporal attention (the man with multiple arms).

accurate segmentation results observed in the predicted masks, showing the effectiveness of the ST-
BAVA module in judging the pixel-level audio-visual correspondence. Interestingly, after ST-BAVA,
each map aggregates the visual information of other frames by temporal attention. In the green-boxed
region, the man on the map has multiple arms appearing in other frames, which does not disrupt the

precise prediction masks at each time step.

6.6 Ablation on Model Components

We conduct an ablation study to investigate the effectiveness of the proposed components in Ta-
ble 6.3. The baseline uses spatial and unidirectional audio-to-image attention in ST-BAVA without
Adapter [2]. All of the proposed components yield performance improvements in both subsets in the
AVS benchmark, highlighting the effectiveness of the ST-BAVA. Notably, our proposed model without
the Adapter performs well with no training or prompt-tuning of the SAM’s image encoder. Utilizing
the Adapter helps improve cross-modal interaction in ST-BAVA with the audio-adapted image feature,
further enhancing the AVS performance.

Also, we report the performance change with the varying depth of ST-BAVA layers in Fig. 6.3. Our
model performs best at the depth of 5 in the S4 subset and 7 in the MS3. It’s obvious that within the

MS3, there is an evident enhancement in performance beyond a depth of 6. In contrast, the S4 exhibits
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S4 MS3
mloU  F-score mloU F-score
Baseline (Spatial A2V Attn.) | 76.65  0.857  61.54  0.703

Methods

w/o Temporal Attn. 80.72 0.892 65.37 0.752
w/o Bidirectional Attn. 80.09  0.887  65.17  0.749
w/o Adapter 80.02  0.888  66.06  0.743
Full 82.46 0.906 69.01 0.776

Table 6.3: Ablation on the components of our methods.

82 67
—&— 54 —a— MS3
81 66
80 65 4
=
= ‘—/\\r""
E 79 A 64 1
78 63 1
_l"? T T T T T T 62 T T T T T T
3 4 5 6 7 8 3 4 5 6 7 8
Depth of ST-BAVA layers Depth of ST-BAVA layers

Figure 6.3: Ablation study on the depth of ST-BAVA module with mIoU of S4 and MS3 subset.

relatively consistent performance across varying depths.
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Chapter 7. Discussion

Chain- Chain- Chain- Chain- Chain- Female Female Female Female Female
sawing sawing sawing sawing sawing Singing Singing Singing Singing Singing
Audio
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Ground
Truth
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AVS

Ambulance Ambulance Ambulance Ambulance Ambulance Dog Dog Dog Dog Dog
Siren Siren Siren Siren Siren Barking Barking Barking Barking Barking

Audio N oo P oo
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Figure 7.1: Qualitative examples where semantically similar objects appear.
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7.1 Semantically Similar Object Cases

We provide examples in the scenario where semantically similar objects appear in Fig. 7.1. In the
top-left videos, there are two chainsaws, but only one on the human hand emits sound. Other models
are distracted by the silent chainsaw lying on the ground, whereas our model selects the correct sound
source. It verifies that our approach benefits from the contextual information that the man moves the
sounding chainsaw across multiple frames. Similar results are shown in the right video, where only one of
the two females is singing. Nevertheless, there are also cases where our model shows insufficient results.
In the bottom-left video, the prediction of our model is distracted by the adjacent cars in several frames.
Moreover, in the bottom-right video, where the available visual cue is not easily noticeable, our model
mispredicts the silent dog as a source in several frames. Further semantic modeling considering the

instance-wise relationship could be one option for handling these cases.

7.2 Future work

o e h S ” i T H 51"
o y - J = J . A p - J E
3 . , i ] i ] ;i # .
L
m
T

| I second (train sound) |

Figure 7.2: Our model’s AVS prediction on the 10 FPS video in a novel category (train) that doesn’t
appear in AVSBench.

As SAM [4] stands as a foundation model for various image segmentation tasks [5, 6, 7, 8, 9, 10, 11,
12, 13], the generalization power of the proposed SAM with ST-BAVA can be investigated in generalized
settings in terms of the sound source category, or different frame rates. For example, we test our model
with a video in the evaluation set of AudioSet [30] (Fig. 7.2). The video is not in the AVSBench’s
23 categories and has 10 times higher FPS than the AVSBench. The result in Fig. 7.2 highlights the
potential of our model on the generalization performance regarding to the novel categories and a higher

frame rate.
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Chapter 8. Conclusion

We have proposed the extended Segment Anything Model (SAM) to address the Audio-Visual Seg-
mentation (AVS) task in videos with sound. Our approach includes the Spatio-Temporal, Bidirectional
Audio-Visual Attention (ST-BAVA) module, designed to analyze the spatio-temporal dynamics between
multiple image and audio frames. This module, positioned between SAM’s image encoder and mask
decoder, enhances SAM’s ability to process audio-visual information across both spatial and temporal
dimensions. Within ST-BAVA, spatial attention identifies pixel-level audio-visual correlations for each
video frame, while temporal attention explores the cross-modal relationships over successive frames. Our
extensive experimental evaluations demonstrate that our model achieves meaningful performance on AVS

benchmarks, outperforming existing state-of-the-art methods.
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